sha
stringlengths
40
40
text
stringlengths
1
13.4M
id
stringlengths
2
117
tags
sequencelengths
1
7.91k
created_at
stringlengths
25
25
metadata
stringlengths
2
875k
last_modified
stringlengths
25
25
arxiv
sequencelengths
0
25
languages
sequencelengths
0
7.91k
tags_str
stringlengths
17
159k
text_str
stringlengths
1
447k
text_lists
sequencelengths
0
352
processed_texts
sequencelengths
1
353
tokens_length
sequencelengths
1
353
input_texts
sequencelengths
1
40
embeddings
sequencelengths
768
768
0458b63225091d3bf55d72492c3aa60419fd6f4b
# Dataset Card for vlsp ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** [Needs More Information] - **Repository:** https://github.com/ghomasHudson/very_long_scientific_papers - **Paper:** [Needs More Information] - **Leaderboard:** [Needs More Information] - **Point of Contact:** [Needs More Information] ### Dataset Summary Dataset following the methodology of the scientific_papers dataset, but specifically designed for very long documents (>10,000 words). This is gathered from arxiv.org by searching for theses. The dataset has 2 features: - article: the body of the document. - abstract: the abstract of the document. ### Supported Tasks and Leaderboards Summarization ### Languages English ## Dataset Structure ### Data Instances [Needs More Information] ### Data Fields [Needs More Information] ### Data Splits Only a test set is provided. ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information [Needs More Information] ### Citation Information [Needs More Information]
ghomasHudson/vlsp
[ "language:en", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"]}
2022-10-25T08:20:37+00:00
[]
[ "en" ]
TAGS #language-English #region-us
# Dataset Card for vlsp ## Table of Contents - Dataset Description - Dataset Summary - Supported Tasks - Languages - Dataset Structure - Data Instances - Data Fields - Data Splits - Dataset Creation - Curation Rationale - Source Data - Annotations - Personal and Sensitive Information - Considerations for Using the Data - Social Impact of Dataset - Discussion of Biases - Other Known Limitations - Additional Information - Dataset Curators - Licensing Information - Citation Information ## Dataset Description - Homepage: - Repository: URL - Paper: - Leaderboard: - Point of Contact: ### Dataset Summary Dataset following the methodology of the scientific_papers dataset, but specifically designed for very long documents (>10,000 words). This is gathered from URL by searching for theses. The dataset has 2 features: - article: the body of the document. - abstract: the abstract of the document. ### Supported Tasks and Leaderboards Summarization ### Languages English ## Dataset Structure ### Data Instances ### Data Fields ### Data Splits Only a test set is provided. ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information
[ "# Dataset Card for vlsp", "## Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: \n- Point of Contact:", "### Dataset Summary\n\nDataset following the methodology of the scientific_papers dataset, but specifically designed for very long documents (>10,000 words). This is gathered from URL by searching for theses.\n\nThe dataset has 2 features:\n- article: the body of the document.\n- abstract: the abstract of the document.", "### Supported Tasks and Leaderboards\n\nSummarization", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits\n\nOnly a test set is provided.", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information" ]
[ "TAGS\n#language-English #region-us \n", "# Dataset Card for vlsp", "## Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: \n- Point of Contact:", "### Dataset Summary\n\nDataset following the methodology of the scientific_papers dataset, but specifically designed for very long documents (>10,000 words). This is gathered from URL by searching for theses.\n\nThe dataset has 2 features:\n- article: the body of the document.\n- abstract: the abstract of the document.", "### Supported Tasks and Leaderboards\n\nSummarization", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances", "### Data Fields", "### Data Splits\n\nOnly a test set is provided.", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information" ]
[ 10, 8, 112, 25, 71, 13, 5, 6, 6, 5, 12, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6 ]
[ "passage: TAGS\n#language-English #region-us \n# Dataset Card for vlsp## Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: \n- Leaderboard: \n- Point of Contact:### Dataset Summary\n\nDataset following the methodology of the scientific_papers dataset, but specifically designed for very long documents (>10,000 words). This is gathered from URL by searching for theses.\n\nThe dataset has 2 features:\n- article: the body of the document.\n- abstract: the abstract of the document.### Supported Tasks and Leaderboards\n\nSummarization### Languages\n\nEnglish## Dataset Structure### Data Instances### Data Fields### Data Splits\n\nOnly a test set is provided.## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information" ]
[ -0.02506042644381523, 0.24697811901569366, -0.006564184557646513, 0.0019657560624182224, 0.07256372272968292, 0.033999428153038025, 0.026730557903647423, 0.12197351455688477, -0.027397876605391502, 0.12984737753868103, -0.01560934353619814, 0.06333138048648834, 0.13658438622951508, 0.10344536602497101, -0.005342609714716673, -0.2566564381122589, 0.03376595675945282, -0.0807151272892952, -0.020116722211241722, 0.08304911106824875, 0.1361529678106308, -0.08862202614545822, 0.05576610937714577, -0.055421505123376846, 0.024866685271263123, 0.00671399338170886, -0.05784837156534195, -0.027600372210144997, 0.020967969670891762, 0.011028730310499668, 0.04224473983049393, 0.009637013077735901, 0.08478804677724838, -0.3165745735168457, 0.01990632340312004, 0.05060846731066704, 0.032090675085783005, 0.05933083966374397, 0.10012777894735336, -0.06698016077280045, 0.08083850890398026, -0.17150402069091797, 0.09316279739141464, 0.06755614280700684, -0.10816293209791183, -0.16964693367481232, -0.1157761663198471, 0.02607657201588154, 0.0986659973859787, 0.04750129207968712, -0.058026887476444244, 0.022336754947900772, -0.045421842485666275, 0.03713281452655792, 0.03197500482201576, -0.06156815588474274, -0.07513941079378128, 0.010654306039214134, 0.028647886589169502, 0.10581661760807037, -0.12695729732513428, 0.006662176456302404, -0.030807219445705414, 0.02213561348617077, 0.031877774745225906, -0.0022030198015272617, -0.02231105975806713, 0.05570356175303459, -0.12684054672718048, -0.05772687494754791, 0.1286209374666214, -0.01911400631070137, 0.0014254188863560557, -0.17968294024467468, -0.005397421773523092, 0.038075417280197144, -0.05916775017976761, -0.02921115793287754, 0.05470258370041847, 0.00005416784915723838, 0.11228817701339722, -0.051854442805051804, -0.05910114943981171, 0.01940806768834591, -0.002519258065149188, -0.005527235101908445, 0.041049014776945114, 0.004823881667107344, 0.030118240043520927, 0.03116786479949951, 0.06282377988100052, -0.11463873833417892, -0.011170689947903156, -0.061374180018901825, -0.09918680787086487, -0.014669960364699364, 0.04953101649880409, -0.043093834072351456, 0.09037768840789795, 0.13976846635341644, -0.08650907874107361, 0.03436942398548126, -0.04291452094912529, -0.042131878435611725, 0.10501246154308319, 0.11237853765487671, -0.06862158328294754, -0.10764160007238388, -0.02756868116557598, 0.0032155150547623634, -0.03226545453071594, -0.017086293548345566, -0.002793719293549657, 0.08389449119567871, 0.023144681006669998, 0.12229996919631958, 0.13678400218486786, -0.02006547898054123, -0.08058658987283707, -0.02892610803246498, 0.07750704139471054, -0.13246279954910278, 0.04028426855802536, 0.03904718533158302, 0.013482400216162205, -0.035554688423871994, -0.05322382599115372, 0.016773667186498642, -0.09004265815019608, 0.07024334371089935, -0.04954720661044121, -0.041743770241737366, -0.09137247502803802, -0.04360169544816017, 0.05376904457807541, -0.024446997791528702, -0.04987237975001335, 0.03488583490252495, -0.07735059410333633, -0.059998102486133575, 0.07706613093614578, -0.12259053438901901, -0.040018461644649506, -0.01976548135280609, -0.01291403453797102, 0.04005613178014755, 0.02053925395011902, 0.055654481053352356, -0.062004245817661285, 0.01738499291241169, -0.040984977036714554, 0.020989177748560905, 0.09102904051542282, 0.04495337978005409, -0.07516265660524368, 0.0764576867222786, -0.09823869913816452, 0.1010146364569664, -0.15944810211658478, -0.0043294611386954784, -0.11719373613595963, -0.020695723593235016, 0.06224566698074341, -0.001234702067449689, -0.03251592069864273, 0.14087167382240295, -0.22409315407276154, -0.01433136872947216, 0.12969835102558136, -0.08418651670217514, -0.0922335758805275, 0.07516442984342575, -0.05426542088389397, 0.034701332449913025, 0.0226004496216774, 0.134017676115036, -0.022216282784938812, -0.04221499338746071, -0.04513329640030861, -0.050642624497413635, 0.060338471084833145, 0.20779867470264435, 0.09696701169013977, -0.09848634153604507, 0.13510321080684662, 0.010674683377146721, -0.05059996247291565, -0.06118058040738106, -0.01546432450413704, -0.10551305115222931, 0.008849553763866425, 0.008835217915475368, -0.009051875211298466, 0.010358932428061962, -0.07179328799247742, -0.01758919097483158, -0.09285417199134827, -0.0008445815765298903, -0.00275208055973053, 0.003480625106021762, -0.009499568492174149, -0.046449609100818634, 0.004173748195171356, -0.014621980488300323, 0.009185566566884518, -0.1491762399673462, -0.12536263465881348, 0.05395805463194847, -0.021539220586419106, 0.10618507862091064, -0.030042221769690514, 0.00645206356421113, -0.0290355421602726, -0.04342382773756981, -0.02364300936460495, 0.019739186391234398, 0.045547161251306534, -0.0028275917284190655, -0.20746146142482758, 0.021380450576543808, -0.05388334393501282, 0.07103924453258514, -0.12015321850776672, -0.00288774655200541, 0.10884255915880203, 0.17848747968673706, 0.05919136106967926, -0.06421341747045517, 0.04081239178776741, -0.008389116264879704, -0.011801757849752903, -0.03841320797801018, -0.010014728643000126, -0.07360415160655975, -0.0007999507943168283, 0.04308592900633812, -0.09937520325183868, -0.05061797425150871, 0.05250683054327965, 0.04130961000919342, -0.04903428629040718, -0.017516084015369415, -0.06798265874385834, -0.027231331914663315, -0.028836598619818687, -0.08431601524353027, 0.07114023715257645, 0.048552483320236206, 0.014526071026921272, -0.07747706025838852, -0.06232795491814613, -0.043545085936784744, -0.011395391076803207, -0.10033714771270752, 0.10600905120372772, 0.04790687933564186, -0.10164147615432739, 0.1441703885793686, 0.053195707499980927, 0.1311035305261612, 0.11699336767196655, -0.05994829908013344, -0.11515204608440399, -0.020053915679454803, -0.04382971674203873, 0.013844506815075874, 0.11651201546192169, -0.09725889563560486, 0.036723703145980835, 0.0670820027589798, -0.0018870171625167131, 0.046344682574272156, -0.06523682177066803, 0.047985706478357315, 0.004999212455004454, -0.03593985363841057, 0.02962149679660797, -0.023469125851988792, 0.04856773838400841, 0.1033918708562851, 0.03399651497602463, 0.11063598841428757, -0.040838152170181274, -0.06902774423360825, -0.10374168306589127, 0.11655581742525101, -0.18305262923240662, -0.21687082946300507, -0.0896490290760994, -0.06454741209745407, 0.0006423919112421572, -0.01776163838803768, 0.010830159299075603, -0.06990700215101242, -0.1304875910282135, -0.06639181077480316, 0.10978581011295319, 0.024874422699213028, -0.12425058335065842, -0.034740664064884186, 0.024066254496574402, -0.010929335840046406, -0.12591445446014404, 0.015009363181889057, 0.06431367993354797, -0.0010849464451894164, -0.005898562725633383, 0.05298677086830139, 0.12123514711856842, 0.10231496393680573, 0.0787043496966362, -0.021273259073495865, -0.006571086589246988, 0.2801191806793213, -0.15111717581748962, 0.14055785536766052, 0.08333655446767807, -0.06404919177293777, 0.05723290145397186, 0.23202292621135712, 0.03133615851402283, -0.06151778623461723, 0.000549407210201025, 0.05862820893526077, -0.0053993393667042255, -0.28724029660224915, -0.11048566550016403, -0.07054134458303452, -0.04112277179956436, 0.03147943317890167, 0.054702308028936386, -0.04471941292285919, 0.00982576236128807, -0.09287237375974655, -0.08237706869840622, 0.05585725978016853, 0.06925219297409058, 0.08233552426099777, -0.012321661226451397, 0.03495296463370323, -0.02396910823881626, -0.008782457560300827, 0.10616540908813477, 0.0607406385242939, 0.20287466049194336, 0.04300500452518463, 0.2341848760843277, 0.06535135209560394, 0.05660620704293251, -0.05142880976200104, 0.01596081629395485, -0.008044459857046604, 0.07684975117444992, -0.010957595892250538, -0.05149169638752937, 0.01891888678073883, 0.08233588188886642, 0.08448736369609833, -0.09187062829732895, 0.06730886548757553, -0.048520445823669434, 0.09315738081932068, 0.17129254341125488, 0.00917172059416771, -0.06504295766353607, -0.017006056383252144, 0.1463232785463333, -0.06841859221458435, -0.12642744183540344, 0.003931662533432245, 0.014925019815564156, -0.14248456060886383, 0.0743885263800621, -0.025535257533192635, 0.12379871308803558, -0.051438987255096436, -0.02679944597184658, -0.015055585652589798, 0.027828598394989967, -0.014540846459567547, 0.09965747594833374, -0.16627196967601776, 0.14407655596733093, 0.023817259818315506, 0.016180207952857018, -0.09438513964414597, 0.09548810869455338, -0.013935291208326817, -0.015442716889083385, 0.1793205291032791, 0.017318900674581528, -0.149102583527565, 0.027699735015630722, -0.06339717656373978, -0.012658169493079185, 0.11075136810541153, -0.12324003875255585, 0.1050977036356926, -0.018970854580402374, -0.024342892691493034, -0.052164189517498016, -0.07560121268033981, -0.12607477605342865, -0.23193170130252838, 0.07246018201112747, -0.11525264382362366, 0.05566645413637161, -0.05932014063000679, -0.024342088028788567, -0.03751378878951073, 0.1969015747308731, -0.15183965861797333, -0.10282730311155319, -0.15324415266513824, -0.011386710219085217, 0.18402203917503357, -0.03602004796266556, 0.06399134546518326, -0.02301616221666336, 0.18508528172969818, -0.01806557923555374, -0.03393267095088959, 0.08186677098274231, -0.07004515826702118, -0.20796962082386017, -0.058431293815374374, 0.15417498350143433, 0.055350642651319504, 0.05617731064558029, -0.007963772863149643, 0.10781732201576233, -0.023713184520602226, -0.08772847056388855, 0.07533461600542068, 0.09645310789346695, 0.06972939521074295, 0.08931538462638855, -0.05256811901926994, -0.21350352466106415, -0.12745660543441772, -0.05809912085533142, 0.09699223190546036, 0.11001899838447571, -0.053577736020088196, 0.1824197918176651, 0.08960907906293869, -0.13069505989551544, -0.20361614227294922, -0.0008157808915711939, 0.019108237698674202, -0.03951788321137428, 0.06054675206542015, -0.19286522269248962, 0.06829530745744705, 0.036199912428855896, -0.018349070101976395, 0.019536230713129044, -0.11494243890047073, -0.12756465375423431, 0.03795744478702545, 0.030265696346759796, -0.2786388397216797, -0.15463528037071228, -0.10023142397403717, -0.033591557294130325, -0.1412999927997589, 0.12083186954259872, 0.08116961270570755, -0.028797350823879242, -0.013026640750467777, 0.018344826996326447, 0.027200911194086075, -0.045984767377376556, 0.16614516079425812, 0.00019327105837874115, 0.008182077668607235, -0.06381740421056747, -0.06452865898609161, 0.14562883973121643, 0.006246150936931372, 0.08010120689868927, 0.028754200786352158, 0.008154601790010929, -0.12946826219558716, -0.02424810267984867, -0.07003063708543777, -0.02081514708697796, -0.12655992805957794, -0.07375181466341019, -0.07209299504756927, 0.09891678392887115, 0.11271949857473373, -0.04768267646431923, 0.09552261978387833, -0.07181063294410706, 0.05291690677404404, 0.13627532124519348, 0.15672650933265686, 0.05866541713476181, -0.03420866280794144, 0.009841738268733025, -0.011624954640865326, -0.04935072362422943, -0.105200856924057, 0.0567888543009758, 0.11586980521678925, -0.014370117336511612, 0.15038543939590454, -0.040854308754205704, -0.15741761028766632, -0.03747420385479927, 0.05761675909161568, -0.05257387086749077, -0.29228904843330383, -0.00021223984367679805, 0.028058217838406563, -0.17294175922870636, -0.09023450314998627, 0.0441497266292572, 0.06353641301393509, -0.08040634542703629, 0.017911946401000023, 0.15324020385742188, 0.03555435687303543, 0.06947053223848343, 0.045619625598192215, 0.05501873791217804, -0.09917549043893814, 0.0841144323348999, 0.12814730405807495, -0.1460430920124054, -0.005669121164828539, 0.17255359888076782, -0.02858133614063263, -0.030655479058623314, 0.09658452123403549, 0.09788589179515839, 0.024409912526607513, -0.005328349769115448, 0.015038512647151947, -0.15858899056911469, 0.040755290538072586, 0.09703141450881958, -0.015364439226686954, 0.005228583700954914, 0.023197131231427193, -0.014050627127289772, -0.008061100728809834, 0.18296092748641968, 0.024560529738664627, 0.030401267111301422, -0.015955662354826927, -0.04625118151307106, -0.035785771906375885, -0.043443214148283005, -0.0066561927087605, -0.001994010526686907, -0.08342884480953217, -0.021049480885267258, -0.14160239696502686, 0.02356591261923313, -0.11626235395669937, -0.004992126952856779, 0.00013988350110594183, -0.06907767057418823, -0.002377147786319256, -0.014412786811590195, -0.0627860352396965, -0.03735899180173874, -0.03830355778336525, 0.11205527186393738, -0.1589764952659607, -0.000532707548700273, 0.10151779651641846, -0.07117713242769241, 0.10722187906503677, -0.011277916841208935, -0.015291930176317692, 0.025050360709428787, -0.12580448389053345, 0.01316101849079132, -0.03598219156265259, 0.06141314283013344, 0.049453381448984146, -0.16588649153709412, -0.028928570449352264, 0.017086800187826157, -0.09401591122150421, 0.025446243584156036, -0.011321594938635826, -0.08808468282222748, 0.09531568735837936, -0.008967296220362186, -0.08201766759157181, -0.010518481954932213, 0.04180257394909859, 0.07939986884593964, -0.043273016810417175, 0.12412788718938828, -0.027954505756497383, 0.09400267153978348, -0.13821320235729218, -0.008898994885385036, -0.006863615941256285, 0.006776837632060051, -0.00022670453472528607, -0.013349013403058052, 0.06455497443675995, -0.010593155398964882, 0.2625041604042053, -0.010331950150430202, 0.004988113883882761, 0.0887264683842659, 0.06675282120704651, -0.01928630657494068, 0.07107429951429367, 0.0017644149484112859, -0.017164114862680435, -0.037642739713191986, -0.01645621657371521, -0.07673053443431854, -0.07474678009748459, -0.042854178696870804, 0.13363201916217804, 0.19421254098415375, 0.22428490221500397, -0.04669210687279701, 0.07385249435901642, -0.08558093756437302, -0.07222983241081238, 0.09564685076475143, -0.006180803757160902, 0.008765020407736301, -0.06501046568155289, 0.05570957064628601, 0.09409748017787933, -0.23746053874492645, 0.12906572222709656, -0.084079310297966, -0.062081605195999146, -0.04425728693604469, -0.15569394826889038, -0.07035576552152634, 0.0029014430474489927, -0.009781976230442524, -0.14693136513233185, 0.1011621356010437, 0.048439521342515945, -0.025488149374723434, -0.041499216109514236, 0.09660868346691132, -0.02479548193514347, -0.07164210826158524, 0.03878628835082054, 0.08285285532474518, 0.04284979775547981, 0.013135651126503944, 0.07394156605005264, -0.062340591102838516, 0.07666938751935959, 0.06732732057571411, 0.08315794169902802, -0.0484682060778141, -0.014433160424232483, -0.07299821078777313, -0.07666163891553879, 0.030433688312768936, -0.03183518722653389, -0.08299075812101364, 0.19784913957118988, 0.012838855385780334, 0.034251343458890915, 0.01930561289191246, 0.22762681543827057, -0.04842141643166542, -0.08102186769247055, -0.14389127492904663, 0.009014720097184181, -0.03240559622645378, 0.02081022784113884, 0.07305722683668137, -0.14792364835739136, 0.005535679403692484, 0.09872210770845413, 0.18655481934547424, -0.02182985283434391, 0.015796668827533722, -0.00364599097520113, 0.03194822743535042, -0.004434309434145689, 0.009112807922065258, 0.06289606541395187, 0.22149725258350372, -0.07336796820163727, 0.01132122427225113, -0.05256476625800133, -0.046291109174489975, -0.0893830880522728, 0.13644132018089294, 0.02973419986665249, -0.02062925137579441, -0.056061405688524246, 0.15452638268470764, -0.0995728000998497, -0.23455114662647247, -0.003873848356306553, -0.14573420584201813, -0.15426772832870483, -0.05233151093125343, 0.041037414222955704, -0.013010315597057343, -0.020231764763593674, 0.09482397139072418, -0.06267513334751129, 0.1644948273897171, 0.0884481742978096, -0.02628537267446518, 0.0038361612241715193, 0.12233176082372665, -0.14454498887062073, 0.22420349717140198, 0.035158224403858185, -0.003804471343755722, 0.09306734800338745, -0.037397176027297974, -0.11319371312856674, 0.02735457941889763, 0.11006338894367218, 0.00793980248272419, 0.03192487359046936, 0.18432201445102692, 0.015617799945175648, 0.11615149676799774, 0.11740534007549286, -0.04336250200867653, 0.05677515268325806, 0.05017813295125961, -0.09442192316055298, -0.0512489452958107, 0.10358536243438721, -0.14320510625839233, 0.09118600934743881, 0.13522042334079742, -0.054962873458862305, 0.029834987595677376, -0.029962683096528053, 0.03737376630306244, -0.04255997762084007, 0.22261935472488403, -0.0030381011310964823, -0.14578264951705933, 0.009441123344004154, 0.03237896040081978, 0.09501858055591583, -0.12311533838510513, -0.05929703637957573, 0.005700328387320042, 0.019860029220581055, -0.0774654820561409, 0.14315910637378693, 0.09876419603824615, -0.01608320325613022, -0.04010452330112457, -0.0755268856883049, 0.04197820648550987, 0.11753919720649719, -0.061887070536613464, 0.07133070379495621 ]
643cc6391a43781f688022acd18b872d0789c309
## Dataset Description - **Homepage:** http://www.openslr.org/57/ ### Dataset Summary This corpus consists of approximately 22 hours of speech recordings. Transcripts are provided for all the recordings. The corpus can be divided into 3 parts: 1. Yaounde Collected by a team from the U.S. Military Academy's Center for Technology Enhanced Language Learning (CTELL) in 2003 in Yaoundé, Cameroon. It has recordings from 84 speakers, 48 male and 36 female. 2. CA16 This part was collected by a RDECOM Science Team who participated in the United Nations exercise Central Accord 16 (CA16) in Libreville, Gabon in June 2016. The Science Team included DARPA's Dr. Boyan Onyshkevich and Dr. Aaron Lawson (SRI International), as well as RDECOM scientists. It has recordings from 125 speakers from Cameroon, Chad, Congo and Gabon. 3. Niger This part was collected from 23 speakers in Niamey, Niger, Oct. 26-30 2015. These speakers were students in a course for officers and sergeants presented by Army trainers assigned to U.S. Army Africa. The data was collected by RDECOM Science & Technology Advisors Major Eddie Strimel and Mr. Bill Bergen. ### Languages French ## Dataset Structure ### Data Instances A typical data point comprises the path to the audio file, called audio and its sentence. ### Data Fields - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. - sentence: The sentence the user was prompted to speak ### Data Splits The speech material has been subdivided into portions for train and test. The train split consists of 9401 audio clips and the related sentences. The test split consists of 1985 audio clips and the related sentences. ### Contributions [@gigant](https://huggingface.co/gigant) added this dataset.
gigant/african_accented_french
[ "task_categories:automatic-speech-recognition", "language:fr", "license:cc", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["fr"], "license": "cc", "size_categories": {"fr": ["10K<n<100K"]}, "task_categories": ["automatic-speech-recognition"], "task_ids": [], "pretty_name": "African Accented French"}
2022-10-24T16:39:03+00:00
[]
[ "fr" ]
TAGS #task_categories-automatic-speech-recognition #language-French #license-cc #region-us
## Dataset Description - Homepage: URL ### Dataset Summary This corpus consists of approximately 22 hours of speech recordings. Transcripts are provided for all the recordings. The corpus can be divided into 3 parts: 1. Yaounde Collected by a team from the U.S. Military Academy's Center for Technology Enhanced Language Learning (CTELL) in 2003 in Yaoundé, Cameroon. It has recordings from 84 speakers, 48 male and 36 female. 2. CA16 This part was collected by a RDECOM Science Team who participated in the United Nations exercise Central Accord 16 (CA16) in Libreville, Gabon in June 2016. The Science Team included DARPA's Dr. Boyan Onyshkevich and Dr. Aaron Lawson (SRI International), as well as RDECOM scientists. It has recordings from 125 speakers from Cameroon, Chad, Congo and Gabon. 3. Niger This part was collected from 23 speakers in Niamey, Niger, Oct. 26-30 2015. These speakers were students in a course for officers and sergeants presented by Army trainers assigned to U.S. Army Africa. The data was collected by RDECOM Science & Technology Advisors Major Eddie Strimel and Mr. Bill Bergen. ### Languages French ## Dataset Structure ### Data Instances A typical data point comprises the path to the audio file, called audio and its sentence. ### Data Fields - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: 'dataset[0]["audio"]' the audio file is automatically decoded and resampled to 'dataset.features["audio"].sampling_rate'. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the '"audio"' column, *i.e.* 'dataset[0]["audio"]' should always be preferred over 'dataset["audio"][0]'. - sentence: The sentence the user was prompted to speak ### Data Splits The speech material has been subdivided into portions for train and test. The train split consists of 9401 audio clips and the related sentences. The test split consists of 1985 audio clips and the related sentences. ### Contributions @gigant added this dataset.
[ "## Dataset Description\n- Homepage: URL", "### Dataset Summary\n\nThis corpus consists of approximately 22 hours of speech recordings. Transcripts are provided for all the recordings. The corpus can be divided into 3 parts:\n\n1. Yaounde\n\nCollected by a team from the U.S. Military Academy's Center for Technology Enhanced Language Learning (CTELL) in 2003 in Yaoundé, Cameroon. It has recordings from 84 speakers, 48 male and 36 female.\n\n2. CA16\n\nThis part was collected by a RDECOM Science Team who participated in the United Nations exercise Central Accord 16 (CA16) in Libreville, Gabon in June 2016. The Science Team included DARPA's Dr. Boyan Onyshkevich and Dr. Aaron Lawson (SRI International), as well as RDECOM scientists. It has recordings from 125 speakers from Cameroon, Chad, Congo and Gabon.\n\n3. Niger\n\nThis part was collected from 23 speakers in Niamey, Niger, Oct. 26-30 2015. These speakers were students in a course for officers and sergeants presented by Army trainers assigned to U.S. Army Africa. The data was collected by RDECOM Science & Technology Advisors Major Eddie Strimel and Mr. Bill Bergen.", "### Languages\n\nFrench", "## Dataset Structure", "### Data Instances\nA typical data point comprises the path to the audio file, called audio and its sentence.", "### Data Fields\n\n- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: 'dataset[0][\"audio\"]' the audio file is automatically decoded and resampled to 'dataset.features[\"audio\"].sampling_rate'. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the '\"audio\"' column, *i.e.* 'dataset[0][\"audio\"]' should always be preferred over 'dataset[\"audio\"][0]'.\n\n- sentence: The sentence the user was prompted to speak", "### Data Splits\nThe speech material has been subdivided into portions for train and test.\nThe train split consists of 9401 audio clips and the related sentences.\nThe test split consists of 1985 audio clips and the related sentences.", "### Contributions\n@gigant added this dataset." ]
[ "TAGS\n#task_categories-automatic-speech-recognition #language-French #license-cc #region-us \n", "## Dataset Description\n- Homepage: URL", "### Dataset Summary\n\nThis corpus consists of approximately 22 hours of speech recordings. Transcripts are provided for all the recordings. The corpus can be divided into 3 parts:\n\n1. Yaounde\n\nCollected by a team from the U.S. Military Academy's Center for Technology Enhanced Language Learning (CTELL) in 2003 in Yaoundé, Cameroon. It has recordings from 84 speakers, 48 male and 36 female.\n\n2. CA16\n\nThis part was collected by a RDECOM Science Team who participated in the United Nations exercise Central Accord 16 (CA16) in Libreville, Gabon in June 2016. The Science Team included DARPA's Dr. Boyan Onyshkevich and Dr. Aaron Lawson (SRI International), as well as RDECOM scientists. It has recordings from 125 speakers from Cameroon, Chad, Congo and Gabon.\n\n3. Niger\n\nThis part was collected from 23 speakers in Niamey, Niger, Oct. 26-30 2015. These speakers were students in a course for officers and sergeants presented by Army trainers assigned to U.S. Army Africa. The data was collected by RDECOM Science & Technology Advisors Major Eddie Strimel and Mr. Bill Bergen.", "### Languages\n\nFrench", "## Dataset Structure", "### Data Instances\nA typical data point comprises the path to the audio file, called audio and its sentence.", "### Data Fields\n\n- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: 'dataset[0][\"audio\"]' the audio file is automatically decoded and resampled to 'dataset.features[\"audio\"].sampling_rate'. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the '\"audio\"' column, *i.e.* 'dataset[0][\"audio\"]' should always be preferred over 'dataset[\"audio\"][0]'.\n\n- sentence: The sentence the user was prompted to speak", "### Data Splits\nThe speech material has been subdivided into portions for train and test.\nThe train split consists of 9401 audio clips and the related sentences.\nThe test split consists of 1985 audio clips and the related sentences.", "### Contributions\n@gigant added this dataset." ]
[ 33, 8, 273, 5, 6, 25, 189, 54, 13 ]
[ "passage: TAGS\n#task_categories-automatic-speech-recognition #language-French #license-cc #region-us \n## Dataset Description\n- Homepage: URL### Dataset Summary\n\nThis corpus consists of approximately 22 hours of speech recordings. Transcripts are provided for all the recordings. The corpus can be divided into 3 parts:\n\n1. Yaounde\n\nCollected by a team from the U.S. Military Academy's Center for Technology Enhanced Language Learning (CTELL) in 2003 in Yaoundé, Cameroon. It has recordings from 84 speakers, 48 male and 36 female.\n\n2. CA16\n\nThis part was collected by a RDECOM Science Team who participated in the United Nations exercise Central Accord 16 (CA16) in Libreville, Gabon in June 2016. The Science Team included DARPA's Dr. Boyan Onyshkevich and Dr. Aaron Lawson (SRI International), as well as RDECOM scientists. It has recordings from 125 speakers from Cameroon, Chad, Congo and Gabon.\n\n3. Niger\n\nThis part was collected from 23 speakers in Niamey, Niger, Oct. 26-30 2015. These speakers were students in a course for officers and sergeants presented by Army trainers assigned to U.S. Army Africa. The data was collected by RDECOM Science & Technology Advisors Major Eddie Strimel and Mr. Bill Bergen.### Languages\n\nFrench## Dataset Structure### Data Instances\nA typical data point comprises the path to the audio file, called audio and its sentence." ]
[ 0.037259791046381, 0.20666036009788513, -0.0008554511005058885, 0.07837053388357162, 0.1148337572813034, -0.09585194289684296, 0.09328946471214294, -0.007489621639251709, 0.033288806676864624, 0.05047005042433739, 0.02932611107826233, -0.14590825140476227, 0.07782352715730667, -0.03176593407988548, 0.06421817094087601, -0.14293982088565826, 0.04244866594672203, -0.07415536046028137, -0.035758987069129944, 0.05832565203309059, 0.025858046486973763, -0.02717786841094494, 0.05603385344147682, -0.07743270695209503, -0.05504263937473297, 0.05484095960855484, -0.051248323172330856, -0.051409684121608734, 0.04991569370031357, -0.000609544338658452, 0.10449925065040588, 0.01820424012839794, 0.09611529856920242, -0.2140377163887024, -0.0037078603636473417, 0.02489507757127285, -0.04161432012915611, -0.008780557662248611, -0.035140108317136765, 0.0719653069972992, 0.1522047370672226, -0.0023705086205154657, 0.020497625693678856, 0.06964505463838577, -0.13474225997924805, -0.0713319256901741, -0.06586254388093948, -0.07948433607816696, 0.06884889304637909, 0.11507775634527206, 0.009895733557641506, 0.027651578187942505, -0.09546017646789551, 0.00835910439491272, 0.027814405038952827, -0.033128365874290466, 0.017536750063300133, -0.003343120915815234, 0.08044105023145676, 0.20950199663639069, -0.08140972256660461, -0.0360969677567482, 0.007726998999714851, 0.013140643015503883, 0.04548105224967003, -0.0642993226647377, -0.10084769129753113, -0.051358845084905624, -0.05913752689957619, -0.05646929517388344, 0.3338204622268677, 0.09603796154260635, -0.09410684555768967, 0.02219424769282341, 0.020369235426187515, -0.044106267392635345, 0.025295717641711235, 0.0684037134051323, -0.0014288458041846752, -0.007701404392719269, 0.033750321716070175, 0.01093913335353136, -0.054721392691135406, -0.07282652705907822, -0.10225167870521545, 0.0968131497502327, -0.06148228794336319, 0.042931701987981796, -0.025982143357396126, -0.0180546585470438, -0.07753155380487442, 0.01000833697617054, -0.0534488819539547, 0.05356842651963234, -0.09062386304140091, -0.0377797856926918, 0.069613017141819, -0.04128817468881607, 0.012750232592225075, 0.036740779876708984, -0.1492195874452591, -0.011856039986014366, -0.0611453540623188, 0.06287050247192383, -0.030919643118977547, 0.10647937655448914, 0.06558520346879959, -0.023006051778793335, 0.0004864148795604706, -0.06603015214204788, -0.03670446574687958, -0.03590172901749611, -0.07285618036985397, 0.045766472816467285, -0.14220798015594482, 0.018246442079544067, -0.01571378856897354, -0.09731649607419968, -0.013827112503349781, -0.009616968221962452, 0.20307625830173492, -0.002375697949901223, -0.05511469021439552, 0.027549894526600838, -0.016524309292435646, -0.013463865965604782, 0.06982100754976273, 0.06713399291038513, 0.008945637382566929, -0.07475917786359787, -0.034422747790813446, -0.06439659744501114, -0.011297733522951603, -0.05968046188354492, 0.02325384132564068, 0.040611837059259415, -0.0344761498272419, -0.11577880382537842, -0.08665651828050613, -0.10075699537992477, -0.010768718086183071, -0.00801630038768053, 0.014157486148178577, -0.07751721888780594, -0.023037195205688477, 0.05802042409777641, 0.04860836640000343, -0.14747482538223267, -0.03025991842150688, 0.017686419188976288, -0.061005186289548874, 0.14533731341362, -0.07747932523488998, 0.04854956641793251, -0.05534859001636505, 0.01866578869521618, -0.04124021157622337, 0.08935785293579102, -0.06513308733701706, 0.04864402115345001, -0.09465330094099045, -0.06538185477256775, -0.06645676493644714, -0.008015763014554977, 0.02940194681286812, 0.17527566850185394, -0.12997812032699585, -0.08896058052778244, 0.1891481727361679, -0.07165854424238205, 0.002874139929190278, 0.14026011526584625, 0.018865138292312622, 0.033450815826654434, 0.023544328287243843, 0.19610071182250977, 0.028192829340696335, -0.12152142077684402, -0.001100731547921896, -0.04340682178735733, 0.08574263751506805, -0.042194586247205734, 0.17362631857395172, -0.07453861832618713, 0.060168102383613586, -0.07156643271446228, 0.10425408184528351, 0.09449000656604767, -0.04208877310156822, 0.014145588502287865, 0.02732641063630581, -0.04099339246749878, 0.057238779962062836, 0.05113164335489273, -0.0034764171577990055, -0.05575444549322128, 0.020318254828453064, -0.010674208402633667, 0.1404086947441101, -0.13625508546829224, -0.005586111918091774, 0.08214974403381348, -0.02504320628941059, -0.06965866684913635, -0.07866456359624863, -0.05194133147597313, 0.005790308117866516, 0.06281327456235886, -0.059242311865091324, 0.13451506197452545, -0.09293195605278015, 0.0340137742459774, 0.14886552095413208, -0.038617707788944244, -0.052920177578926086, -0.09940247982740402, 0.016080258414149284, 0.02411360666155815, -0.06837835907936096, 0.08816451579332352, -0.027709340676665306, -0.0210817102342844, -0.1659584641456604, -0.03332789987325668, -0.003297275397926569, 0.06835204362869263, 0.10736780613660812, -0.07037584483623505, 0.07376106083393097, 0.08380484580993652, -0.03901774808764458, 0.01663981005549431, -0.04897519573569298, -0.039758436381816864, 0.06379211694002151, 0.11413123458623886, -0.07693707197904587, -0.0929710641503334, 0.028666997328400612, -0.019012916833162308, -0.01429695263504982, 0.052719831466674805, 0.005640648305416107, 0.001186354085803032, -0.020608963444828987, -0.004826312884688377, 0.17718124389648438, -0.017103927209973335, 0.136512890458107, -0.03451651707291603, 0.03059767559170723, 0.049555953592061996, -0.023919878527522087, -0.010950365103781223, 0.0793013647198677, 0.10648787021636963, 0.015110709704458714, 0.14064191281795502, -0.0180720966309309, 0.05622047185897827, 0.25777700543403625, -0.021971886977553368, -0.11249231547117233, -0.02266426756978035, -0.07544153183698654, 0.0005373370950110257, 0.015913186594843864, -0.00546787166967988, -0.0451488271355629, 0.017108364030718803, 0.07097513228654861, -0.0440482534468174, -0.024448378011584282, 0.011265733279287815, 0.04476037248969078, -0.06913769990205765, -0.17808102071285248, 0.03801283985376358, -0.10066034644842148, 0.04372882470488548, 0.0032601722050458193, -0.03447316959500313, -0.050423189997673035, -0.038292303681373596, -0.059004154056310654, 0.1297997534275055, -0.0815403088927269, -0.19080239534378052, -0.20386143028736115, 0.016910523176193237, -0.06956138461828232, 0.050591930747032166, 0.054448846727609634, -0.17376160621643066, -0.0018337746150791645, -0.11731605231761932, -0.018188513815402985, -0.011068463325500488, 0.010186112485826015, 0.06363444775342941, 0.03739112243056297, -0.07671970874071121, -0.07177823036909103, -0.01261489000171423, -0.02690163068473339, 0.0066419024951756, 0.028443580493330956, -0.07887931913137436, 0.07991848886013031, 0.09223496168851852, 0.03941221162676811, -0.005365007556974888, 0.04029644653201103, 0.1391671895980835, -0.06751618534326553, 0.06164581701159477, 0.0792756974697113, 0.04088630899786949, 0.02887851558625698, 0.11118017882108688, 0.04674132913351059, -0.001475434866733849, 0.09816531836986542, 0.013280629180371761, -0.10671600699424744, -0.19385914504528046, -0.13416196405887604, -0.06627208739519119, -0.00725200492888689, -0.004773731343448162, -0.007136899512261152, 0.15026211738586426, -0.04986957088112831, -0.005372030660510063, 0.010093370452523232, 0.07550205290317535, 0.018654121086001396, -0.13008171319961548, 0.03758306801319122, 0.009200472384691238, -0.09056428074836731, -0.027761779725551605, 0.09079401940107346, -0.005497983191162348, 0.16139601171016693, 0.08469624072313309, 0.18030594289302826, 0.04429048299789429, -0.027698175981640816, 0.05095689371228218, 0.12551073729991913, 0.01897481270134449, 0.007059718482196331, -0.00843448843806982, -0.07196778059005737, 0.04758576303720474, 0.06440745294094086, 0.035294678062200546, -0.020549805834889412, -0.10349800437688828, -0.18528643250465393, 0.008838259615004063, 0.12068969756364822, 0.07915569096803665, -0.07362068444490433, -0.14357075095176697, 0.038783278316259384, -0.020396288484334946, -0.03880747780203819, 0.07488992065191269, 0.2448262721300125, -0.003990862052887678, -0.07049784809350967, 0.0835515707731247, 0.06091122701764107, -0.0640220120549202, -0.022571008652448654, -0.022492103278636932, -0.045197900384664536, -0.07509670406579971, -0.03936820104718208, -0.06734964996576309, 0.23113365471363068, -0.035799767822027206, -0.01209251955151558, -0.0025726929306983948, -0.015894442796707153, -0.04167589172720909, 0.035723067820072174, 0.10358166694641113, 0.11814133822917938, -0.2527347803115845, -0.14090992510318756, -0.05625655874609947, -0.05943676084280014, 0.07505126297473907, -0.0447339192032814, 0.07226184010505676, 0.02632085047662258, -0.03019355982542038, 0.013980031944811344, -0.1614513248205185, -0.06961832195520401, -0.06948833167552948, 0.022059781476855278, 0.10373401641845703, 0.11532466113567352, -0.04231283813714981, -0.0167051050812006, 0.03409019485116005, -0.009529175236821175, -0.15036541223526, -0.012873988598585129, -0.03498288616538048, -0.24056634306907654, 0.14730505645275116, -0.06503531336784363, 0.11305157840251923, 0.021656209602952003, 0.042334701865911484, -0.033174898475408554, -0.0400201678276062, 0.07085517048835754, -0.12877553701400757, -0.02290493994951248, -0.12780612707138062, 0.13238102197647095, 0.17552772164344788, 0.04924023523926735, -0.004415744449943304, 0.040059711784124374, -0.02718721143901348, -0.09942824393510818, 0.054668787866830826, -0.004786551930010319, 0.0702066421508789, 0.16259926557540894, -0.0188857764005661, -0.04734523221850395, -0.06807994097471237, -0.14249156415462494, 0.14293311536312103, 0.062338635325431824, -0.06395327299833298, 0.09987413138151169, 0.2119518369436264, -0.04489949718117714, -0.14097128808498383, -0.011153350584208965, 0.07433463633060455, -0.011185893788933754, -0.08521244674921036, -0.19085153937339783, -0.06293345242738724, -0.018365876749157906, 0.044275686144828796, 0.0016463081119582057, -0.2266310751438141, -0.10382154583930969, 0.02414149045944214, -0.08753103762865067, 0.20884713530540466, -0.07269632816314697, 0.029641710221767426, -0.04899795353412628, -0.07698515057563782, 0.19936059415340424, -0.05405755341053009, 0.03793542459607124, -0.017121223732829094, 0.05246150493621826, -0.0012361642438918352, -0.023307813331484795, 0.1204964891076088, 0.09865634888410568, 0.018467990681529045, -0.041512392461299896, -0.06634011119604111, -0.034504588693380356, -0.049190595746040344, 0.015652695670723915, 0.1284724771976471, 0.03310072049498558, -0.2318805307149887, -0.023400282487273216, -0.1182887852191925, -0.014749004505574703, 0.0070009720511734486, -0.022202052175998688, -0.03603559732437134, 0.036315903067588806, 0.07230400294065475, 0.053855571895837784, 0.06290025264024734, -0.04683481156826019, 0.03778175264596939, 0.1665995717048645, 0.044601377099752426, 0.17339855432510376, -0.10529761016368866, 0.0581250824034214, 0.022881029173731804, 0.036701228469610214, -0.23741097748279572, 0.051816996186971664, 0.11159282177686691, 0.037357110530138016, 0.11966047435998917, 0.01571071147918701, -0.05181640014052391, 0.09342989325523376, 0.04073665291070938, -0.047262415289878845, -0.0072669461369514465, -0.04642955958843231, -0.08736661076545715, -0.0037861696910113096, -0.04089200124144554, 0.03005651943385601, -0.036975860595703125, -0.01893681474030018, -0.04780714213848114, 0.04558829218149185, -0.1280028373003006, 0.0734894797205925, 0.0284841600805521, 0.03030194528400898, -0.018209485337138176, 0.12906385958194733, 0.09250729531049728, -0.040664929896593094, -0.05077817291021347, 0.16474418342113495, -0.037611279636621475, -0.03309371694922447, -0.053547561168670654, -0.06509273499250412, -0.07326393574476242, -0.04654962196946144, 0.026844166219234467, -0.034898541867733, 0.023749468848109245, 0.16099746525287628, -0.0632433369755745, -0.03716668486595154, -0.04040664806962013, -0.02771046571433544, -0.10216314345598221, 0.017636625096201897, 0.02948540449142456, 0.011748327873647213, 0.02242649905383587, 0.007477814331650734, -0.006988060660660267, 0.05331045016646385, -0.014684348367154598, -0.07664912194013596, -0.09383466094732285, 0.01572783663868904, -0.011822220869362354, -0.05221109464764595, -0.029755670577287674, 0.0077621908858418465, -0.03298168256878853, -0.1508311778306961, -0.02240227721631527, 0.04543829336762428, -0.07005762308835983, 0.07584042102098465, 0.017012350261211395, 0.1347229778766632, 0.036624327301979065, -0.0846109539270401, 0.11640043556690216, -0.07997162640094757, 0.07897374033927917, 0.12714695930480957, 0.02883821912109852, 0.054833341389894485, -0.10147559642791748, 0.07628443837165833, -0.006755311973392963, 0.025384951382875443, -0.02480483055114746, -0.11496534943580627, 0.0030779107473790646, -0.007713098544627428, -0.01078539714217186, -0.07103978842496872, -0.0054930453188717365, 0.01655408926308155, -0.033598873764276505, -0.024485470727086067, -0.052910640835762024, -0.06672803312540054, 0.02094491757452488, 0.08900707215070724, 0.025536973029375076, 0.053050875663757324, -0.01813209243118763, 0.07796119898557663, -0.07874076068401337, -0.015251755714416504, -0.00005271006375551224, -0.0730561763048172, -0.06945633143186569, -0.11956403404474258, -0.001042239018715918, 0.03389151394367218, 0.10157983005046844, -0.07657087594270706, 0.12958045303821564, -0.06080944836139679, -0.05786142498254776, -0.041638243943452835, 0.051496800035238266, 0.13219088315963745, 0.0472840815782547, -0.08520381897687912, 0.004211324732750654, -0.033829689025878906, 0.03476838022470474, 0.16425427794456482, 0.011206609196960926, 0.07106718420982361, 0.06835328787565231, 0.024755209684371948, -0.054179299622774124, -0.054596349596977234, 0.013735226355493069, -0.05658278614282608, 0.01117529533803463, -0.04148334637284279, -0.04619978368282318, 0.10463283210992813, 0.07319771498441696, -0.1703239530324936, 0.1098320409655571, 0.08092120289802551, -0.07121306657791138, -0.04705515131354332, 0.08618360757827759, -0.02343200333416462, -0.06966214627027512, 0.011313918977975845, -0.11347265541553497, 0.11761648207902908, 0.020658576861023903, 0.041415952146053314, 0.018501723185181618, 0.10801243036985397, -0.016214875504374504, -0.087039053440094, 0.048688922077417374, -0.03389754518866539, -0.020021608099341393, -0.09437245875597, 0.06738896667957306, 0.06402160972356796, -0.06752974539995193, 0.008919564075767994, 0.08043783158063889, -0.007318919524550438, 0.01633155718445778, -0.06068471819162369, -0.04347018152475357, -0.032104697078466415, 0.02750300243496895, -0.03905048221349716, 0.1718650758266449, 0.10375099629163742, -0.07722301036119461, 0.12110157310962677, 0.05182386934757233, -0.07336945086717606, -0.02073669619858265, -0.10046248137950897, 0.11372094601392746, 0.03303854539990425, 0.013172664679586887, -0.052505601197481155, -0.08833380043506622, -0.05420530214905739, 0.17175282537937164, 0.002612280659377575, 0.1512312889099121, 0.002701194491237402, -0.03932493180036545, 0.015319734811782837, 0.008561803959310055, -0.02638152241706848, 0.1233048215508461, 0.18510554730892181, -0.029985032975673676, -0.02779269404709339, -0.042948558926582336, 0.014904648065567017, 0.04900841787457466, 0.06223299726843834, -0.06620682030916214, -0.02144140750169754, -0.04616072401404381, 0.08583183586597443, -0.10751071572303772, -0.2157038152217865, 0.05244879797101021, -0.17372609674930573, -0.017761506140232086, -0.0058608753606677055, -0.18291473388671875, 0.11350355297327042, -0.05533280223608017, -0.03423958271741867, -0.08909773826599121, 0.099190853536129, 0.06448196619749069, -0.07998030632734299, -0.11825328320264816, -0.014333727769553661, -0.1116134449839592, 0.1855669915676117, -0.03194953873753548, 0.11032111942768097, 0.014016583561897278, -0.026602305471897125, 0.01016122754663229, 0.06224518641829491, 0.023242516443133354, 0.00958190206438303, -0.11303341388702393, 0.18706589937210083, -0.08884953707456589, 0.16269923746585846, -0.036564603447914124, 0.007658724207431078, 0.05375063791871071, -0.053982172161340714, -0.06488024443387985, -0.038092490285634995, 0.0077314916998147964, -0.07646806538105011, 0.15627466142177582, 0.016252467408776283, -0.04050014913082123, 0.013189921155571938, -0.037966903299093246, 0.01811603270471096, 0.01972576603293419, 0.04440716281533241, -0.02191106230020523, -0.13643155992031097, 0.09676766395568848, -0.04900089651346207, 0.0866188332438469, -0.23407863080501556, 0.06690441071987152, -0.032075732946395874, 0.011705482378602028, 0.0512818843126297, 0.07403898984193802, 0.034837014973163605, -0.0498400554060936, -0.05331519618630409, -0.10663270950317383, 0.03372873738408089, 0.15152160823345184, -0.0376412495970726, -0.03933178260922432 ]
71ec8b9e1b5351ea514cdf748c92592b13b14175
## Dataset Description - **Homepage:** https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/ ### Dataset Summary The M-AILABS Speech Dataset is the first large dataset that we are providing free-of-charge, freely usable as training data for speech recognition and speech synthesis. Most of the data is based on LibriVox and Project Gutenberg. The training data consist of nearly thousand hours of audio and the text-files in prepared format. A transcription is provided for each clip. Clips vary in length from 1 to 20 seconds and have a total length of approximately shown in the list (and in the respective info.txt-files) below. The texts were published between 1884 and 1964, and are in the public domain. The audio was recorded by the LibriVox project and is also in the public domain – except for Ukrainian. Ukrainian audio was kindly provided either by Nash Format or Gwara Media for machine learning purposes only (please check the data info.txt files for details). ### Languages French ## Dataset Structure ### Data Instances A typical data point comprises the path to the audio file, called audio and its sentence. ### Data Fields - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. - sentence: The sentence the user was prompted to speak ### Data Splits The speech material has not been subdivided into portions, everything is in the "train" split. The train split consists of 82825 audio clips and the related sentences. ### Contributions [@gigant](https://huggingface.co/gigant) added this dataset.
gigant/m-ailabs_speech_dataset_fr
[ "task_categories:automatic-speech-recognition", "language:fr", "license:cc", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["fr"], "license": "cc", "size_categories": {"fr": ["10K<n<100K"]}, "task_categories": ["automatic-speech-recognition"], "task_ids": [], "pretty_name": "M-AILABS Speech Dataset (French)"}
2022-10-24T16:38:45+00:00
[]
[ "fr" ]
TAGS #task_categories-automatic-speech-recognition #language-French #license-cc #region-us
## Dataset Description - Homepage: URL ### Dataset Summary The M-AILABS Speech Dataset is the first large dataset that we are providing free-of-charge, freely usable as training data for speech recognition and speech synthesis. Most of the data is based on LibriVox and Project Gutenberg. The training data consist of nearly thousand hours of audio and the text-files in prepared format. A transcription is provided for each clip. Clips vary in length from 1 to 20 seconds and have a total length of approximately shown in the list (and in the respective URL-files) below. The texts were published between 1884 and 1964, and are in the public domain. The audio was recorded by the LibriVox project and is also in the public domain – except for Ukrainian. Ukrainian audio was kindly provided either by Nash Format or Gwara Media for machine learning purposes only (please check the data URL files for details). ### Languages French ## Dataset Structure ### Data Instances A typical data point comprises the path to the audio file, called audio and its sentence. ### Data Fields - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: 'dataset[0]["audio"]' the audio file is automatically decoded and resampled to 'dataset.features["audio"].sampling_rate'. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the '"audio"' column, *i.e.* 'dataset[0]["audio"]' should always be preferred over 'dataset["audio"][0]'. - sentence: The sentence the user was prompted to speak ### Data Splits The speech material has not been subdivided into portions, everything is in the "train" split. The train split consists of 82825 audio clips and the related sentences. ### Contributions @gigant added this dataset.
[ "## Dataset Description\n- Homepage: URL", "### Dataset Summary\n\nThe M-AILABS Speech Dataset is the first large dataset that we are providing free-of-charge, freely usable as training data for speech recognition and speech synthesis.\n\nMost of the data is based on LibriVox and Project Gutenberg. The training data consist of nearly thousand hours of audio and the text-files in prepared format.\n\nA transcription is provided for each clip. Clips vary in length from 1 to 20 seconds and have a total length of approximately shown in the list (and in the respective URL-files) below.\n\n\nThe texts were published between 1884 and 1964, and are in the public domain. The audio was recorded by the LibriVox project and is also in the public domain – except for Ukrainian.\n\nUkrainian audio was kindly provided either by Nash Format or Gwara Media for machine learning purposes only (please check the data URL files for details).", "### Languages\n\nFrench", "## Dataset Structure", "### Data Instances\nA typical data point comprises the path to the audio file, called audio and its sentence.", "### Data Fields\n\n- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: 'dataset[0][\"audio\"]' the audio file is automatically decoded and resampled to 'dataset.features[\"audio\"].sampling_rate'. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the '\"audio\"' column, *i.e.* 'dataset[0][\"audio\"]' should always be preferred over 'dataset[\"audio\"][0]'.\n\n- sentence: The sentence the user was prompted to speak", "### Data Splits\nThe speech material has not been subdivided into portions, everything is in the \"train\" split.\nThe train split consists of 82825 audio clips and the related sentences.", "### Contributions\n@gigant added this dataset." ]
[ "TAGS\n#task_categories-automatic-speech-recognition #language-French #license-cc #region-us \n", "## Dataset Description\n- Homepage: URL", "### Dataset Summary\n\nThe M-AILABS Speech Dataset is the first large dataset that we are providing free-of-charge, freely usable as training data for speech recognition and speech synthesis.\n\nMost of the data is based on LibriVox and Project Gutenberg. The training data consist of nearly thousand hours of audio and the text-files in prepared format.\n\nA transcription is provided for each clip. Clips vary in length from 1 to 20 seconds and have a total length of approximately shown in the list (and in the respective URL-files) below.\n\n\nThe texts were published between 1884 and 1964, and are in the public domain. The audio was recorded by the LibriVox project and is also in the public domain – except for Ukrainian.\n\nUkrainian audio was kindly provided either by Nash Format or Gwara Media for machine learning purposes only (please check the data URL files for details).", "### Languages\n\nFrench", "## Dataset Structure", "### Data Instances\nA typical data point comprises the path to the audio file, called audio and its sentence.", "### Data Fields\n\n- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: 'dataset[0][\"audio\"]' the audio file is automatically decoded and resampled to 'dataset.features[\"audio\"].sampling_rate'. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the '\"audio\"' column, *i.e.* 'dataset[0][\"audio\"]' should always be preferred over 'dataset[\"audio\"][0]'.\n\n- sentence: The sentence the user was prompted to speak", "### Data Splits\nThe speech material has not been subdivided into portions, everything is in the \"train\" split.\nThe train split consists of 82825 audio clips and the related sentences.", "### Contributions\n@gigant added this dataset." ]
[ 33, 8, 199, 5, 6, 25, 189, 46, 13 ]
[ "passage: TAGS\n#task_categories-automatic-speech-recognition #language-French #license-cc #region-us \n## Dataset Description\n- Homepage: URL### Dataset Summary\n\nThe M-AILABS Speech Dataset is the first large dataset that we are providing free-of-charge, freely usable as training data for speech recognition and speech synthesis.\n\nMost of the data is based on LibriVox and Project Gutenberg. The training data consist of nearly thousand hours of audio and the text-files in prepared format.\n\nA transcription is provided for each clip. Clips vary in length from 1 to 20 seconds and have a total length of approximately shown in the list (and in the respective URL-files) below.\n\n\nThe texts were published between 1884 and 1964, and are in the public domain. The audio was recorded by the LibriVox project and is also in the public domain – except for Ukrainian.\n\nUkrainian audio was kindly provided either by Nash Format or Gwara Media for machine learning purposes only (please check the data URL files for details).### Languages\n\nFrench## Dataset Structure### Data Instances\nA typical data point comprises the path to the audio file, called audio and its sentence.### Data Fields\n\n- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: 'dataset[0][\"audio\"]' the audio file is automatically decoded and resampled to 'dataset.features[\"audio\"].sampling_rate'. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the '\"audio\"' column, *i.e.* 'dataset[0][\"audio\"]' should always be preferred over 'dataset[\"audio\"][0]'.\n\n- sentence: The sentence the user was prompted to speak" ]
[ -0.09499317407608032, 0.13869404792785645, -0.0029257868882268667, 0.0028897318989038467, 0.03683069720864296, -0.054736386984586716, -0.00737961009144783, 0.03885679319500923, -0.1056554764509201, 0.10894514620304108, -0.04187982529401779, -0.09257790446281433, 0.04656298831105232, 0.011252511292696, 0.05376053601503372, -0.1923285275697708, 0.04068683832883835, -0.08124910295009613, 0.03690870478749275, 0.05408496782183647, 0.10243140161037445, -0.037047937512397766, -0.0009003081358969212, -0.00019401746976654977, -0.02512446790933609, -0.008992858231067657, 0.02435312233865261, -0.054946932941675186, 0.03437036648392677, 0.03643573075532913, -0.01593516767024994, 0.037474438548088074, 0.03569423034787178, -0.12639184296131134, 0.028519852086901665, 0.06972965598106384, 0.033729977905750275, -0.014349961653351784, 0.07190152257680893, -0.01885051839053631, 0.13172848522663116, 0.0009555415017530322, -0.03938176482915878, 0.08018244802951813, -0.06949882209300995, -0.10824330896139145, -0.04257717728614807, -0.060182809829711914, 0.05130897834897041, 0.16179178655147552, -0.056493621319532394, -0.09433861076831818, -0.08556405454874039, 0.049193985760211945, 0.11013379693031311, -0.08661830425262451, 0.025851134210824966, 0.05713402479887009, 0.05413639917969704, 0.25734618306159973, -0.11523082107305527, 0.07688076794147491, -0.03556898981332779, -0.04433661326766014, 0.08322575688362122, -0.03195265308022499, -0.06345494091510773, -0.007600964512676001, -0.12633031606674194, -0.0661359652876854, 0.3104579746723175, -0.01696774922311306, -0.08630024641752243, -0.04379662871360779, 0.0033031143248081207, -0.07965721189975739, -0.0265168659389019, 0.08017778396606445, 0.03563747927546501, 0.05905772000551224, 0.04981808736920357, -0.07116742432117462, -0.076222725212574, -0.07125739753246307, -0.05343623086810112, 0.11659739911556244, -0.009313585236668587, 0.041576534509658813, 0.04345761239528656, 0.0777183324098587, -0.08309050649404526, -0.05282161012291908, -0.06006274372339249, 0.05714217573404312, -0.12781113386154175, 0.008987427689135075, -0.07862948626279831, -0.11822903156280518, 0.014461411163210869, 0.026562338694930077, -0.09121140837669373, -0.00036664301296696067, -0.01362598780542612, 0.0483047179877758, 0.05354925990104675, 0.07423851639032364, -0.08224675804376602, -0.10209048539400101, 0.02892269566655159, -0.06177974119782448, -0.00633065402507782, -0.020947962999343872, -0.05968264490365982, -0.013866743072867393, -0.009609115310013294, 0.042682819068431854, -0.009268456138670444, 0.0013602301478385925, -0.01024569757282734, -0.04564327001571655, 0.09775392711162567, -0.10028711706399918, -0.006228242535144091, 0.027978697791695595, -0.09301240742206573, -0.002275270177051425, -0.05509902536869049, 0.06108556315302849, -0.07487022876739502, 0.03406736999750137, -0.02341681718826294, -0.007104122079908848, -0.09932412207126617, -0.1027444452047348, 0.022847797721624374, 0.004130401648581028, -0.05594038590788841, -0.06117808073759079, -0.19813603162765503, -0.0429053008556366, 0.03210347890853882, -0.0016733279917389154, 0.011076534166932106, 0.010600730776786804, 0.023764049634337425, 0.013859210535883904, -0.042935024946928024, 0.042801424860954285, -0.10218854993581772, 0.09171533584594727, -0.07692794501781464, 0.07319419831037521, -0.007992367260158062, 0.10069440305233002, -0.05921028181910515, -0.03551877290010452, -0.12433090806007385, 0.14680086076259613, -0.09136112034320831, -0.08568938076496124, -0.08503500372171402, -0.030210040509700775, -0.07969419658184052, 0.01011947076767683, -0.0031666841823607683, 0.00767242256551981, -0.1102852150797844, -0.04690022021532059, 0.04267096519470215, -0.0631960853934288, 0.09316985309123993, 0.15851615369319916, 0.03329217806458473, -0.005590661894530058, 0.10550615936517715, 0.22784751653671265, 0.13145191967487335, -0.11140265315771103, -0.07936549931764603, -0.007381390780210495, -0.05281059071421623, 0.04291679337620735, 0.13477835059165955, -0.008276587352156639, 0.044457610696554184, 0.01986980438232422, -0.06955652683973312, 0.06860626488924026, 0.0370306596159935, -0.02642442286014557, 0.015290513634681702, -0.05595443770289421, -0.02985411509871483, 0.02606874704360962, -0.018228156492114067, 0.016751239076256752, -0.07064764946699142, -0.009129843674600124, 0.08025619387626648, -0.04881298914551735, 0.06831397861242294, -0.013402735814452171, 0.06454020738601685, -0.053435519337654114, -0.012337000109255314, -0.15503516793251038, -0.0016259284457191825, 0.0475773923099041, -0.044676557183265686, 0.07988010346889496, 0.02241465076804161, -0.02328154444694519, 0.047641556710004807, -0.05815691873431206, -0.012484753504395485, -0.022460874170064926, -0.028032349422574043, 0.005625567864626646, -0.06691344082355499, 0.0877365916967392, -0.024006620049476624, 0.012184136547148228, 0.028083626180887222, -0.0308731310069561, 0.14853033423423767, -0.019435573369264603, -0.00226430781185627, -0.07637066394090652, 0.06683152914047241, -0.03155634179711342, 0.002972507383674383, -0.009476139210164547, -0.00821492075920105, 0.03972986713051796, 0.0475396104156971, 0.1546258181333542, -0.18513433635234833, -0.06276137381792068, 0.0636923760175705, 0.09478375315666199, 0.0037289364263415337, 0.007756698876619339, -0.010727599263191223, -0.03690195828676224, -0.08276516199111938, -0.09521212428808212, 0.15655063092708588, -0.02583472616970539, 0.07077974081039429, -0.12235116958618164, -0.027157485485076904, 0.02437763102352619, -0.010004937648773193, 0.012886038981378078, 0.008275880478322506, -0.006097184959799051, -0.0914633572101593, 0.0760810524225235, -0.09413167089223862, -0.05679946392774582, 0.3585698902606964, -0.022901874035596848, -0.14093688130378723, 0.014464006759226322, 0.004983200691640377, -0.02593471109867096, 0.13242876529693604, -0.0367509201169014, 0.0027745752595365047, 0.018825950101017952, 0.11069842427968979, 0.03037126548588276, -0.09665114432573318, 0.02633071132004261, -0.010064530186355114, -0.11559563875198364, -0.06886233389377594, -0.005164892878383398, -0.09209319204092026, 0.0721842497587204, 0.02680453099310398, 0.042661748826503754, -0.051923710852861404, -0.040234487503767014, -0.08302018791437149, 0.07388640940189362, -0.1295669823884964, -0.23046796023845673, -0.16613003611564636, -0.035998545587062836, -0.06588198244571686, 0.04036910831928253, 0.05170023441314697, -0.06795524060726166, -0.07743613421916962, -0.05140391364693642, 0.14210855960845947, -0.11819253116846085, -0.018772300332784653, -0.038573723286390305, 0.024029888212680817, 0.006697333417832851, -0.1133456826210022, 0.05115126073360443, -0.008111412636935711, -0.0343172661960125, -0.06341786682605743, -0.01605505309998989, 0.07760695368051529, 0.11942363530397415, 0.010888379998505116, -0.0057518137618899345, -0.021452302113175392, 0.16501817107200623, -0.1627131551504135, 0.12597115337848663, 0.08674640953540802, 0.038679491728544235, 0.024171825498342514, 0.12236232310533524, 0.040061403065919876, -0.019228067249059677, 0.04462023451924324, 0.06676211953163147, -0.08108828216791153, -0.17380617558956146, -0.14631253480911255, -0.11043108254671097, -0.009010043926537037, -0.023682180792093277, 0.0508040226995945, 0.08370964974164963, -0.02024148590862751, -0.09760108590126038, 0.005415089428424835, 0.10422701388597488, 0.021167270839214325, 0.07200539112091064, 0.003993600141257048, 0.07097437977790833, -0.010334838181734085, 0.07049021869897842, 0.13552585244178772, 0.030210748314857483, 0.20538562536239624, -0.06530534476041794, 0.20019367337226868, 0.05707528069615364, -0.019836770370602608, 0.07148601859807968, -0.001503141364082694, -0.09893954545259476, 0.02805328369140625, 0.001942353555932641, -0.07370298355817795, 0.09146938472986221, 0.029799288138747215, 0.10067097097635269, -0.13423113524913788, 0.03776812180876732, -0.0845738872885704, -0.00005743457586504519, 0.15436160564422607, 0.025785086676478386, -0.07568702846765518, -0.10166218876838684, 0.02423451468348503, -0.03582996875047684, -0.07918181270360947, 0.0737161785364151, 0.18415354192256927, -0.004386428277939558, -0.03680510073900223, 0.02350778691470623, 0.08635295182466507, -0.07269342988729477, -0.016248509287834167, 0.06491322815418243, 0.09660515934228897, -0.05578412860631943, 0.07293689996004105, -0.1358419507741928, 0.08721039444208145, 0.045973651111125946, 0.0834152027964592, 0.03057461977005005, 0.007903589867055416, 0.042342010885477066, 0.051597945392131805, 0.09491968899965286, 0.04994015768170357, -0.12282981723546982, -0.07590647041797638, -0.08124392479658127, -0.014637759886682034, 0.07931916415691376, -0.07966502755880356, 0.029838528484106064, -0.02335972711443901, 0.00766401644796133, 0.004621060099452734, -0.14014214277267456, -0.15655623376369476, -0.13817596435546875, 0.08087323606014252, 0.14747731387615204, 0.16631858050823212, -0.04064090922474861, -0.0003117943415418267, -0.12674567103385925, 0.0988287702202797, -0.14969763159751892, -0.08682846277952194, -0.11141794174909592, -0.003404622431844473, 0.14100973308086395, -0.007351764943450689, 0.09566734731197357, 0.007679326925426722, 0.11789875477552414, -0.028748471289873123, -0.02405300922691822, 0.04311564192175865, -0.06367214024066925, -0.057609010487794876, -0.056983768939971924, 0.1323668360710144, 0.08250048756599426, 0.06060726195573807, -0.04081859439611435, 0.08502493798732758, -0.03240472823381424, -0.08784817159175873, 0.01834707520902157, 0.006526455748826265, 0.010460980236530304, 0.09124697744846344, -0.04733402281999588, -0.07184059172868729, -0.012256001122295856, -0.1455908864736557, 0.06313063204288483, 0.03405158966779709, -0.07842224836349487, 0.2099880874156952, 0.18537195026874542, -0.0760243833065033, -0.27544713020324707, 0.024766553193330765, 0.0873711109161377, 0.037029217928647995, -0.03316744044423103, -0.28202319145202637, -0.012806588783860207, 0.009220493957400322, -0.03603053838014603, 0.053298383951187134, -0.2322273850440979, -0.07548396289348602, -0.0069087292067706585, -0.013498244807124138, 0.10914454609155655, -0.07068296521902084, -0.020380686968564987, 0.0034795012325048447, -0.005044593010097742, 0.032995980232954025, -0.08157507330179214, 0.1378481090068817, 0.04966172203421593, 0.06306874752044678, -0.00592960836365819, -0.031004320830106735, 0.0655461847782135, 0.03906012699007988, -0.008413517847657204, -0.025724902749061584, 0.1254846155643463, 0.1674892157316208, -0.01811808906495571, 0.13413698971271515, -0.02182459644973278, 0.03397037461400032, -0.025586435571312904, -0.0833485946059227, -0.06450694799423218, 0.045506417751312256, 0.019914500415325165, -0.08162131905555725, -0.13006974756717682, 0.0747811570763588, 0.04739664867520332, -0.017596619203686714, -0.039831094443798065, -0.10033939778804779, -0.15632760524749756, 0.05632554367184639, 0.08595863729715347, 0.04239121451973915, -0.18916572630405426, 0.0005068480386398733, 0.005911598913371563, 0.11005821079015732, -0.1651422679424286, 0.06844518333673477, 0.036743663251399994, 0.03239898756146431, 0.08800501376390457, -0.012985318899154663, -0.10169433057308197, 0.0638909637928009, 0.032329510897397995, -0.0626334398984909, -0.12105588614940643, -0.05503123998641968, 0.007217725273221731, 0.013111796230077744, -0.08357319235801697, 0.09729082137346268, -0.025356799364089966, 0.03759259730577469, 0.015274837613105774, 0.06121839955449104, -0.006578775122761726, 0.12117708474397659, -0.011074325069785118, 0.020295199006795883, -0.08855588734149933, 0.10120892524719238, 0.1231660395860672, -0.10082961618900299, -0.016570404171943665, 0.07206645607948303, -0.1164463683962822, -0.04964463412761688, -0.03957732766866684, -0.0893440917134285, -0.010996636003255844, -0.06377014517784119, -0.033950988203287125, -0.03323223441839218, 0.030361883342266083, 0.0524064302444458, -0.022959087044000626, 0.05509728565812111, -0.08764953166246414, 0.062498852610588074, -0.07040976732969284, 0.11737534403800964, -0.03585660830140114, 0.036113422363996506, -0.04431555047631264, -0.0008908702293410897, 0.044951654970645905, -0.032616715878248215, -0.029503362253308296, -0.0707181990146637, -0.022245166823267937, 0.04768035188317299, -0.08335554599761963, -0.033118218183517456, -0.03392472118139267, -0.010651111602783203, -0.04472003132104874, -0.03684943914413452, -0.026624860242009163, 0.08435151726007462, -0.023732561618089676, -0.01503822673112154, -0.06280925124883652, 0.062079571187496185, -0.07497387379407883, -0.0017165231984108686, 0.037754472345113754, -0.0299356859177351, 0.11497469246387482, 0.051507268100976944, 0.00595998577773571, 0.002533992752432823, -0.16026483476161957, 0.025938929989933968, 0.001403294736519456, 0.026689177379012108, -0.05687626078724861, -0.09594854712486267, 0.05301915109157562, 0.02688448876142502, -0.006838452536612749, -0.03642803430557251, -0.007645400241017342, -0.05863074213266373, 0.05534705892205238, -0.09808450937271118, 0.052587106823921204, -0.0777997225522995, 0.057877883315086365, 0.04975053295493126, 0.07775866985321045, 0.0784129947423935, -0.039513926953077316, -0.006970981135964394, -0.04702917858958244, 0.011474617756903172, 0.05327741429209709, -0.024083321914076805, -0.14305701851844788, -0.04772902652621269, 0.04553353786468506, -0.024898413568735123, 0.16854959726333618, 0.1092231497168541, -0.012412931770086288, 0.03337177261710167, 0.08586329966783524, 0.10140031576156616, -0.017210710793733597, 0.12073125690221786, 0.0325908288359642, -0.00539409788325429, -0.006682965438812971, -0.002398703247308731, 0.04495641961693764, 0.0980301946401596, 0.016887329518795013, 0.08542627841234207, 0.1644708514213562, -0.022954493761062622, -0.07238516211509705, -0.1375412791967392, -0.17177751660346985, 0.10218682885169983, -0.05965074524283409, -0.00015787224401719868, -0.03424336016178131, 0.05761668086051941, 0.1255130171775818, -0.1493682563304901, 0.14132769405841827, 0.0626503974199295, -0.07510633021593094, -0.05707329139113426, -0.15183326601982117, -0.002445814898237586, -0.08690164983272552, 0.0032373545691370964, -0.10392525792121887, 0.13616152107715607, 0.0007757531711831689, 0.05161570757627487, 0.013205640949308872, 0.17204470932483673, -0.08419745415449142, -0.15292024612426758, 0.08954419195652008, -0.03590153902769089, 0.037426237016916275, 0.08095088601112366, 0.019220024347305298, 0.12831543385982513, -0.12146173417568207, 0.07579662650823593, 0.03761759027838707, 0.0124203497543931, 0.0010506160324439406, -0.04932184889912605, -0.014898130670189857, -0.008038786239922047, -0.013057307340204716, 0.036360643804073334, 0.22556307911872864, 0.08269466459751129, -0.04221547022461891, 0.04814249277114868, 0.19281211495399475, -0.0028885372448712587, -0.03123716078698635, -0.112818144261837, -0.007268158253282309, -0.04763926565647125, 0.021108655259013176, -0.0107502406463027, -0.0882301926612854, -0.026926109567284584, 0.22169829905033112, 0.025233346968889236, -0.013854319229722023, -0.020130183547735214, -0.000041269438952440396, -0.015413851477205753, 0.04523719474673271, 0.06001719832420349, 0.005703325383365154, 0.36215221881866455, 0.0037550197448581457, 0.006509572267532349, -0.07340791076421738, -0.025272605940699577, -0.06172814592719078, 0.14683401584625244, -0.06172914430499077, -0.05923068895936012, -0.08271914720535278, 0.10075204819440842, -0.02470565028488636, -0.18369796872138977, -0.06938333809375763, 0.04424446448683739, -0.01061450969427824, 0.011161554604768753, 0.04283924028277397, 0.02020363323390484, -0.058395106345415115, 0.0024511967785656452, -0.0023722832556813955, 0.03662259131669998, 0.019671043381094933, -0.10365770012140274, -0.046538304537534714, 0.018951289355754852, -0.031868066638708115, 0.09820107370615005, -0.04756280407309532, 0.0844791978597641, -0.005802617408335209, 0.00827039685100317, -0.07515984028577805, 0.14014992117881775, 0.03060058318078518, -0.17191170156002045, -0.02497968263924122, 0.25782811641693115, -0.026681004092097282, 0.21475617587566376, 0.04376049339771271, 0.06373270601034164, 0.07780254632234573, 0.017061537131667137, -0.02925080433487892, -0.07523204386234283, 0.023213570937514305, -0.06969188153743744, 0.11677221208810806, 0.03409302979707718, 0.022762373089790344, -0.003850487992167473, -0.05813160911202431, 0.020838631317019463, 0.00556893739849329, 0.1438860148191452, 0.04961201548576355, -0.12891730666160583, -0.012695930898189545, 0.020267428830266, 0.07715238630771637, -0.21309034526348114, -0.019262002781033516, 0.010300012305378914, -0.010040403343737125, 0.002717004856094718, 0.090796560049057, 0.07623783499002457, -0.03970726579427719, -0.041989777237176895, -0.06023933365941048, 0.041298508644104004, 0.03233852609992027, -0.12830767035484314, -0.08226345479488373 ]
b4dd8109d62276134bdc035cb274018825428582
## Dataset Description - **Homepage:** https://romaniantts.com/rssdb/ - **Paper:** https://www.sciencedirect.com/science/article/abs/pii/S0167639310002074 ### Dataset Summary The Romanian speech synthesis (RSS) corpus was recorded in a hemianechoic chamber (anechoic walls and ceiling; floor partially anechoic) at the University of Edinburgh. We used three high quality studio microphones: a Neumann u89i (large diaphragm condenser), a Sennheiser MKH 800 (small diaphragm condenser with very wide bandwidth) and a DPA 4035 (headset-mounted condenser). Although the current release includes only speech data recorded via Sennheiser MKH 800, we may release speech data recorded via other microphones in the future. All recordings were made at 96 kHz sampling frequency and 24 bits per sample, then downsampled to 48 kHz sampling frequency. For recording, downsampling and bit rate conversion, we used ProTools HD hardware and software. We conducted 8 sessions over the course of a month, recording about 500 sentences in each session. At the start of each session, the speaker listened to a previously recorded sample, in order to attain a similar voice quality and intonation. ### Languages Romanian ## Dataset Structure ### Data Instances A typical data point comprises the path to the audio file, called audio and its sentence. ### Data Fields - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. - sentence: The sentence the user was prompted to speak ### Data Splits The speech material has been subdivided into portions for train and test. The train split consists of 3180 audio clips and the related sentences. The test split consists of 536 audio clips and the related sentences. ### Citation Information ``` @article{Stan2011442, author = {Adriana Stan and Junichi Yamagishi and Simon King and Matthew Aylett}, title = {The {R}omanian speech synthesis ({RSS}) corpus: Building a high quality {HMM}-based speech synthesis system using a high sampling rate}, journal = {Speech Communication}, volume = {53}, number = {3}, pages = {442--450}, note = {}, abstract = {This paper first introduces a newly-recorded high quality Romanian speech corpus designed for speech synthesis, called ''RSS'', along with Romanian front-end text processing modules and HMM-based synthetic voices built from the corpus. All of these are now freely available for academic use in order to promote Romanian speech technology research. The RSS corpus comprises 3500 training sentences and 500 test sentences uttered by a female speaker and was recorded using multiple microphones at 96 kHz sampling frequency in a hemianechoic chamber. The details of the new Romanian text processor we have developed are also given. Using the database, we then revisit some basic configuration choices of speech synthesis, such as waveform sampling frequency and auditory frequency warping scale, with the aim of improving speaker similarity, which is an acknowledged weakness of current HMM-based speech synthesisers. As we demonstrate using perceptual tests, these configuration choices can make substantial differences to the quality of the synthetic speech. Contrary to common practice in automatic speech recognition, higher waveform sampling frequencies can offer enhanced feature extraction and improved speaker similarity for HMM-based speech synthesis.}, doi = {10.1016/j.specom.2010.12.002}, issn = {0167-6393}, keywords = {Speech synthesis, HTS, Romanian, HMMs, Sampling frequency, Auditory scale}, url = {http://www.sciencedirect.com/science/article/pii/S0167639310002074}, year = 2011 } ``` ### Contributions [@gigant](https://huggingface.co/gigant) added this dataset.
gigant/romanian_speech_synthesis_0_8_1
[ "task_categories:automatic-speech-recognition", "language:ro", "license:unknown", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["ro"], "license": ["unknown"], "size_categories": {"ro": ["1K<n<10K"]}, "task_categories": ["automatic-speech-recognition"], "task_ids": [], "pretty_name": "Romanian Speech Synthesis"}
2022-10-24T16:38:35+00:00
[]
[ "ro" ]
TAGS #task_categories-automatic-speech-recognition #language-Romanian #license-unknown #region-us
## Dataset Description - Homepage: URL - Paper: URL ### Dataset Summary The Romanian speech synthesis (RSS) corpus was recorded in a hemianechoic chamber (anechoic walls and ceiling; floor partially anechoic) at the University of Edinburgh. We used three high quality studio microphones: a Neumann u89i (large diaphragm condenser), a Sennheiser MKH 800 (small diaphragm condenser with very wide bandwidth) and a DPA 4035 (headset-mounted condenser). Although the current release includes only speech data recorded via Sennheiser MKH 800, we may release speech data recorded via other microphones in the future. All recordings were made at 96 kHz sampling frequency and 24 bits per sample, then downsampled to 48 kHz sampling frequency. For recording, downsampling and bit rate conversion, we used ProTools HD hardware and software. We conducted 8 sessions over the course of a month, recording about 500 sentences in each session. At the start of each session, the speaker listened to a previously recorded sample, in order to attain a similar voice quality and intonation. ### Languages Romanian ## Dataset Structure ### Data Instances A typical data point comprises the path to the audio file, called audio and its sentence. ### Data Fields - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: 'dataset[0]["audio"]' the audio file is automatically decoded and resampled to 'dataset.features["audio"].sampling_rate'. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the '"audio"' column, *i.e.* 'dataset[0]["audio"]' should always be preferred over 'dataset["audio"][0]'. - sentence: The sentence the user was prompted to speak ### Data Splits The speech material has been subdivided into portions for train and test. The train split consists of 3180 audio clips and the related sentences. The test split consists of 536 audio clips and the related sentences. ### Contributions @gigant added this dataset.
[ "## Dataset Description\n- Homepage: URL\n- Paper: URL", "### Dataset Summary\n\nThe Romanian speech synthesis (RSS) corpus was recorded in a hemianechoic chamber (anechoic walls and ceiling; floor partially anechoic) at the University of Edinburgh. We used three high quality studio microphones: a Neumann u89i (large diaphragm condenser), a Sennheiser MKH 800 (small diaphragm condenser with very wide bandwidth) and a DPA 4035 (headset-mounted condenser). Although the current release includes only speech data recorded via Sennheiser MKH 800, we may release speech data recorded via other microphones in the future. All recordings were made at 96 kHz sampling frequency and 24 bits per sample, then downsampled to 48 kHz sampling frequency. For recording, downsampling and bit rate conversion, we used ProTools HD hardware and software. We conducted 8 sessions over the course of a month, recording about 500 sentences in each session. At the start of each session, the speaker listened to a previously recorded sample, in order to attain a similar voice quality and intonation.", "### Languages\n\nRomanian", "## Dataset Structure", "### Data Instances\nA typical data point comprises the path to the audio file, called audio and its sentence.", "### Data Fields\n\n- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: 'dataset[0][\"audio\"]' the audio file is automatically decoded and resampled to 'dataset.features[\"audio\"].sampling_rate'. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the '\"audio\"' column, *i.e.* 'dataset[0][\"audio\"]' should always be preferred over 'dataset[\"audio\"][0]'.\n\n- sentence: The sentence the user was prompted to speak", "### Data Splits\nThe speech material has been subdivided into portions for train and test.\nThe train split consists of 3180 audio clips and the related sentences.\nThe test split consists of 536 audio clips and the related sentences.", "### Contributions\n@gigant added this dataset." ]
[ "TAGS\n#task_categories-automatic-speech-recognition #language-Romanian #license-unknown #region-us \n", "## Dataset Description\n- Homepage: URL\n- Paper: URL", "### Dataset Summary\n\nThe Romanian speech synthesis (RSS) corpus was recorded in a hemianechoic chamber (anechoic walls and ceiling; floor partially anechoic) at the University of Edinburgh. We used three high quality studio microphones: a Neumann u89i (large diaphragm condenser), a Sennheiser MKH 800 (small diaphragm condenser with very wide bandwidth) and a DPA 4035 (headset-mounted condenser). Although the current release includes only speech data recorded via Sennheiser MKH 800, we may release speech data recorded via other microphones in the future. All recordings were made at 96 kHz sampling frequency and 24 bits per sample, then downsampled to 48 kHz sampling frequency. For recording, downsampling and bit rate conversion, we used ProTools HD hardware and software. We conducted 8 sessions over the course of a month, recording about 500 sentences in each session. At the start of each session, the speaker listened to a previously recorded sample, in order to attain a similar voice quality and intonation.", "### Languages\n\nRomanian", "## Dataset Structure", "### Data Instances\nA typical data point comprises the path to the audio file, called audio and its sentence.", "### Data Fields\n\n- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: 'dataset[0][\"audio\"]' the audio file is automatically decoded and resampled to 'dataset.features[\"audio\"].sampling_rate'. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the '\"audio\"' column, *i.e.* 'dataset[0][\"audio\"]' should always be preferred over 'dataset[\"audio\"][0]'.\n\n- sentence: The sentence the user was prompted to speak", "### Data Splits\nThe speech material has been subdivided into portions for train and test.\nThe train split consists of 3180 audio clips and the related sentences.\nThe test split consists of 536 audio clips and the related sentences.", "### Contributions\n@gigant added this dataset." ]
[ 34, 12, 268, 6, 6, 25, 189, 55, 13 ]
[ "passage: TAGS\n#task_categories-automatic-speech-recognition #language-Romanian #license-unknown #region-us \n## Dataset Description\n- Homepage: URL\n- Paper: URL### Dataset Summary\n\nThe Romanian speech synthesis (RSS) corpus was recorded in a hemianechoic chamber (anechoic walls and ceiling; floor partially anechoic) at the University of Edinburgh. We used three high quality studio microphones: a Neumann u89i (large diaphragm condenser), a Sennheiser MKH 800 (small diaphragm condenser with very wide bandwidth) and a DPA 4035 (headset-mounted condenser). Although the current release includes only speech data recorded via Sennheiser MKH 800, we may release speech data recorded via other microphones in the future. All recordings were made at 96 kHz sampling frequency and 24 bits per sample, then downsampled to 48 kHz sampling frequency. For recording, downsampling and bit rate conversion, we used ProTools HD hardware and software. We conducted 8 sessions over the course of a month, recording about 500 sentences in each session. At the start of each session, the speaker listened to a previously recorded sample, in order to attain a similar voice quality and intonation.### Languages\n\nRomanian## Dataset Structure### Data Instances\nA typical data point comprises the path to the audio file, called audio and its sentence." ]
[ -0.09733045846223831, 0.11080864816904068, -0.001575652277097106, -0.03852517157793045, 0.0191071517765522, -0.07774198055267334, 0.11678849160671234, 0.07157159596681595, -0.0651896670460701, 0.11171220242977142, -0.0499870628118515, -0.11083260178565979, 0.06919907033443451, 0.03106149658560753, 0.04612667113542557, -0.2139945775270462, 0.07388749718666077, -0.09559782594442368, -0.09327498078346252, 0.019033044576644897, 0.061103906482458115, -0.10382461547851562, -0.021478325128555298, -0.024638265371322632, -0.0003232060989830643, 0.04845188558101654, -0.06571556627750397, -0.07554671913385391, 0.06915070116519928, 0.06775973737239838, -0.03861836716532707, 0.02130693569779396, 0.10710885375738144, -0.09609478712081909, 0.011905228719115257, 0.03460021689534187, 0.04912377893924713, -0.018247894942760468, 0.024096231907606125, 0.05605378746986389, 0.07891550660133362, 0.015470628626644611, -0.011411375366151333, 0.03938204422593117, -0.018109099939465523, -0.024093041196465492, -0.0618554949760437, -0.005921292118728161, 0.11456140875816345, 0.04922078922390938, -0.030100857838988304, 0.0032754710409790277, -0.09891121089458466, 0.02364743873476982, -0.09195605665445328, -0.0914451852440834, 0.012691006995737553, -0.04777438938617706, -0.0008116396493278444, 0.17538787424564362, -0.0587817020714283, -0.0005631055100820959, -0.013570747338235378, 0.008232965134084225, -0.03904077783226967, 0.013989988714456558, -0.0008612138335593045, -0.0763612613081932, -0.12780997157096863, -0.0231376551091671, 0.17463812232017517, 0.030478917062282562, -0.06497323513031006, -0.08920998871326447, -0.039168648421764374, -0.030318642035126686, -0.03684963658452034, 0.06050797179341316, -0.054049741476774216, 0.024463022127747536, 0.009738445281982422, 0.014406141825020313, -0.09248723834753036, -0.02863254025578499, -0.0338544100522995, 0.135856494307518, 0.04221596568822861, 0.05056804418563843, -0.037150416523218155, 0.045233286917209625, -0.01031029224395752, -0.05376969650387764, 0.0003898591676261276, 0.021879175677895546, -0.06389658898115158, 0.00425246125087142, 0.0023740187752991915, -0.16555871069431305, 0.05979126691818237, 0.08736138790845871, -0.08130276948213577, 0.007280881050974131, 0.008790193125605583, 0.001737925922498107, 0.09920055419206619, 0.08504188060760498, -0.030944805592298508, -0.06212249770760536, 0.022247247397899628, 0.019214371219277382, 0.04590562358498573, 0.0005933271022513509, -0.021161222830414772, 0.0012311871396377683, -0.03950260952115059, 0.04110541194677353, 0.026330310851335526, -0.02228229120373726, 0.06209505349397659, -0.06104624271392822, 0.06604304164648056, -0.1616632491350174, -0.08154621720314026, 0.04808210954070091, -0.043713465332984924, 0.08827019482851028, -0.05329695716500282, -0.00587188545614481, -0.11179616302251816, 0.041918471455574036, -0.006538486573845148, -0.05642645061016083, -0.06544853001832962, -0.07812023162841797, 0.062224142253398895, -0.08448908478021622, -0.037750955671072006, -0.029766827821731567, 0.025123003870248795, -0.053821321576833725, 0.016270078718662262, -0.027036719024181366, 0.0057347915135324, -0.06410150229930878, 0.018461644649505615, 0.0661645159125328, -0.03722548112273216, -0.06920953840017319, -0.026461461558938026, 0.05157327651977539, -0.02559884451329708, 0.09538815915584564, -0.0792437195777893, 0.08184852451086044, -0.0869504064321518, -0.02207094430923462, -0.13834011554718018, 0.09908167272806168, -0.1123976781964302, 0.04928964003920555, -0.0478166788816452, 0.015187252312898636, -0.06445255130529404, 0.0041411579586565495, 0.035614460706710815, 0.09207743406295776, -0.20848824083805084, -0.09815649688243866, 0.1257779896259308, -0.10971958935260773, 0.069595105946064, 0.14244864881038666, 0.032122693955898285, -0.00400585075840354, 0.0930953398346901, 0.2000240981578827, 0.1117837056517601, -0.10633771121501923, -0.098164401948452, -0.05274127051234245, -0.018750784918665886, 0.012829705141484737, 0.07268570363521576, -0.0829884335398674, 0.23908695578575134, 0.00007100584480213001, 0.043978624045848846, -0.005826189648360014, 0.016862161457538605, -0.022582916542887688, 0.04580437391996384, -0.01942518725991249, -0.0364205427467823, 0.00009889837383525446, 0.009300919249653816, -0.01500969659537077, -0.05244901776313782, 0.0888843685388565, 0.13074947893619537, -0.11709537357091904, 0.043480098247528076, -0.08803965896368027, 0.07500455528497696, -0.03309439495205879, 0.003462251042947173, -0.13639281690120697, 0.1271090805530548, 0.03855466842651367, -0.05977752059698105, 0.1835644245147705, 0.009681045077741146, 0.022063501179218292, 0.05249309912323952, 0.003040396375581622, 0.032718367874622345, -0.003701913170516491, -0.012434497475624084, 0.00014086822920944542, -0.15401189029216766, 0.03394358232617378, -0.05715055763721466, 0.04856431111693382, 0.07430794090032578, -0.03362610936164856, 0.09273996949195862, 0.09694782644510269, -0.00046813421067781746, -0.058794669806957245, 0.003276622388511896, 0.014395605772733688, 0.00903981551527977, 0.008721507154405117, -0.004415231291204691, 0.006574632134288549, 0.06042536720633507, 0.09405353665351868, -0.12245151400566101, -0.2647188901901245, 0.08554190397262573, 0.10085966438055038, 0.03304491937160492, 0.03886011615395546, -0.0195609163492918, -0.026045775040984154, 0.005377762485295534, -0.05486715957522392, 0.17581972479820251, -0.004127956461161375, 0.079379603266716, -0.06318852305412292, -0.014812013134360313, -0.003203536616638303, -0.011477883905172348, -0.07441560178995132, 0.07992731779813766, 0.128051295876503, -0.13631665706634521, 0.03855965659022331, -0.05757533386349678, 0.011573252268135548, 0.3038136959075928, -0.09174924343824387, -0.1638813465833664, 0.03268270939588547, 0.002499040449038148, -0.005331720225512981, 0.14549040794372559, -0.04677930474281311, 0.015037812292575836, -0.00260888016782701, 0.0544477254152298, 0.08100320398807526, -0.050802722573280334, 0.1165093183517456, -0.03506995365023613, -0.06823697686195374, -0.11366170644760132, -0.018180295825004578, -0.0445866584777832, 0.04642194136977196, 0.041622333228588104, 0.013614409603178501, -0.06613753736019135, -0.06238102167844772, -0.06627587229013443, 0.023548545315861702, -0.1773790717124939, -0.1763901710510254, -0.2927800416946411, 0.05541399493813515, -0.03811197727918625, 0.010928256437182426, 0.025512397289276123, -0.1253996193408966, -0.07564248889684677, -0.024485575035214424, 0.14532481133937836, -0.05830222740769386, -0.0008824827382341027, 0.04301639646291733, 0.08527766913175583, -0.012623975984752178, -0.11485093832015991, 0.03430081903934479, -0.06913243234157562, 0.05963122472167015, -0.005472258664667606, 0.0017587594920769334, 0.01009491365402937, 0.13650895655155182, -0.011326742358505726, -0.017636168748140335, 0.02805640920996666, 0.1775607317686081, -0.1284477710723877, 0.1093166247010231, 0.08524692058563232, -0.06553236395120621, -0.0035059654619544744, 0.1868925243616104, 0.05507639795541763, -0.01230702642351389, 0.01759144477546215, 0.04424060508608818, -0.054188065230846405, -0.16282668709754944, -0.1329973042011261, -0.07023537158966064, -0.014303836971521378, -0.01631397195160389, 0.02815946936607361, -0.0322350338101387, -0.06840592622756958, -0.11154427379369736, -0.06832802295684814, 0.053534384816884995, -0.002648063702508807, 0.1843997836112976, -0.0349787138402462, 0.05089448764920235, -0.09044995903968811, -0.015828585252165794, 0.0879962146282196, -0.019858935847878456, 0.24756228923797607, 0.023011885583400726, 0.12733541429042816, 0.06722304970026016, -0.006152404472231865, 0.13123157620429993, 0.028267187997698784, -0.05297856032848358, 0.032177526503801346, -0.007179306820034981, -0.08449158817529678, 0.005907178856432438, 0.02805355377495289, 0.11095017939805984, -0.09105446934700012, -0.019590293988585472, -0.028844505548477173, -0.019040485844016075, 0.2712324857711792, 0.11226030439138412, -0.010362074710428715, -0.15879590809345245, 0.004774126224219799, -0.12915460765361786, -0.029817072674632072, 0.001790652866475284, 0.12567700445652008, 0.01309249084442854, -0.03003997914493084, 0.03448207676410675, 0.052902158349752426, -0.14059053361415863, -0.01500479131937027, -0.027181223034858704, 0.05752167850732803, -0.048744235187768936, -0.017215512692928314, 0.00423389533534646, 0.14946822822093964, 0.05983705073595047, 0.12452711910009384, 0.009520027786493301, 0.060985058546066284, 0.013313530944287777, -0.039264753460884094, -0.033048298209905624, 0.027517305687069893, -0.22660687565803528, -0.07157290726900101, -0.17238318920135498, 0.03481355309486389, 0.10240580886602402, 0.03342943266034126, 0.10485197603702545, -0.038400694727897644, 0.015426776371896267, -0.017028765752911568, -0.15242376923561096, -0.0813731923699379, -0.1529405117034912, 0.039829447865486145, 0.11695096641778946, -0.033588238060474396, 0.006326152477413416, -0.044141530990600586, 0.005131959915161133, 0.023703552782535553, -0.24471929669380188, -0.049846600741147995, -0.05747127905488014, -0.057038865983486176, 0.16648998856544495, -0.03827285394072533, 0.03849323093891144, 0.020686203613877296, 0.06250064820051193, 0.004253058694303036, -0.14664867520332336, 0.008549943566322327, -0.0669952780008316, -0.030585207045078278, -0.036790311336517334, 0.17944251000881195, 0.16083328425884247, 0.05567900091409683, -0.02704538218677044, 0.03949980437755585, 0.0404781773686409, -0.010099478997290134, 0.01728087104856968, 0.14860692620277405, -0.07352571189403534, 0.029926011338829994, -0.1184186339378357, -0.1882101148366928, -0.06234626844525337, -0.09381209313869476, 0.039197199046611786, 0.11019442230463028, -0.023382170125842094, 0.16398338973522186, 0.29316943883895874, -0.049783334136009216, -0.2277461588382721, -0.05464402586221695, 0.06508657336235046, 0.1115635484457016, -0.07074052095413208, -0.22595344483852386, 0.04212156683206558, -0.012488854117691517, -0.031221648678183556, 0.03661494329571724, -0.20647670328617096, -0.07319289445877075, 0.10453791916370392, -0.10559374839067459, 0.09128308296203613, 0.04166404530405998, -0.04157586023211479, 0.03306613489985466, -0.0030937560368329287, -0.018784260377287865, 0.038851480931043625, 0.10776824504137039, 0.0345587432384491, 0.07887397706508636, 0.019772758707404137, 0.019244033843278885, 0.08029506355524063, 0.024123528972268105, -0.06529933214187622, -0.03436189144849777, 0.05266129970550537, -0.007288508117198944, -0.01499891560524702, 0.06112697347998619, 0.02556801401078701, 0.007165127899497747, -0.08626962453126907, -0.03912871703505516, -0.000022924656150280498, 0.004952955991029739, 0.00991629809141159, -0.013364143669605255, -0.04797762632369995, 0.04846992343664169, 0.002235135994851589, 0.009293577633798122, -0.03259188309311867, -0.09614815562963486, -0.1029706746339798, 0.1785682886838913, 0.05639065057039261, -0.05817456170916557, -0.03535114973783493, -0.013893774710595608, -0.012974997982382774, 0.07373089343309402, -0.04461299255490303, 0.04809369891881943, 0.09270153194665909, 0.03926890715956688, 0.02651192992925644, -0.011302624829113483, -0.1372709572315216, 0.07218071818351746, 0.07554251700639725, -0.06731349974870682, -0.06468532234430313, 0.027349339798092842, -0.1022142544388771, -0.03774736076593399, 0.046627141535282135, 0.17585092782974243, 0.01610296033322811, 0.018858814612030983, -0.014956837520003319, 0.026708943769335747, -0.013219826854765415, 0.1784663200378418, -0.03439585119485855, -0.009869378060102463, -0.07453376799821854, 0.13991720974445343, 0.09931405633687973, -0.10789089649915695, 0.034567590802907944, 0.08012152463197708, -0.08544168621301651, -0.005794106982648373, -0.04783308878540993, -0.18824534118175507, -0.017973115667700768, -0.0509696789085865, -0.06965479254722595, -0.042474664747714996, 0.06773122400045395, 0.0879833996295929, -0.039746079593896866, 0.04148638993501663, -0.12482709437608719, 0.04901163652539253, -0.09359513968229294, 0.08464615792036057, -0.003439377062022686, -0.020659256726503372, -0.01537949126213789, 0.04081980511546135, -0.020104840397834778, -0.08139362931251526, -0.03429260477423668, -0.11785300076007843, -0.019876688718795776, 0.027491342276334763, -0.07609428465366364, -0.05270630493760109, -0.01396232284605503, -0.020157592371106148, 0.0027355735655874014, -0.006992764305323362, -0.035930659621953964, 0.056930553168058395, -0.027680443599820137, 0.0129218315705657, -0.06500197947025299, 0.044333115220069885, -0.06640280783176422, 0.0686739906668663, 0.046950213611125946, -0.05820535868406296, 0.10881859809160233, 0.1283387690782547, -0.034405387938022614, 0.07641274482011795, 0.03037463314831257, -0.1030382364988327, -0.0008196356357075274, 0.07890550047159195, 0.02947469800710678, 0.0023860353976488113, -0.002397209405899048, 0.04547957330942154, 0.0023902130778878927, 0.000215822845348157, 0.03173718601465225, -0.014047565869987011, 0.020392807200551033, -0.05147075280547142, -0.01660795509815216, -0.06897765398025513, 0.062161535024642944, 0.11693687736988068, 0.08650371432304382, 0.09275688976049423, -0.08923568576574326, -0.00821321364492178, -0.03385510295629501, 0.048237841576337814, 0.017712408676743507, -0.004262156784534454, -0.062129754573106766, -0.017334474250674248, 0.04185841977596283, 0.008223691023886204, 0.035243287682533264, -0.005743790417909622, 0.05338028073310852, 0.05098320171236992, -0.07623007148504257, -0.09481044113636017, 0.038426462560892105, 0.16755619645118713, 0.07673242688179016, 0.002402444137260318, -0.08142992109060287, -0.03544590249657631, -0.03562817722558975, -0.02301904559135437, 0.009000299498438835, 0.06749323010444641, 0.11069922894239426, 0.04124810919165611, 0.10690157115459442, -0.05175955221056938, -0.10591038316488266, 0.09455021470785141, -0.061267465353012085, 0.023801250383257866, -0.014989901334047318, 0.19479085505008698, 0.12871697545051575, -0.07671526819467545, 0.09226972609758377, -0.01888812519609928, -0.06909962743520737, -0.09233975410461426, -0.06931523233652115, 0.007533482741564512, -0.1101062148809433, 0.014533953741192818, -0.06450200080871582, 0.06967297196388245, 0.030428342521190643, 0.08385234326124191, -0.05671345070004463, 0.053626857697963715, -0.07376539707183838, -0.11019294708967209, 0.03354334086179733, 0.014888533391058445, -0.00392607506364584, 0.014832034707069397, -0.008278262801468372, 0.1362738460302353, 0.059200044721364975, 0.07080323249101639, 0.02270461618900299, -0.02275480143725872, 0.025930609554052353, -0.05738561600446701, -0.011468376964330673, 0.0000557237581233494, -0.04978913068771362, 0.0416957326233387, 0.23572558164596558, 0.10372447967529297, -0.09187938272953033, 0.016501689329743385, 0.14188580214977264, -0.039182864129543304, -0.08810247480869293, -0.15463896095752716, 0.006642367225140333, 0.01863740384578705, 0.08115005493164062, -0.02363952435553074, -0.12235794961452484, -0.10395967215299606, 0.11242802441120148, 0.14629939198493958, 0.043120816349983215, -0.00982104241847992, -0.04869263246655464, -0.0022162036038935184, -0.08384127169847488, 0.04665983095765114, 0.019596653059124947, 0.31074127554893494, 0.060866814106702805, 0.006705522537231445, -0.03597608953714371, -0.004486510995775461, -0.0971943810582161, 0.04889474809169769, -0.06824257969856262, -0.06171740964055061, -0.04869633913040161, 0.11704842746257782, -0.023753833025693893, -0.22339729964733124, -0.1204318180680275, -0.05630612000823021, -0.07262109220027924, -0.009433434344828129, 0.028300844132900238, 0.07412896305322647, -0.037468139082193375, -0.018946046009659767, 0.02776368334889412, 0.10294365882873535, 0.026256658136844635, -0.016022222116589546, -0.10072594881057739, 0.10145609825849533, -0.14404022693634033, 0.10937629640102386, -0.01500213984400034, 0.06755871325731277, 0.03125724941492081, 0.06294301152229309, -0.041890066117048264, 0.062477972358465195, -0.015543206594884396, -0.17717109620571136, 0.0030240307096391916, 0.20499569177627563, -0.02947523631155491, 0.21239019930362701, 0.04694955423474312, 0.0609772726893425, 0.062256570905447006, -0.10756856203079224, 0.004436710383743048, -0.05707293748855591, 0.11699266731739044, -0.07110828906297684, 0.12919175624847412, 0.07021969556808472, -0.0007844558567740023, 0.015462186187505722, -0.04022173583507538, -0.005098722409456968, 0.030589479953050613, -0.002059356076642871, -0.004953188356012106, -0.21130132675170898, 0.007394090760499239, -0.20353546738624573, 0.0025457025039941072, -0.2753371596336365, -0.05442296341061592, -0.02590198442339897, 0.017163937911391258, -0.004817693494260311, 0.07303550839424133, 0.08441627025604248, -0.01628718338906765, -0.046006228774785995, -0.006530800834298134, 0.012927028350532055, 0.011118697002530098, -0.12193648517131805, -0.04479680210351944 ]
55d70dc0b1d1d0b2151c5e22815d823fedac3f2f
The TICO-19 evaluation set provides: * Predefined dev and test splits. We provide English-XX translation files under both the `dev` and `test` directories. * The dev set includes 971 sentences, and the test set includes 2100 sentences. * The corresponding IDs are listed in the `dev.ids` and `test.ids` files. The format of the files is: ~~~ {sourceLang}\t{targetLang}\t{sourceString}\t{targetString}\t{stringID}\t{sourceURL}\t{license}\t{translator_ID} ~~~ Currently available languages: * Amharic (am) * Arabic (ar) * Bengali (bn) * Kurdish Sorani (ckb) * Latin American Spanish (es-LA) * Farsi (fa) * French (fr) * Nigerian Fulfulde (fuv) * Hausa (ha) * Hindi (hi) * Indonesian (id) * Kurdish Kurmanji (ku) * Lingala (ln) * Luganda (lg) * Marathi (mr) * Malay (ms) * Muanmar (my) * Nepali (ne) * Oromo (om) * Dari (prs) * Pashto (ps) * Brazilian Portuguese (pt-BR) * Russian (ru) * Kinyarwanda (rw) * Somali (so) * kiSwahili (sw) * Ethiopian Tigrinya (ti) * Tagalog (tl) * Urdu (ur) * Chinese (Simplified) (zh) * Zulu (zu) All translations are released under a CC-0 license.
gmnlp/tico19
[ "region:us" ]
2022-03-02T23:29:22+00:00
{}
2021-10-03T18:00:13+00:00
[]
[]
TAGS #region-us
The TICO-19 evaluation set provides: * Predefined dev and test splits. We provide English-XX translation files under both the 'dev' and 'test' directories. * The dev set includes 971 sentences, and the test set includes 2100 sentences. * The corresponding IDs are listed in the 'URL' and 'URL' files. The format of the files is: ~~~ {sourceLang}\t{targetLang}\t{sourceString}\t{targetString}\t{stringID}\t{sourceURL}\t{license}\t{translator_ID} ~~~ Currently available languages: * Amharic (am) * Arabic (ar) * Bengali (bn) * Kurdish Sorani (ckb) * Latin American Spanish (es-LA) * Farsi (fa) * French (fr) * Nigerian Fulfulde (fuv) * Hausa (ha) * Hindi (hi) * Indonesian (id) * Kurdish Kurmanji (ku) * Lingala (ln) * Luganda (lg) * Marathi (mr) * Malay (ms) * Muanmar (my) * Nepali (ne) * Oromo (om) * Dari (prs) * Pashto (ps) * Brazilian Portuguese (pt-BR) * Russian (ru) * Kinyarwanda (rw) * Somali (so) * kiSwahili (sw) * Ethiopian Tigrinya (ti) * Tagalog (tl) * Urdu (ur) * Chinese (Simplified) (zh) * Zulu (zu) All translations are released under a CC-0 license.
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
79987d1537e8f14b28d69214ec5f14704a9edc64
# Turkish Ted talk translations # Created from ted-multi dataset adding processing steps here if you want another language ```python #using Turkish as target target_lang="tr" # change to your target lang from datasets import load_dataset #ted-multi is a multiple language translated dataset #fits for our case , not to big and curated but need a simple processing dataset = load_dataset("ted_multi") dataset.cleanup_cache_files() #original from patrick's #chars_to_ignore_regex = '[,?.!\-\;\:\"“%‘”�—’…–]' # change to the ignored characters of your fine-tuned model #will use cahya/wav2vec2-base-turkish-artificial-cv #checking inside model repository to find which chars removed (no run.sh) chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' import re def extract_target_lang_entries(batch): #specific mapping for ted_multi dataset #need to find index of language in each translation as it can shift try: target_index_for_lang= batch["translations"]["language"].index(target_lang) except ValueError: #target not in list empty it for later processing batch["text"] = None return batch #index_translation_pairs = zip(batch, target_index_for_batch) text= batch["translations"]["translation"][target_index_for_lang] batch["text"] = re.sub(chars_to_ignore_regex, "", text.lower()) return batch #this dataset has additional columns need to say it cols_to_remove = ['translations', 'talk_name'] dataset = dataset.map(extract_target_lang_entries, remove_columns=cols_to_remove) #on preocessing we tagged None for empty ones dataset_cleaned = dataset.filter(lambda x: x['text'] is not None) dataset_cleaned from huggingface_hub import notebook_login notebook_login() dataset_cleaned.push_to_hub(f"{target_lang}_ted_talk_translated") ```
gorkemgoknar/tr_ted_talk_translated
[ "language:tr", "license:apache-2.0", "dataset", "turkish", "ted-multi", "cleaned", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["tr"], "license": "apache-2.0", "tags": ["dataset", "turkish", "ted-multi", "cleaned"], "datasets": ["ted-multi"]}
2022-01-13T09:14:54+00:00
[]
[ "tr" ]
TAGS #language-Turkish #license-apache-2.0 #dataset #turkish #ted-multi #cleaned #region-us
# Turkish Ted talk translations # Created from ted-multi dataset adding processing steps here if you want another language
[ "# Turkish Ted talk translations", "# Created from ted-multi dataset\n\nadding processing steps here if you want another language" ]
[ "TAGS\n#language-Turkish #license-apache-2.0 #dataset #turkish #ted-multi #cleaned #region-us \n", "# Turkish Ted talk translations", "# Created from ted-multi dataset\n\nadding processing steps here if you want another language" ]
[ 34, 7, 20 ]
[ "passage: TAGS\n#language-Turkish #license-apache-2.0 #dataset #turkish #ted-multi #cleaned #region-us \n# Turkish Ted talk translations# Created from ted-multi dataset\n\nadding processing steps here if you want another language" ]
[ -0.03769039362668991, 0.06066766008734703, -0.003571904730051756, -0.03080800548195839, 0.0494331419467926, 0.0535295270383358, 0.27606073021888733, 0.06751395016908646, -0.03446085378527641, -0.04541000351309776, 0.08088041841983795, 0.09196268022060394, 0.04891011491417885, 0.17857787013053894, 0.04112755134701729, -0.3252066671848297, 0.05860281363129616, -0.1125602200627327, 0.11365501582622528, 0.018543846905231476, 0.11255919933319092, -0.007164229638874531, 0.0017856532940641046, -0.04564176872372627, -0.08944140374660492, 0.03709292784333229, -0.07435309886932373, -0.12036657333374023, 0.04408735781908035, 0.06564134359359741, 0.015248147770762444, -0.07506927847862244, -0.06453622132539749, -0.12335994094610214, 0.034520819783210754, -0.06812509894371033, -0.06272739171981812, -0.047509025782346725, 0.09006262570619583, -0.0938592255115509, 0.3311362862586975, -0.01805080659687519, -0.049886371940374374, 0.057220567017793655, -0.03888612240552902, -0.23836839199066162, -0.14865709841251373, 0.1378331184387207, 0.04916081950068474, 0.04498074948787689, -0.060522306710481644, 0.09620429575443268, 0.007533208932727575, 0.0967981219291687, -0.03632672131061554, -0.35867834091186523, -0.05242433771491051, 0.062087953090667725, -0.0295251552015543, 0.09994076937437057, 0.03318599611520767, 0.12180059403181076, -0.0468895360827446, -0.03666814789175987, -0.24230064451694489, -0.09626130014657974, -0.3070123493671417, -0.0620250478386879, -0.06254848092794418, 0.05237644538283348, 0.2333696186542511, 0.008000174537301064, 0.06848316639661789, -0.1817636638879776, 0.03949414938688278, 0.014076675288379192, -0.08892453461885452, 0.027607453987002373, -0.08231674879789352, 0.010114083997905254, 0.08795946091413498, -0.14562082290649414, -0.11422315239906311, 0.022787747904658318, -0.2000727653503418, 0.18130706250667572, 0.10388211905956268, 0.06742459535598755, -0.03908032178878784, -0.03571593016386032, -0.0828901156783104, -0.054763562977313995, 0.03974596783518791, -0.07344856858253479, -0.05642522871494293, 0.08230449259281158, -0.010711263865232468, -0.16635814309120178, 0.22366994619369507, 0.04493840038776398, -0.013464653864502907, 0.05586094409227371, -0.1291622519493103, 0.08938169479370117, -0.0023820793721824884, 0.026718901470303535, -0.03448450192809105, -0.06393291056156158, -0.02628847397863865, -0.18964846432209015, 0.0791383907198906, -0.003943795338273048, -0.18441294133663177, 0.1037130281329155, -0.16612078249454498, 0.17926698923110962, -0.02260584756731987, 0.062438663095235825, 0.10554736852645874, -0.01410914771258831, 0.004123707767575979, -0.09217619150876999, 0.03879586234688759, 0.031054912135004997, 0.014007961377501488, 0.12940314412117004, -0.10658352822065353, 0.014445324428379536, -0.1049608588218689, -0.024862397462129593, 0.05913981422781944, 0.07599762082099915, 0.02550312504172325, -0.0584198459982872, 0.06111645698547363, -0.02977350540459156, 0.005059986375272274, -0.15430255234241486, 0.017222154885530472, 0.006016489118337631, 0.0684371292591095, -0.04280650615692139, 0.12376279383897781, -0.016575388610363007, 0.017192712053656578, 0.05210147053003311, -0.014203688129782677, 0.00895955041050911, -0.09286141395568848, 0.0018459970597177744, -0.12978263199329376, 0.05391726642847061, -0.13314679265022278, 0.027038585394620895, -0.043183207511901855, -0.07578104734420776, -0.10908360034227371, 0.1143789142370224, -0.18371382355690002, 0.14870469272136688, -0.10599208623170853, 0.05574005842208862, -0.027270495891571045, 0.032769281417131424, -0.0813474953174591, 0.0772598460316658, -0.12096431106328964, -0.032131411135196686, 0.3418959379196167, -0.08522658795118332, -0.06416096538305283, 0.09733337163925171, 0.014995859935879707, 0.07498966157436371, 0.07856124639511108, 0.3477243185043335, 0.03455953299999237, -0.08498824387788773, 0.037930723279714584, 0.12433775514364243, -0.03108895756304264, 0.042816411703825, 0.09596624970436096, -0.0922045111656189, 0.12742303311824799, 0.05289230868220329, 0.11179816722869873, 0.10177033394575119, 0.047474075108766556, -0.08466723561286926, 0.05180632695555687, -0.056227121502161026, 0.02086128480732441, -0.051885977387428284, 0.12184632569551468, -0.1381339281797409, -0.04362610727548599, 0.010178441181778908, 0.12308007478713989, -0.0014953170903027058, -0.030953671783208847, -0.06379477679729462, 0.015109298750758171, 0.042573440819978714, 0.08106387406587601, -0.05727456882596016, -0.08671238273382187, -0.03491993248462677, 0.15212483704090118, 0.17764054238796234, 0.09329582750797272, -0.006587031297385693, -0.018630916252732277, -0.019939405843615532, 0.10815557092428207, 0.08156061172485352, 0.042387984693050385, 0.019425883889198303, -0.20123624801635742, 0.10952774435281754, -0.05272207781672478, 0.12664014101028442, -0.04076949879527092, -0.006496845278888941, 0.019811289384961128, 0.11407097429037094, 0.0007059737108647823, 0.03706470504403114, 0.0036314085591584444, 0.03769807144999504, -0.021558934822678566, -0.03814477100968361, 0.015352421440184116, -0.06728176027536392, -0.12845291197299957, 0.27118128538131714, -0.1070094183087349, 0.05479682236909866, 0.24504072964191437, 0.03284149989485741, 0.011128452606499195, 0.03188567981123924, -0.010882237926125526, -0.017876164987683296, 0.09305334091186523, 0.0040258802473545074, 0.02252114936709404, 0.05067947134375572, 0.06570214778184891, 0.009653843007981777, 0.009648006409406662, -0.03251444920897484, -0.022014709189534187, -0.09296458959579468, 0.14001695811748505, 0.05018356442451477, -0.3626912534236908, 0.16395393013954163, 0.12069011479616165, 0.15163353085517883, 0.23368512094020844, -0.09498032182455063, -0.036495111882686615, -0.014475091360509396, 0.08173856884241104, 0.00018587250087875873, 0.08315863460302353, -0.19887158274650574, -0.06649575382471085, 0.08175867050886154, 0.021977530792355537, 0.052105531096458435, -0.0555683933198452, -0.04531101882457733, -0.06904754787683487, -0.07521890848875046, 0.07218991219997406, 0.12871353328227997, -0.03395445644855499, 0.04285931587219238, -0.10535996407270432, -0.017113707959651947, 0.007800084073096514, -0.00022846726642455906, -0.04147482290863991, 0.088368259370327, -0.17266303300857544, -0.26270580291748047, -0.10805920511484146, -0.15236830711364746, -0.1063978374004364, -0.05912051722407341, 0.11801601946353912, -0.037978824228048325, -0.008190265856683254, -0.032624635845422745, 0.06797882169485092, -0.105342797935009, -0.07000011205673218, -0.13752222061157227, -0.003896207083016634, -0.13378725945949554, -0.1481373906135559, -0.012126236222684383, -0.00804487057030201, 0.014312484301626682, 0.05517340451478958, -0.0947686955332756, 0.03156064823269844, 0.10847299546003342, 0.01694684475660324, 0.055778950452804565, -0.12402697652578354, 0.08912155032157898, -0.14503858983516693, 0.01121804304420948, 0.08922736346721649, -0.009013058617711067, -0.006103768944740295, 0.15345516800880432, 0.0761726051568985, -0.035462502390146255, -0.004978829063475132, 0.0014596570981666446, -0.050920698791742325, -0.3233989179134369, -0.12159182131290436, -0.10630330443382263, 0.0766843929886818, -0.04941696673631668, 0.0761619582772255, -0.02073478326201439, 0.01377408392727375, -0.056682754307985306, 0.026389194652438164, 0.06836245208978653, 0.0020042092073708773, 0.25631508231163025, -0.07420133054256439, 0.055716462433338165, -0.17103753983974457, -0.014322367496788502, 0.1349474936723709, 0.006911705248057842, 0.11937326192855835, 0.15865734219551086, 0.12600962817668915, 0.11246199905872345, 0.0594341866672039, -0.027280263602733612, -0.01562938094139099, 0.05886360630393028, 0.01133456826210022, -0.03092428296804428, -0.10906769335269928, 0.1297455132007599, 0.054412007331848145, 0.041654281318187714, -0.20046648383140564, 0.07820554822683334, -0.022432653233408928, 0.16532112658023834, -0.00975741259753704, 0.040661729872226715, -0.031349387019872665, -0.04658188670873642, 0.00005951157072558999, -0.07194282859563828, -0.055303990840911865, 0.04213270917534828, 0.09846507012844086, -0.08425859361886978, 0.1386183649301529, 0.006389432121068239, 0.10522300750017166, 0.011337208561599255, -0.015503283590078354, -0.17625989019870758, -0.08172104507684708, 0.042085446417331696, 0.14308418333530426, -0.14462028443813324, 0.1665193885564804, 0.06798271089792252, 0.03471721336245537, -0.11593309789896011, -0.0363265760242939, 0.11878694593906403, 0.11384838819503784, 0.05493009462952614, 0.0014343068469315767, -0.3053712844848633, 0.022169198840856552, -0.16254569590091705, 0.017617687582969666, 0.12296707183122635, 0.05526921898126602, -0.07501377910375595, 0.0015393890207633376, -0.016507992520928383, -0.08297769725322723, 0.07834167778491974, -0.14086855947971344, -0.21805822849273682, 0.09766226261854172, 0.18515093624591827, -0.02958950400352478, 0.04672662541270256, -0.043299704790115356, -0.10923898220062256, 0.17912831902503967, 0.11068957298994064, -0.06584370136260986, -0.09206937253475189, 0.0006927131325937808, 0.12285863608121872, -0.059288181364536285, 0.014580553397536278, -0.05355329439043999, -0.09744018316268921, -0.11000514030456543, -0.13834181427955627, 0.07575272023677826, -0.05833686515688896, 0.0061621349304914474, 0.006111000198870897, 0.14662356674671173, -0.021799305453896523, 0.05455634742975235, 0.024915600195527077, -0.024500949308276176, 0.030322030186653137, -0.11534755676984787, -0.010505673475563526, 0.06516382843255997, -0.026986893266439438, 0.041528813540935516, -0.10093943774700165, -0.24281001091003418, -0.09793878346681595, -0.1483777016401291, 0.2649405300617218, 0.05624016374349594, -0.09244523197412491, 0.17298634350299835, 0.0656774565577507, -0.05926448106765747, -0.18626655638217926, -0.14085599780082703, -0.09793122857809067, 0.016962777823209763, 0.027947384864091873, -0.1712833195924759, 0.112907275557518, 0.09865693002939224, -0.049878038465976715, 0.27111563086509705, -0.28125277161598206, -0.09938620030879974, 0.1759645640850067, 0.01203615590929985, 0.12176857143640518, -0.1799599677324295, -0.10640320926904678, -0.011381562799215317, 0.04121404513716698, 0.051256418228149414, -0.2561085820198059, 0.09429646283388138, 0.1251363307237625, 0.10940813273191452, -0.015160070732235909, 0.04317467659711838, 0.14758984744548798, -0.015573319979012012, -0.03963269293308258, -0.08181025087833405, -0.07200539112091064, 0.14913204312324524, 0.0613812655210495, 0.09191960096359253, -0.1593538075685501, -0.043411336839199066, -0.08484788984060287, -0.04344530031085014, 0.016928719356656075, 0.10317137092351913, -0.009727561846375465, -0.010991249233484268, -0.05553054064512253, -0.015774166211485863, -0.050454024225473404, 0.003267108928412199, 0.2021629959344864, -0.04070020094513893, 0.00364250922575593, -0.057443298399448395, -0.094245046377182, -0.008501297794282436, 0.08857205510139465, -0.1187388002872467, -0.07143940031528473, 0.03393406793475151, -0.09183096885681152, -0.06444556266069412, 0.07533621042966843, -0.08096633106470108, 0.06355281174182892, -0.04981162026524544, -0.12724687159061432, 0.1048111841082573, 0.08971752226352692, -0.02362361177802086, -0.22444427013397217, -0.025602776557207108, -0.026830941438674927, 0.16074799001216888, 0.11558504402637482, 0.18477879464626312, 0.023680873215198517, -0.013783720321953297, -0.00450347363948822, -0.027630241587758064, -0.03721548244357109, 0.020409729331731796, -0.01882551610469818, -0.03445830196142197, -0.12486866861581802, 0.08320421725511551, 0.13155756890773773, -0.14466983079910278, 0.058601196855306625, 0.11715103685855865, -0.06782403588294983, -0.13633640110492706, -0.05805349722504616, -0.01778567209839821, 0.1032392606139183, -0.11214525997638702, 0.04297422245144844, -0.07834728807210922, -0.036767587065696716, 0.04911200702190399, 0.002003896050155163, 0.00806841254234314, -0.0186785776168108, -0.06347483396530151, 0.13588868081569672, 0.0877259373664856, -0.03700244054198265, -0.06467679888010025, -0.048135388642549515, 0.03825747221708298, 0.04044171795248985, 0.05655326321721077, -0.03069356642663479, -0.062153831124305725, -0.05218743905425072, -0.0021937666460871696, -0.022609058767557144, 0.049920253455638885, -0.18532103300094604, 0.024559687823057175, 0.023103386163711548, -0.05789433792233467, -0.015142212621867657, -0.037523772567510605, -0.10884226113557816, 0.01049641240388155, -0.07371921837329865, 0.1322939097881317, -0.11955680698156357, -0.0020275514107197523, -0.03596977889537811, 0.03568212687969208, 0.1462770700454712, 0.20924071967601776, -0.026162968948483467, 0.15452656149864197, -0.1440301388502121, -0.009617962874472141, 0.060406751930713654, 0.08694567531347275, 0.07788586616516113, 0.09164569526910782, -0.08266592025756836, 0.07839702814817429, 0.07670283317565918, 0.07033610343933105, -0.03359048813581467, -0.10664360970258713, -0.11313760280609131, -0.10438314080238342, -0.0722101703286171, 0.034662988036870956, 0.0335853286087513, 0.05086105689406395, -0.039733391255140305, 0.062349431216716766, -0.06586520373821259, 0.06841088086366653, 0.07798752188682556, 0.04892957583069801, -0.054400134831666946, -0.1325983852148056, 0.02293064258992672, -0.09157424420118332, 0.013329126872122288, -0.0203616414219141, 0.3246380686759949, 0.07926782220602036, 0.011636353097856045, 0.02657654695212841, -0.012360013090074062, 0.0024755520280450583, 0.013622472062706947, 0.25364452600479126, 0.059146299958229065, 0.010031149722635746, -0.2006310373544693, -0.05999302864074707, 0.034877706319093704, -0.021636296063661575, 0.062331221997737885, 0.17609429359436035, 0.11260820180177689, 0.06778940558433533, 0.06562819331884384, -0.05477476492524147, -0.09946974366903305, -0.14933443069458008, 0.0020746118389070034, 0.10455396771430969, -0.07807173579931259, 0.14318864047527313, 0.17148546874523163, -0.12192993611097336, -0.00600096583366394, 0.06438363343477249, -0.03177966549992561, -0.09336019307374954, -0.19636355340480804, -0.03941670432686806, -0.09943871945142746, -0.00480269268155098, -0.016874240711331367, 0.07677113264799118, -0.034853748977184296, 0.14156502485275269, -0.013467052951455116, 0.1335820108652115, -0.08255643397569656, -0.10847678035497665, 0.06656207889318466, -0.021428806707262993, 0.0391387939453125, -0.05987945571541786, -0.0757739320397377, -0.08254875242710114, -0.020360004156827927, 0.02360440045595169, 0.031114283949136734, -0.03212524577975273, 0.040857721120119095, -0.16224431991577148, -0.022127920761704445, -0.04913352429866791, 0.050653014332056046, 0.06943386793136597, 0.07008717209100723, 0.120096355676651, -0.051274385303258896, -0.008590208366513252, 0.07290194928646088, 0.03939833864569664, -0.15136133134365082, -0.021303286775946617, -0.03371450677514076, 0.0016739554703235626, 0.028973322361707687, -0.07787607610225677, -0.05692003294825554, -0.07497581094503403, 0.23787616193294525, 0.44574928283691406, 0.04530400037765503, 0.043419722467660904, 0.06141674518585205, 0.03446831554174423, -0.0700756385922432, 0.07306905090808868, -0.00900010485202074, 0.17569975554943085, 0.10207691043615341, -0.020482104271650314, -0.04402032867074013, -0.01152978464961052, -0.20888568460941315, -0.05039502680301666, -0.011082092300057411, -0.1410147100687027, 0.11501387506723404, 0.2136651575565338, -0.17807304859161377, -0.16191212832927704, 0.04337337985634804, -0.029373666271567345, -0.12023409456014633, -0.009169483557343483, 0.13378576934337616, 0.1726604402065277, 0.00027803549892269075, -0.02009827084839344, -0.029597913846373558, 0.007119813002645969, 0.054080065339803696, -0.19455963373184204, -0.10376668721437454, 0.0621148981153965, -0.08925739675760269, 0.09012550860643387, -0.0046896603889763355, 0.04419762268662453, 0.0673120841383934, 0.04313493147492409, 0.012544968165457249, 0.10473637282848358, 0.10021033883094788, 0.029082290828227997, 0.08867102116346359, -0.05570407584309578, -0.06104223430156708, 0.0948752909898758, 0.10647129267454147, -0.00882471352815628, 0.043922778218984604, 0.0747600793838501, -0.07320766896009445, -0.0069496785290539265, 0.09043260663747787, -0.17642229795455933, 0.03341703489422798, 0.2042982578277588, -0.017244327813386917, -0.007246486842632294, 0.04950232058763504, -0.00651474529877305, 0.057800717651844025, -0.15476810932159424, -0.10715807229280472, -0.08419903367757797, -0.09772264957427979, -0.01592748984694481, 0.11171853542327881, -0.11347875744104385, 0.024623975157737732, -0.05069373548030853, 0.09886197745800018, -0.0895412266254425, 0.03042876347899437, 0.17644968628883362, -0.11006277054548264, -0.015114033594727516, -0.28248217701911926, 0.06347880512475967, -0.01001253817230463, -0.09739572554826736, 0.005931515246629715 ]
ceb0129e499ea5344dba1391c0a046222ddba631
# Dataset Card for CHANGE-IT ## Table of Contents - [Dataset Card for CHANGE-IT](#dataset-card-for-change-it) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Style Transfer](#style-transfer) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** [https://live.european-language-grid.eu/catalogue/corpus/7373](https://live.european-language-grid.eu/catalogue/corpus/7373) - **Repository:** [Github](https://github.com/michelecafagna26/CHANGE-IT) - **Paper:** [CEUR-ws.org](http://ceur-ws.org/Vol-2765/paper169.pdf) - **Video** [Vimeo](https://vimeo.com/484098874) - **Point of Contact:** [Lorenzo De Mattei]([email protected]) - **Size of downloaded dataset files:** 168.7 MB - **Size of the generated dataset:** 411 MB - **Total amount of disk used:** 579.7 MB ### Dataset Summary The CHANGE-IT dataset contains approximately 152,000 article-headline pairs, collected from two Italian newspapers situated at opposite ends of the political spectrum, namely la Repubblica (left) and Il Giornale (right), with the two newspapers equally represented. The dataset has been used in the context of the [CHANGE-IT task](https://sites.google.com/view/change-it) during the [Evalita 2020 evaluation campaign](http://www.evalita.it/2020). CHANGE-IT is a generation task for Italian – more specifically, a style transfer task for headlines of Italian newspapers. Given a (collection of) headlines from one newspaper, namely Il Giornale (G) or La Repubblica (R), it challenges automatic systems to change all G-headlines to headlines in style R, and all R-headlines to headlines in style G. Although the task only concerns headline change, the dataset comprehends both the headlines as well as their respective full articles. **Disclaimer**: *The CHANGE-IT dataset is hosted by the [European Language Grid](https://live.european-language-grid.eu/) and licensed under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/). To use the dataset using* 🤗 *Datasets, download and unzip the folder from its [ELG page](https://live.european-language-grid.eu/catalogue/corpus/7373) and pass it to the* `load_dataset` *method as:* `datasets.load_dataset('gsarti/change_it', data_dir='path/to/unzipped/folder')` ### Supported Tasks and Leaderboards #### Style Transfer The following table is taken from Table 4 of the original paper, where a *pointer-network* architecture is used as a baseline to perform style transfer in two settings. In the **rep2gio** variant the system is trained to summarize Repubblica headlines from full texts (vice versa for **gio2rep**), and the style transfer is performed by summarizing full texts of the other newspaper in the source newspaper's headline style. **avg** is the average of the two settings. | | HH| AH|Main|Compliancy| |--------:|---:|---:|---:|---------:| |`rep2gio`|.649|.876|.799| .449| |`gio2rep`|.639|.871|.435| .240| | `avg`|.644|.874|.616| .345| Here **Main**, **HH** and **AH** are all BERT-base models trained to evaluate the quality of style transfer as follows: - **Main**: the model is trained to classify a generated headline either as `ilgiornale` or `repubblica`, achieving ~80% F1 score on gold data. Tests whether the transfer has been successful. - **Headline-Headline (HH)**: the model is trained to check the compatibility between original and generated headlines. Tests whether the generation is coherent with the reference. - **Article-Headline (AH)**: the model is trained to check the compatibility between original fulltext article and generated headlines. Tests whether the generation is coherent with the source article. The final metric, **Overall compliancy**, is a binary metric that is positive if the other three metrics match (**Main** decision is reversed, **HH** and **AH** predict match), and negative otherwise. Refer to Section 3 of the original paper for more details. ### Languages The language data in CHANGE-IT is in Italian (BCP-47 `it`) ## Dataset Structure ### Data Instances A sample from the `test` split of the `ilgiornale` config is provided below. The other configuration, `ilgiornale`, has the same structure. ```json { "id": 0, "headline": "Ucraina, coalizione della Timoshenko denuncia irruzione nella sede", "full_text": "Rimane alta la tensione in Ucraina , dove da giorni i manifestanti scendono in piazza per protestare contro la decisione del presidente Viktor Yanukovich, che ha deciso di congelare l'accordo di associazione con l'Unione Europea. Il momento è molto delicato. L'opposizione teme una repressione violenza della protesta, con le forze speciali che hanno costretto i manifestanti a Kiev ad allontanarsi dalla sede del governo, per ripiegare su piazza Indipendenza. Il leader d'opposizione Vitaly Klitschko ha invitato il presidente a non utilizzare la forza, se non vuole avere il sangue dei manifestanti sulle sue mani. Nel frattempo il presidente Yanukovich ha aperto alla possibilità di un dialogo, annunciando per domani un incontro con i suoi due predecessori, Leonid Kuchma e Viktor Yushchenko. Ieri un milioni di persone sono scese in piazza, scaduti i due giorni di ultimatum dati al governo per indire nuove elezioni, I manifestanti hanno rovesciato la grande statua di Lenin posta sul boulevard Shevchenko. Piazza Indipendenza (Maidan Nezalezhnosti) resta il punto più caldo della capitale. Qui sono state erette barricate davanti agli ingressi della metropolitana, nel tentativo di preparsi a un'azione della polizia, che al momento non ha però preso iniziative contro i dimostranti. In serata Batkivshcyna, la coalizione dell'ex premier Yulia Timoshenko , ha denunciato l'irruzione di almeno venti agenti della polizia antisommossa nel proprio quartier generale. Il portavoce della polizia, Olga Bilyk, ha smentito: \"Né la polizia di Kiev, né la Berkut - ha dichiarato - hanno condotto operazioni nella sede\".", "alignment": "A2" } ``` The text is provided as-is, without further preprocessing or tokenization. ### Data Fields - `headline`: The original headline for the newspaper. - `full_text`: The article full text associated to the respective headline. - `alignment`: The alignment value used for the style transfer experiments. Values: - `A1`: Top 5K pairs, highly aligned. - `A2`: Test set, highly aligned. - `A3`: 10K to 20K pairs, fairly aligned. - `R`: Bottom ~50K pairs, weakly/not aligned. ### Data Splits | config| train| test| |---------:|-------------------------------------:|-----------:| |`ilgiornale`|5'000 (A1) + 10'000 (A3) + 48'701 (R) | 5'000 (A2) | |`repubblica`|5'000 (A1) + 10'000 (A3) + 48'701 (R) | 5'000 (A2) | ### Dataset Creation Please refer to the original article [CHANGE-IT @ EVALITA 2020: Change Headlines, Adapt News, GEnerate](http://ceur-ws.org/Vol-2765/paper169.pdf) for additional information on dataset creation. ## Additional Information ### Dataset Curators The organizers of the CHANGE-IT shared tasks are the curators of the original dataset. For problems or updates on the 🤗 Datasets version, please contact [[email protected]](mailto:[email protected]). ### Licensing Information Licensed with Creative Commons Attribution Non Commercial Share Alike 4.0. License available [here](https://creativecommons.org/licenses/by-nc-sa/4.0/). ### Citation Information Please cite the authors if you use these corpora in your work: ``` @inproceedings{demattei-etal-2020-changeit, author = {De Mattei, Lorenzo and Cafagna, Michele and Dell'Orletta, Felice and Nissim, Malvina and Gatt, Albert}, title = {{CHANGE-IT @ EVALITA 2020}: Change Headlines, Adapt News, GEnerate}, booktitle = {Proceedings of Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020)}, editor = {Basile, Valerio and Croce, Danilo and Di Maro, Maria, and Passaro, Lucia C.}, publisher = {CEUR.org}, year = {2020}, address = {Online} }
gsarti/change_it
[ "task_categories:summarization", "task_categories:text-generation", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "size_categories:unknown", "source_datasets:original", "language:it", "license:cc-by-nc-sa-4.0", "conditional-text-generation", "style-transfer", "region:us" ]
2022-03-02T23:29:22+00:00
{"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["it"], "license": ["cc-by-nc-sa-4.0"], "multilinguality": ["monolingual"], "size_categories": ["unknown"], "source_datasets": ["original"], "task_categories": ["summarization", "text-generation"], "task_ids": [], "pretty_name": "change-it", "tags": ["conditional-text-generation", "style-transfer"]}
2022-10-27T07:37:09+00:00
[]
[ "it" ]
TAGS #task_categories-summarization #task_categories-text-generation #annotations_creators-no-annotation #language_creators-found #multilinguality-monolingual #size_categories-unknown #source_datasets-original #language-Italian #license-cc-by-nc-sa-4.0 #conditional-text-generation #style-transfer #region-us
Dataset Card for CHANGE-IT ========================== Table of Contents ----------------- * Dataset Card for CHANGE-IT + Table of Contents + Dataset Description - Dataset Summary - Supported Tasks and Leaderboards * Style Transfer - Languages + Dataset Structure - Data Instances - Data Fields - Data Splits - Dataset Creation + Additional Information - Dataset Curators - Licensing Information - Citation Information Dataset Description ------------------- * Homepage: URL * Repository: Github * Paper: URL * Video Vimeo * Point of Contact: Lorenzo De Mattei * Size of downloaded dataset files: 168.7 MB * Size of the generated dataset: 411 MB * Total amount of disk used: 579.7 MB ### Dataset Summary The CHANGE-IT dataset contains approximately 152,000 article-headline pairs, collected from two Italian newspapers situated at opposite ends of the political spectrum, namely la Repubblica (left) and Il Giornale (right), with the two newspapers equally represented. The dataset has been used in the context of the CHANGE-IT task during the Evalita 2020 evaluation campaign. CHANGE-IT is a generation task for Italian – more specifically, a style transfer task for headlines of Italian newspapers. Given a (collection of) headlines from one newspaper, namely Il Giornale (G) or La Repubblica (R), it challenges automatic systems to change all G-headlines to headlines in style R, and all R-headlines to headlines in style G. Although the task only concerns headline change, the dataset comprehends both the headlines as well as their respective full articles. Disclaimer: *The CHANGE-IT dataset is hosted by the European Language Grid and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To use the dataset using* *Datasets, download and unzip the folder from its ELG page and pass it to the* 'load\_dataset' *method as:* 'datasets.load\_dataset('gsarti/change\_it', data\_dir='path/to/unzipped/folder')' ### Supported Tasks and Leaderboards #### Style Transfer The following table is taken from Table 4 of the original paper, where a *pointer-network* architecture is used as a baseline to perform style transfer in two settings. In the rep2gio variant the system is trained to summarize Repubblica headlines from full texts (vice versa for gio2rep), and the style transfer is performed by summarizing full texts of the other newspaper in the source newspaper's headline style. avg is the average of the two settings. Here Main, HH and AH are all BERT-base models trained to evaluate the quality of style transfer as follows: * Main: the model is trained to classify a generated headline either as 'ilgiornale' or 'repubblica', achieving ~80% F1 score on gold data. Tests whether the transfer has been successful. * Headline-Headline (HH): the model is trained to check the compatibility between original and generated headlines. Tests whether the generation is coherent with the reference. * Article-Headline (AH): the model is trained to check the compatibility between original fulltext article and generated headlines. Tests whether the generation is coherent with the source article. The final metric, Overall compliancy, is a binary metric that is positive if the other three metrics match (Main decision is reversed, HH and AH predict match), and negative otherwise. Refer to Section 3 of the original paper for more details. ### Languages The language data in CHANGE-IT is in Italian (BCP-47 'it') Dataset Structure ----------------- ### Data Instances A sample from the 'test' split of the 'ilgiornale' config is provided below. The other configuration, 'ilgiornale', has the same structure. The text is provided as-is, without further preprocessing or tokenization. ### Data Fields * 'headline': The original headline for the newspaper. * 'full\_text': The article full text associated to the respective headline. * 'alignment': The alignment value used for the style transfer experiments. Values: + 'A1': Top 5K pairs, highly aligned. + 'A2': Test set, highly aligned. + 'A3': 10K to 20K pairs, fairly aligned. + 'R': Bottom ~50K pairs, weakly/not aligned. ### Data Splits ### Dataset Creation Please refer to the original article CHANGE-IT @ EVALITA 2020: Change Headlines, Adapt News, GEnerate for additional information on dataset creation. Additional Information ---------------------- ### Dataset Curators The organizers of the CHANGE-IT shared tasks are the curators of the original dataset. For problems or updates on the Datasets version, please contact gabriele.sarti996@URL. ### Licensing Information Licensed with Creative Commons Attribution Non Commercial Share Alike 4.0. License available here. Please cite the authors if you use these corpora in your work: ''' @inproceedings{demattei-etal-2020-changeit, author = {De Mattei, Lorenzo and Cafagna, Michele and Dell'Orletta, Felice and Nissim, Malvina and Gatt, Albert}, title = {{CHANGE-IT @ EVALITA 2020}: Change Headlines, Adapt News, GEnerate}, booktitle = {Proceedings of Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020)}, editor = {Basile, Valerio and Croce, Danilo and Di Maro, Maria, and Passaro, Lucia C.}, publisher = {URL}, year = {2020}, address = {Online} }
[ "### Dataset Summary\n\n\nThe CHANGE-IT dataset contains approximately 152,000 article-headline pairs, collected from two Italian newspapers situated at opposite ends of the political spectrum, namely la Repubblica (left) and Il Giornale (right), with the two newspapers equally represented. The dataset has been used in the context\nof the CHANGE-IT task during the Evalita 2020 evaluation campaign. CHANGE-IT is a generation task for Italian – more specifically, a style transfer task for headlines of Italian newspapers. Given a (collection of) headlines from one newspaper, namely Il Giornale (G) or La Repubblica (R), it challenges automatic systems to change all G-headlines to headlines in style R, and all R-headlines to headlines in style G. Although the task only concerns headline change, the dataset comprehends both the headlines as well as their respective full articles.\n\n\nDisclaimer: *The CHANGE-IT dataset is hosted by the European Language Grid and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To use the dataset using* *Datasets, download and unzip the folder from its ELG page and pass it to the* 'load\\_dataset' *method as:* 'datasets.load\\_dataset('gsarti/change\\_it', data\\_dir='path/to/unzipped/folder')'", "### Supported Tasks and Leaderboards", "#### Style Transfer\n\n\nThe following table is taken from Table 4 of the original paper, where a *pointer-network* architecture is used as a baseline to perform style transfer in two settings. In the rep2gio variant the system is trained to summarize Repubblica headlines from full texts (vice versa for gio2rep), and the style transfer is performed by summarizing full texts of the other newspaper in the source newspaper's headline style. avg is the average of the two settings.\n\n\n\nHere Main, HH and AH are all BERT-base models trained to evaluate the quality of style transfer as follows:\n\n\n* Main: the model is trained to classify a generated headline either as 'ilgiornale' or 'repubblica', achieving ~80% F1 score on gold data. Tests whether the transfer has been successful.\n* Headline-Headline (HH): the model is trained to check the compatibility between original and generated headlines. Tests whether the generation is coherent with the reference.\n* Article-Headline (AH): the model is trained to check the compatibility between original fulltext article and generated headlines. Tests whether the generation is coherent with the source article.\n\n\nThe final metric, Overall compliancy, is a binary metric that is positive if the other three metrics match (Main decision is reversed, HH and AH predict match), and negative otherwise. Refer to Section 3 of the original paper for more details.", "### Languages\n\n\nThe language data in CHANGE-IT is in Italian (BCP-47 'it')\n\n\nDataset Structure\n-----------------", "### Data Instances\n\n\nA sample from the 'test' split of the 'ilgiornale' config is provided below. The other configuration, 'ilgiornale', has the same structure.\n\n\nThe text is provided as-is, without further preprocessing or tokenization.", "### Data Fields\n\n\n* 'headline': The original headline for the newspaper.\n* 'full\\_text': The article full text associated to the respective headline.\n* 'alignment': The alignment value used for the style transfer experiments. Values:\n\t+ 'A1': Top 5K pairs, highly aligned.\n\t+ 'A2': Test set, highly aligned.\n\t+ 'A3': 10K to 20K pairs, fairly aligned.\n\t+ 'R': Bottom ~50K pairs, weakly/not aligned.", "### Data Splits", "### Dataset Creation\n\n\nPlease refer to the original article CHANGE-IT @ EVALITA 2020: Change Headlines, Adapt News, GEnerate for additional information on dataset creation.\n\n\nAdditional Information\n----------------------", "### Dataset Curators\n\n\nThe organizers of the CHANGE-IT shared tasks are the curators of the original dataset. For problems or updates on the Datasets version, please contact gabriele.sarti996@URL.", "### Licensing Information\n\n\nLicensed with Creative Commons Attribution Non Commercial Share Alike 4.0. License available here.\n\n\nPlease cite the authors if you use these corpora in your work:\n\n\n'''\n@inproceedings{demattei-etal-2020-changeit,\nauthor = {De Mattei, Lorenzo and Cafagna, Michele and Dell'Orletta, Felice and Nissim, Malvina and Gatt, Albert},\ntitle = {{CHANGE-IT @ EVALITA 2020}: Change Headlines, Adapt News, GEnerate},\nbooktitle = {Proceedings of Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020)},\neditor = {Basile, Valerio and Croce, Danilo and Di Maro, Maria, and Passaro, Lucia C.},\npublisher = {URL},\nyear = {2020},\naddress = {Online}\n}" ]
[ "TAGS\n#task_categories-summarization #task_categories-text-generation #annotations_creators-no-annotation #language_creators-found #multilinguality-monolingual #size_categories-unknown #source_datasets-original #language-Italian #license-cc-by-nc-sa-4.0 #conditional-text-generation #style-transfer #region-us \n", "### Dataset Summary\n\n\nThe CHANGE-IT dataset contains approximately 152,000 article-headline pairs, collected from two Italian newspapers situated at opposite ends of the political spectrum, namely la Repubblica (left) and Il Giornale (right), with the two newspapers equally represented. The dataset has been used in the context\nof the CHANGE-IT task during the Evalita 2020 evaluation campaign. CHANGE-IT is a generation task for Italian – more specifically, a style transfer task for headlines of Italian newspapers. Given a (collection of) headlines from one newspaper, namely Il Giornale (G) or La Repubblica (R), it challenges automatic systems to change all G-headlines to headlines in style R, and all R-headlines to headlines in style G. Although the task only concerns headline change, the dataset comprehends both the headlines as well as their respective full articles.\n\n\nDisclaimer: *The CHANGE-IT dataset is hosted by the European Language Grid and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To use the dataset using* *Datasets, download and unzip the folder from its ELG page and pass it to the* 'load\\_dataset' *method as:* 'datasets.load\\_dataset('gsarti/change\\_it', data\\_dir='path/to/unzipped/folder')'", "### Supported Tasks and Leaderboards", "#### Style Transfer\n\n\nThe following table is taken from Table 4 of the original paper, where a *pointer-network* architecture is used as a baseline to perform style transfer in two settings. In the rep2gio variant the system is trained to summarize Repubblica headlines from full texts (vice versa for gio2rep), and the style transfer is performed by summarizing full texts of the other newspaper in the source newspaper's headline style. avg is the average of the two settings.\n\n\n\nHere Main, HH and AH are all BERT-base models trained to evaluate the quality of style transfer as follows:\n\n\n* Main: the model is trained to classify a generated headline either as 'ilgiornale' or 'repubblica', achieving ~80% F1 score on gold data. Tests whether the transfer has been successful.\n* Headline-Headline (HH): the model is trained to check the compatibility between original and generated headlines. Tests whether the generation is coherent with the reference.\n* Article-Headline (AH): the model is trained to check the compatibility between original fulltext article and generated headlines. Tests whether the generation is coherent with the source article.\n\n\nThe final metric, Overall compliancy, is a binary metric that is positive if the other three metrics match (Main decision is reversed, HH and AH predict match), and negative otherwise. Refer to Section 3 of the original paper for more details.", "### Languages\n\n\nThe language data in CHANGE-IT is in Italian (BCP-47 'it')\n\n\nDataset Structure\n-----------------", "### Data Instances\n\n\nA sample from the 'test' split of the 'ilgiornale' config is provided below. The other configuration, 'ilgiornale', has the same structure.\n\n\nThe text is provided as-is, without further preprocessing or tokenization.", "### Data Fields\n\n\n* 'headline': The original headline for the newspaper.\n* 'full\\_text': The article full text associated to the respective headline.\n* 'alignment': The alignment value used for the style transfer experiments. Values:\n\t+ 'A1': Top 5K pairs, highly aligned.\n\t+ 'A2': Test set, highly aligned.\n\t+ 'A3': 10K to 20K pairs, fairly aligned.\n\t+ 'R': Bottom ~50K pairs, weakly/not aligned.", "### Data Splits", "### Dataset Creation\n\n\nPlease refer to the original article CHANGE-IT @ EVALITA 2020: Change Headlines, Adapt News, GEnerate for additional information on dataset creation.\n\n\nAdditional Information\n----------------------", "### Dataset Curators\n\n\nThe organizers of the CHANGE-IT shared tasks are the curators of the original dataset. For problems or updates on the Datasets version, please contact gabriele.sarti996@URL.", "### Licensing Information\n\n\nLicensed with Creative Commons Attribution Non Commercial Share Alike 4.0. License available here.\n\n\nPlease cite the authors if you use these corpora in your work:\n\n\n'''\n@inproceedings{demattei-etal-2020-changeit,\nauthor = {De Mattei, Lorenzo and Cafagna, Michele and Dell'Orletta, Felice and Nissim, Malvina and Gatt, Albert},\ntitle = {{CHANGE-IT @ EVALITA 2020}: Change Headlines, Adapt News, GEnerate},\nbooktitle = {Proceedings of Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020)},\neditor = {Basile, Valerio and Croce, Danilo and Di Maro, Maria, and Passaro, Lucia C.},\npublisher = {URL},\nyear = {2020},\naddress = {Online}\n}" ]
[ 103, 330, 10, 332, 31, 62, 128, 5, 48, 52, 208 ]
[ "passage: TAGS\n#task_categories-summarization #task_categories-text-generation #annotations_creators-no-annotation #language_creators-found #multilinguality-monolingual #size_categories-unknown #source_datasets-original #language-Italian #license-cc-by-nc-sa-4.0 #conditional-text-generation #style-transfer #region-us \n### Dataset Summary\n\n\nThe CHANGE-IT dataset contains approximately 152,000 article-headline pairs, collected from two Italian newspapers situated at opposite ends of the political spectrum, namely la Repubblica (left) and Il Giornale (right), with the two newspapers equally represented. The dataset has been used in the context\nof the CHANGE-IT task during the Evalita 2020 evaluation campaign. CHANGE-IT is a generation task for Italian – more specifically, a style transfer task for headlines of Italian newspapers. Given a (collection of) headlines from one newspaper, namely Il Giornale (G) or La Repubblica (R), it challenges automatic systems to change all G-headlines to headlines in style R, and all R-headlines to headlines in style G. Although the task only concerns headline change, the dataset comprehends both the headlines as well as their respective full articles.\n\n\nDisclaimer: *The CHANGE-IT dataset is hosted by the European Language Grid and licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To use the dataset using* *Datasets, download and unzip the folder from its ELG page and pass it to the* 'load\\_dataset' *method as:* 'datasets.load\\_dataset('gsarti/change\\_it', data\\_dir='path/to/unzipped/folder')'### Supported Tasks and Leaderboards", "passage: #### Style Transfer\n\n\nThe following table is taken from Table 4 of the original paper, where a *pointer-network* architecture is used as a baseline to perform style transfer in two settings. In the rep2gio variant the system is trained to summarize Repubblica headlines from full texts (vice versa for gio2rep), and the style transfer is performed by summarizing full texts of the other newspaper in the source newspaper's headline style. avg is the average of the two settings.\n\n\n\nHere Main, HH and AH are all BERT-base models trained to evaluate the quality of style transfer as follows:\n\n\n* Main: the model is trained to classify a generated headline either as 'ilgiornale' or 'repubblica', achieving ~80% F1 score on gold data. Tests whether the transfer has been successful.\n* Headline-Headline (HH): the model is trained to check the compatibility between original and generated headlines. Tests whether the generation is coherent with the reference.\n* Article-Headline (AH): the model is trained to check the compatibility between original fulltext article and generated headlines. Tests whether the generation is coherent with the source article.\n\n\nThe final metric, Overall compliancy, is a binary metric that is positive if the other three metrics match (Main decision is reversed, HH and AH predict match), and negative otherwise. Refer to Section 3 of the original paper for more details.### Languages\n\n\nThe language data in CHANGE-IT is in Italian (BCP-47 'it')\n\n\nDataset Structure\n-----------------### Data Instances\n\n\nA sample from the 'test' split of the 'ilgiornale' config is provided below. The other configuration, 'ilgiornale', has the same structure.\n\n\nThe text is provided as-is, without further preprocessing or tokenization.### Data Fields\n\n\n* 'headline': The original headline for the newspaper.\n* 'full\\_text': The article full text associated to the respective headline.\n* 'alignment': The alignment value used for the style transfer experiments. Values:\n\t+ 'A1': Top 5K pairs, highly aligned.\n\t+ 'A2': Test set, highly aligned.\n\t+ 'A3': 10K to 20K pairs, fairly aligned.\n\t+ 'R': Bottom ~50K pairs, weakly/not aligned.### Data Splits### Dataset Creation\n\n\nPlease refer to the original article CHANGE-IT @ EVALITA 2020: Change Headlines, Adapt News, GEnerate for additional information on dataset creation.\n\n\nAdditional Information\n----------------------### Dataset Curators\n\n\nThe organizers of the CHANGE-IT shared tasks are the curators of the original dataset. For problems or updates on the Datasets version, please contact gabriele.sarti996@URL." ]
[ -0.06538866460323334, 0.08884420990943909, -0.0031837127171456814, -0.023203903809189796, 0.03345116227865219, 0.0628366693854332, 0.1171162873506546, 0.07927800714969635, 0.010912945494055748, 0.10959453880786896, -0.03641030937433243, -0.03820570185780525, 0.09765499830245972, -0.013129975646734238, -0.028549855574965477, -0.16687867045402527, 0.0653395801782608, -0.04705791175365448, 0.007966827601194382, 0.06775791943073273, 0.09820032119750977, -0.044198621064424515, 0.036675263196229935, -0.037134576588869095, -0.05492085963487625, 0.026747219264507294, -0.0036119986325502396, 0.03445658087730408, 0.07705675065517426, 0.11480750888586044, 0.09516895562410355, 0.07302014529705048, 0.025294266641139984, -0.14127878844738007, 0.025877365842461586, 0.12143071740865707, -0.029751593247056007, 0.03316938504576683, 0.07460223883390427, -0.05738525837659836, 0.17488889396190643, -0.08214467018842697, -0.014532584697008133, 0.014937940053641796, -0.07175547629594803, -0.035800520330667496, -0.12766429781913757, 0.09494078159332275, 0.06409190595149994, 0.052007295191287994, -0.031273066997528076, 0.0516459196805954, -0.026832371950149536, 0.011859919875860214, 0.104437917470932, -0.14286619424819946, -0.02618744596838951, 0.006267087534070015, -0.020831722766160965, 0.12209320068359375, -0.049461573362350464, 0.03293634578585625, -0.002507147379219532, 0.011307254433631897, -0.129784494638443, -0.0006660954095423222, -0.005473151803016663, -0.0191667303442955, -0.11135463416576385, -0.04727935791015625, 0.2001810371875763, -0.014388782903552055, -0.07958097755908966, -0.08165830373764038, -0.07183694839477539, 0.012882445007562637, 0.006949961185455322, -0.002387414686381817, -0.014905677177011967, 0.015836110338568687, 0.09653586149215698, -0.07651963084936142, -0.11630905419588089, -0.05025021731853485, -0.1216391772031784, 0.1744263470172882, 0.028182193636894226, 0.02702341601252556, 0.047052592039108276, 0.17554405331611633, -0.06586587429046631, -0.07300808280706406, -0.05141742527484894, -0.04171165078878403, -0.09528535604476929, 0.0007768766954541206, -0.06887231022119522, -0.22040575742721558, 0.025914153084158897, 0.08325569331645966, 0.0070633296854794025, -0.044173311442136765, -0.08016084879636765, 0.07577235996723175, 0.08302003890275955, 0.14286087453365326, -0.1294223666191101, 0.002783497329801321, 0.012355470098555088, -0.005405213683843613, 0.07642559707164764, -0.014328360557556152, -0.03432154282927513, -0.05890743434429169, -0.0012978874146938324, 0.040147170424461365, 0.046663954854011536, 0.03791771084070206, -0.02359255775809288, -0.025763945654034615, 0.08986197412014008, -0.1626075655221939, -0.004660471808165312, -0.018577365204691887, 0.01087967399507761, 0.14479133486747742, 0.04161322861909866, -0.01293262280523777, -0.06381039321422577, 0.07897092401981354, -0.07442287355661392, -0.027131035923957825, -0.08436067402362823, -0.08644196391105652, 0.006588811054825783, -0.01360844261944294, -0.10205841064453125, -0.020761441439390182, -0.11875934153795242, -0.058500856161117554, 0.009886081330478191, -0.061931125819683075, 0.049954626709222794, -0.002409035339951515, 0.024485155940055847, -0.02140083536505699, 0.045480579137802124, -0.0010485458187758923, -0.03612404689192772, 0.041670605540275574, -0.07913838326931, 0.03753983601927757, -0.04376329481601715, 0.005308559164404869, -0.07567404210567474, 0.046408362686634064, -0.1751886010169983, 0.10413429141044617, -0.0548008568584919, -0.051563821732997894, -0.037303242832422256, 0.018658598884940147, -0.054249316453933716, 0.013217037543654442, -0.004803592339158058, 0.123040571808815, -0.14873503148555756, -0.04928486794233322, 0.12310349941253662, -0.1516398787498474, 0.019892394542694092, 0.10373508185148239, 0.005823156796395779, 0.10850076377391815, 0.09937573969364166, 0.03641028702259064, 0.10058432817459106, -0.08277274668216705, -0.10625731945037842, -0.02826414629817009, -0.004871841054409742, 0.16926515102386475, 0.07168211042881012, -0.04192443937063217, 0.02766883745789528, 0.03444696217775345, -0.13659679889678955, -0.05322999879717827, -0.012954076752066612, -0.005787788424640894, -0.03013012744486332, 0.025698795914649963, -0.043449632823467255, -0.0032804342918097973, -0.028846928849816322, 0.02409025840461254, -0.12777607142925262, -0.13071388006210327, 0.07553092390298843, -0.08787517249584198, 0.06061972677707672, -0.02953077107667923, 0.10154920071363449, -0.06808577477931976, 0.0044368356466293335, -0.11012470722198486, -0.10669722408056259, 0.0558791421353817, 0.0290757417678833, 0.08684290945529938, 0.08033737540245056, -0.0055938828736543655, 0.03230475261807442, -0.07606672495603561, 0.002520192414522171, -0.010275998152792454, -0.028315136209130287, -0.0011897571384906769, -0.16701067984104156, -0.024348769336938858, -0.03614312410354614, 0.21220684051513672, -0.11263567209243774, 0.01881658285856247, 0.058669060468673706, 0.11098364740610123, 0.019452350214123726, -0.007149470038712025, -0.046198323369026184, -0.03402826189994812, -0.07716824114322662, -0.0269173476845026, -0.04610861837863922, -0.002581808716058731, -0.06518872827291489, 0.09056667983531952, -0.08595957607030869, -0.10515177994966507, 0.014214429073035717, 0.06929737329483032, -0.07578588277101517, -0.037850212305784225, -0.03806007280945778, -0.013147825375199318, -0.08799789845943451, -0.10011855512857437, 0.05421000346541405, 0.05660180747509003, 0.028645100072026253, -0.090218186378479, -0.010841726325452328, -0.016292298212647438, -0.0021462440490722656, -0.05599032714962959, 0.0196912232786417, 0.09548851102590561, -0.12394584715366364, 0.0548773817718029, 0.0313287079334259, -0.031057097017765045, 0.18564695119857788, 0.03322453051805496, -0.11563398689031601, -0.011881177313625813, 0.009825458750128746, -0.010428394190967083, 0.06148006021976471, -0.0030412767082452774, 0.07993362843990326, 0.03203539550304413, 0.05312911793589592, 0.0641380250453949, -0.12116116285324097, 0.03340180218219757, -0.005281215533614159, -0.03658530116081238, -0.014121901243925095, 0.004311226308345795, -0.015151094645261765, 0.12182033807039261, -0.017022861167788506, 0.03760082274675369, -0.02833508886396885, -0.07296134531497955, -0.08939872682094574, 0.1260882467031479, -0.06437124311923981, -0.18011096119880676, -0.16946375370025635, 0.0012949565425515175, -0.08557625859975815, 0.012233084999024868, -0.011431288905441761, -0.002721758559346199, -0.07071366906166077, -0.12522882223129272, 0.10024340450763702, 0.03785693272948265, -0.049403827637434006, -0.10893307626247406, 0.022492006421089172, -0.09585577249526978, -0.0900295227766037, 0.0012464188039302826, -0.015964815393090248, -0.11903221905231476, -0.0023266514763236046, -0.09221886098384857, 0.119631826877594, 0.1646525263786316, 0.030613940209150314, -0.012385636568069458, -0.004650451242923737, 0.06549830734729767, -0.14689360558986664, 0.14645157754421234, 0.06170113384723663, 0.017477113753557205, 0.07159633934497833, 0.17286989092826843, -0.0017117462120950222, -0.00009243353269994259, 0.007679895963519812, 0.02144485153257847, -0.011445686221122742, -0.22238408029079437, -0.07344336807727814, -0.045537207275629044, -0.09118176996707916, -0.04478744789958, 0.0444319024682045, 0.002927767112851143, 0.01872170716524124, -0.11982230097055435, -0.06656429916620255, 0.09530827403068542, 0.050163283944129944, 0.06029840558767319, -0.03764205798506737, 0.06265945732593536, -0.08158042281866074, -0.008063058368861675, 0.10795935988426208, 0.059687040746212006, 0.16632243990898132, -0.04736960679292679, 0.13555866479873657, 0.037883445620536804, 0.0203800518065691, 0.039235036820173264, 0.0886128842830658, -0.0023526130244135857, 0.004314744845032692, -0.03372886776924133, -0.05272698402404785, 0.020335325971245766, 0.07514111697673798, 0.01076248288154602, -0.037835583090782166, 0.031263358891010284, -0.09334029257297516, 0.05176737159490585, 0.20833203196525574, 0.07529911398887634, -0.10577696561813354, -0.01757357269525528, 0.048557959496974945, 0.011061795055866241, -0.08054879307746887, -0.04985792934894562, 0.07959464192390442, -0.05754745751619339, 0.0580502413213253, -0.00535113550722599, 0.056290969252586365, -0.07940370589494705, -0.021979667246341705, -0.03916144743561745, 0.008435098454356194, -0.079936683177948, 0.11369696259498596, -0.07536742836236954, 0.10545426607131958, 0.019183997064828873, 0.015322098508477211, -0.05576369911432266, 0.011541078798472881, 0.007299876771867275, 0.21690788865089417, 0.07550220936536789, 0.01579888164997101, -0.05072260648012161, -0.02616983652114868, -0.04351846128702164, 0.035833053290843964, 0.10249355435371399, -0.10530310869216919, 0.0913722962141037, -0.05627122521400452, -0.012930589728057384, -0.007946401834487915, 0.06895700097084045, -0.052691347897052765, -0.21995428204536438, 0.11603326350450516, -0.04190467670559883, 0.09201575070619583, -0.058508142828941345, -0.052050232887268066, -0.01634909212589264, 0.18090490996837616, -0.19391264021396637, -0.037661321461200714, -0.10989341884851456, 0.0064597707241773605, 0.10038711875677109, -0.05177804082632065, -0.04270073398947716, -0.042796358466148376, 0.15833167731761932, -0.03649963438510895, -0.055582545697689056, 0.003662555478513241, -0.025667883455753326, -0.16967594623565674, -0.058736592531204224, 0.10174842923879623, 0.06045582890510559, 0.032600514590740204, 0.00825815461575985, 0.04299388825893402, -0.027325673028826714, -0.06525600701570511, 0.007225478067994118, 0.15162555873394012, 0.051077015697956085, 0.16256825625896454, -0.1391838937997818, -0.0640852153301239, -0.08179416507482529, -0.04729466140270233, 0.05445166677236557, 0.1669175922870636, -0.028493117541074753, 0.05966237187385559, 0.07336053252220154, -0.13425028324127197, -0.20910178124904633, -0.0353122353553772, -0.008450154215097427, 0.042745355516672134, -0.03130297362804413, -0.10911072045564651, 0.01324597466737032, 0.1371755450963974, -0.007800847291946411, 0.13855086266994476, -0.23837020993232727, -0.08062802255153656, -0.011182274669408798, -0.04187636449933052, 0.050607696175575256, -0.10397380590438843, -0.0009394168155267835, -0.08371154963970184, -0.04731235280632973, 0.05718464031815529, 0.008504253812134266, 0.06242919713258743, -0.011303630657494068, -0.017389951273798943, 0.016851555556058884, -0.02098720520734787, 0.1424996256828308, 0.028021760284900665, 0.03874672204256058, -0.026864178478717804, 0.052435219287872314, 0.18091422319412231, -0.016657665371894836, 0.07631684094667435, 0.0016408925876021385, 0.011232851073145866, -0.02535879798233509, -0.04683832824230194, -0.05413573607802391, 0.037546467036008835, -0.05212736874818802, -0.022712744772434235, -0.1114954799413681, 0.06205631047487259, 0.022305632010102272, 0.006488363724201918, 0.10254308581352234, -0.12061680853366852, 0.0642179548740387, 0.06321990489959717, 0.06264688819646835, -0.007111409679055214, -0.03600024804472923, -0.020605886355042458, 0.0017787821125239134, 0.014422144740819931, -0.011030703783035278, 0.04896838217973709, 0.09084737300872803, 0.02372506819665432, 0.12226461619138718, 0.02074667066335678, -0.1463327705860138, -0.0035350006073713303, 0.07166923582553864, -0.11903604865074158, -0.10557873547077179, -0.012599706649780273, 0.05374937132000923, -0.06600333750247955, 0.016279861330986023, 0.140199214220047, 0.0096958689391613, -0.020085671916604042, 0.014981232583522797, 0.0912986546754837, 0.011768454685807228, 0.0679820328950882, -0.013744331896305084, -0.021090075373649597, -0.029707616195082664, 0.09195446968078613, 0.10856938362121582, -0.12387479841709137, -0.04234462231397629, 0.05019175261259079, -0.06700596213340759, -0.04371434450149536, -0.00924677774310112, 0.0697588101029396, -0.08252882212400436, -0.07678039371967316, -0.06567367911338806, -0.06656966358423233, 0.0044629694893956184, 0.14607402682304382, 0.00870593823492527, 0.09437967836856842, -0.022646088153123856, -0.06820900738239288, -0.05306005850434303, 0.07562509924173355, 0.0037895222194492817, 0.07716432958841324, 0.001900241244584322, -0.03032767027616501, 0.030988134443759918, -0.019128791987895966, -0.01606794446706772, -0.05690429359674454, -0.03443275764584541, -0.012128515169024467, -0.08751897513866425, 0.005064693279564381, -0.00024920888245105743, -0.05454234778881073, -0.003319196403026581, -0.03346608206629753, -0.01620190404355526, -0.03228168934583664, -0.04946793615818024, 0.0013637631200253963, -0.06720199435949326, 0.06239791959524155, -0.12640349566936493, 0.03401274234056473, 0.07581248879432678, -0.08604931831359863, 0.09008154273033142, 0.0008059118408709764, -0.009638137184083462, 0.036083120852708817, -0.10530689358711243, 0.018262986093759537, -0.06951195001602173, 0.01819773204624653, -0.01844642497599125, -0.08820520341396332, 0.01536191813647747, 0.04690328985452652, -0.06792698055505753, 0.019473722204566002, -0.00982726737856865, -0.06161505728960037, 0.15102235972881317, -0.029504895210266113, -0.05916877090930939, -0.06817272305488586, 0.0895182192325592, 0.02581728994846344, 0.07475206255912781, 0.09244005382061005, -0.04846888780593872, 0.03991067409515381, -0.10487475991249084, -0.018597036600112915, 0.05187739059329033, -0.002595924772322178, 0.029334740713238716, -0.059105247259140015, 0.021951988339424133, 0.014852182008326054, 0.1949036717414856, 0.0299216415733099, 0.014830978587269783, 0.020103057846426964, 0.03829088807106018, -0.026843948289752007, 0.0026245079934597015, 0.04204723238945007, 0.01627451553940773, 0.039976172149181366, -0.03277594596147537, -0.05437313765287399, -0.06861420720815659, -0.03588377311825752, 0.13411009311676025, 0.034840647131204605, 0.12824763357639313, 0.0373665988445282, 0.03731721639633179, -0.0792863517999649, 0.037366267293691635, 0.05959208309650421, -0.0034670671448111534, 0.012938551604747772, -0.02902931533753872, 0.1360682100057602, 0.11956077069044113, -0.15657514333724976, 0.08773508667945862, 0.01224812027066946, -0.0470086969435215, -0.0441061295568943, -0.2347840666770935, -0.035069264471530914, -0.098674476146698, -0.00020902417600154877, -0.10453852266073227, 0.09507036209106445, 0.10538950562477112, 0.004475706722587347, -0.018805019557476044, 0.06200030818581581, -0.06703458726406097, -0.1352676898241043, 0.03786014765501022, 0.01478889025747776, 0.07459315657615662, 0.00962450634688139, 0.016694573685526848, 0.05326329916715622, 0.05425155535340309, 0.051208700984716415, 0.10646574199199677, 0.13114020228385925, -0.0045615918934345245, -0.06965114176273346, -0.046603720635175705, -0.003779708407819271, 0.008693886920809746, 0.00641293078660965, 0.07502446323633194, 0.010180343873798847, 0.001026737503707409, 0.007284328807145357, 0.15525445342063904, -0.026499493047595024, -0.0517706498503685, -0.09975728392601013, 0.2134408950805664, -0.02706546150147915, 0.03597252070903778, 0.026002027094364166, -0.15634489059448242, 0.010666449554264545, 0.09816014766693115, 0.13144883513450623, -0.003633800894021988, -0.03068319335579872, 0.013403337448835373, 0.018693210557103157, 0.04331033304333687, 0.024260204285383224, 0.013197146356105804, 0.2387414127588272, -0.053153857588768005, 0.07062160968780518, -0.035640615969896317, 0.016501808539032936, -0.02218901738524437, 0.12126588076353073, -0.04617450013756752, -0.0282093808054924, -0.07362834364175797, 0.12259207665920258, 0.03105180710554123, -0.2693639099597931, 0.020055891945958138, -0.04456530511379242, -0.07711898535490036, -0.01415232289582491, 0.06659217178821564, -0.10974197089672089, 0.05094695836305618, -0.03463054075837135, -0.058229271322488785, 0.20168596506118774, -0.009717553853988647, -0.008571792393922806, -0.06866345554590225, 0.08431476354598999, -0.12338893860578537, 0.11258304864168167, 0.0007212907075881958, 0.042289331555366516, 0.062321312725543976, -0.02073020488023758, -0.04146841913461685, 0.08056275546550751, 0.012990040704607964, -0.032079555094242096, 0.0017479441594332457, 0.13369429111480713, 0.004890665411949158, 0.09683185815811157, 0.09094985574483871, -0.0870656967163086, 0.1066453605890274, -0.10102523863315582, -0.07244566082954407, -0.09048020839691162, 0.06944938004016876, -0.08072834461927414, 0.1542961299419403, 0.13562078773975372, 0.01836712472140789, 0.051162563264369965, -0.06696544587612152, 0.01592988148331642, 0.03376045823097229, 0.18600574135780334, 0.035380735993385315, -0.0933092013001442, 0.01721811294555664, 0.012950651347637177, 0.030448067933321, -0.24562522768974304, -0.011881258338689804, 0.04034344106912613, -0.031878843903541565, 0.016464857384562492, 0.07738735526800156, 0.053202688694000244, 0.02572609670460224, -0.04999392852187157, -0.12045247852802277, 0.036469005048274994, 0.0517524853348732, -0.09581451117992401, -0.011313811875879765 ]
8281df3f5a2e765a5cc30e4feacac61e94ffdce4
# Dataset Card for Clean Italian mC4 🇮🇹 ## Table of Contents - [Dataset Card for Clean](#dataset-card-for-mc4) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Preprocessing](#preprocessing) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Original Homepage:** [HF Hub](https://huggingface.co/datasets/allenai/c4) - **Paper:** [ArXiv](https://arxiv.org/abs/1910.10683) ### Dataset Summary A thoroughly cleaned version of the Italian split of the multilingual colossal, cleaned version of Common Crawl's web crawl corpus (mC4). Based on the [Common Crawl dataset](https://commoncrawl.org). The original version was prepared by [AllenAI](https://allenai.org/), hosted at the address [https://huggingface.co/datasets/allenai/c4](https://huggingface.co/datasets/allenai/c4), with subsequent preprocessing performed by [Gabriele Sarti](https://gsarti.com) following a standard procedure for all dataset shards. ### Preprocessing The preprocessing of the dataset follows the procedure used by Yeb Havinga for training the model [`t5-base-dutch`](https://huggingface.co/flax-community/t5-base-dutch) on a portion of the cleaned Dutch split of mC4. The original code, that was adapted for Italian in this case, is available on [GitLab](https://gitlab.com/yhavinga/c4nlpreproc). In summary, the preprocessing procedure includes: - Removing documents containing words from a selection of the [Italian and English List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words). - Removing sentences containing: - Less than 3 words. - A word longer than 1000 characters. - An end symbol not matching end-of-sentence punctuation. - Strings associated to javascript code (e.g. `{`), lorem ipsum, policy information in Italian or English. - Removing documents (after sentence filtering): - Containing less than 5 sentences. - Containing less than 500 or more than 50'000 characters. - Not identified as prevalently Italian by the `LangDetect` package. Using parallel processing with 96 CPU cores on a TPUv3 via Google Cloud to perform the complete clean of all the original Italian shards of mC4 (1024 of ~220Mb train, 8 of ~24Mb validation) required roughly 10 hours due to the demanding steps of sentence tokenization and language detection. The total size of compressed `.json.gz` files is roughly halved after the procedure. ## Dataset Structure ### Data Instances An example from the dataset: ``` { 'timestamp': '2020-02-22T22:24:31Z', 'url': 'https://altreconomia.it/una-rotonda-sul-pane/', 'text': 'Per raggiungere il campo attraversiamo la striscia d’asfalto che porta verso la provinciale numero 13. Mettiamo a rischio la nostra incolumità in un territorio di auto e camion. Sullo sfondo, i profili della Grigna e del Resegone. Più vicini, quelli del solito ipermercato di provincia, e delle villette a schiera che avanzano tra le coltivazioni. È lo sprawling, l’avanzata del cemento.\\nDa questo lato dalla strada, invece, è ancora regno contadino. Almeno per ora. Torniamo a Caponago (Mb), Brianza pura, dove ha avuto i natali il progetto “Spiga e madia”. Ne parlammo su Ae nel gennaio 2009: in un territorio “spaesato”, il Comitato “verso il Distretto di economia solidale della Brianza” (Desbri) e la “Retina” dei gruppi di acquisto locali danno vita a un progetto di produzione di frumento, molitura, panificazione e distribuzione in un raggio di 20 chilometri. Si comincia da zero, nel 2007, senza alcun di finanziamento, quando una famiglia del [...]. Il giochino vale almeno 3 miliardi di euro all’anno. La misura, introdotta in via straordinaria con la finanziaria 2005, è stata prorogata anche con l’ultimo decreto “milleproroghe”.' } ``` ### Data Fields The data contains the following fields: - `url`: url of the source as a string - `text`: text content as a string - `timestamp`: timestamp of extraction as a string ### Data Splits To build mC4, the original authors used [CLD3](https://github.com/google/cld3) to identify over 100 languages. For Italian, the whole corpus of scraped text was divided in `1032` jsonl files, `1024` for training following the naming style `c4-it.tfrecord-0XXXX-of-01024.json.gz` and 8 for validation following the naming style `c4-it-validation.tfrecord-0000X-of-00008.json.gz`. The full set of preprocessed files takes roughly 215GB of disk space to download with Git LFS. For ease of use under different storage capacities, the following incremental splits are available (sizes are estimates). **Important**: The sizes in GB represent the estimated weight for : |split |train size (docs, words, download + preproc disk space)|validation size| |:-----|------------------------------------------------------:|--------------:| |tiny | 10M docs, 4B words (9 GB + 27 GB) | 12k docs | |small | 20M docs, 8B words (18 GB + 54 GB) | 24k docs | |medium| 50M docs, 20B words (47 GB + 135 GB) | 48k docs | |large | 75M docs, 30B words (71 GB + 203 GB) | 72k docs | |full | 103M docs, 41B words (109 GB + 279 GB) | 96k docs | You can load any subset like this: ```python from datasets import load_dataset mc4_it_tiny = load_dataset("gsarti/clean_mc4_it", "tiny") ``` Since splits are quite large, you may want to traverse them using the streaming mode available starting from 🤗 Datasets v1.9.0: ```python from datasets import load_dataset mc4_it_full_stream = load_dataset("gsarti/clean_mc4_it", "full", split='train', streaming=True) print(next(iter(mc4_it_full_stream))) # Prints the example presented above ``` ## Dataset Creation Refer to the original paper for more considerations regarding the choice of sources and the scraping process for creating `mC4`. ## Considerations for Using the Data ### Social Impact of Dataset With more than 200GB of cleaned Italian text and more than 41B estimated words, this is by far the largest available corpus for the Italian language. The second largest dataset available is [OSCAR](https://oscar-corpus.com/), which is only 69GB in size for its deduplicated variant. Using this corpus for training language models with adequate computational resources will allow researchers to reach parity with the performances observed for the English language. This can in turn have important repercussions for the development of commercial language technology applications for the Italian language. ### Discussion of Biases Despit the cleaning procedure aimed at removing vulgarity and profanity, it must be considered that model trained on this scraped corpus will inevitably reflect biases present in blog articles and comments on the Internet. This makes the corpus especially interesting in the context of studying data biases and how to limit their impacts. ## Additional Information ### Dataset Curators Authors at AllenAI are the original curators for the `mc4` corpus. For inquiries or requests regarding the Italian cleaned portion contained in this repository, please contact me at [[email protected]](mailto:[email protected]) ### Licensing Information AllenAI are releasing this dataset under the terms of ODC-BY. By using this, you are also bound by the Common Crawl terms of use in respect of the content contained in the dataset. ### Citation Information If you use this dataset in your work, please cite us and the original mC4 authors as: ``` @article{sarti-nissim-2022-it5, title={IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } @inproceedings{xue-etal-2021-mt5, title = "m{T}5: A Massively Multilingual Pre-trained Text-to-Text Transformer", author = "Xue, Linting and Constant, Noah and Roberts, Adam and Kale, Mihir and Al-Rfou, Rami and Siddhant, Aditya and Barua, Aditya and Raffel, Colin", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.41", doi = "10.18653/v1/2021.naacl-main.41", pages = "483--498", } ``` ### Contributions Thanks to [@dirkgr](https://github.com/dirkgr) and [@lhoestq](https://github.com/lhoestq) for adding this dataset.
gsarti/clean_mc4_it
[ "task_categories:text-generation", "task_ids:language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "source_datasets:extended", "language:it", "license:odc-by", "arxiv:1910.10683", "arxiv:2203.03759", "region:us" ]
2022-03-02T23:29:22+00:00
{"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["it"], "license": ["odc-by"], "multilinguality": ["monolingual"], "size_categories": {"tiny": ["1M<n<10M"], "small": ["10M<n<100M"], "medium": ["10M<n<100M"], "large": ["10M<n<100M"], "full": ["100M<n<1B"]}, "source_datasets": ["extended"], "task_categories": ["text-generation"], "task_ids": ["language-modeling"], "paperswithcode_id": "mc4", "pretty_name": "mC4_it"}
2022-10-23T08:01:21+00:00
[ "1910.10683", "2203.03759" ]
[ "it" ]
TAGS #task_categories-text-generation #task_ids-language-modeling #annotations_creators-no-annotation #language_creators-found #multilinguality-monolingual #source_datasets-extended #language-Italian #license-odc-by #arxiv-1910.10683 #arxiv-2203.03759 #region-us
Dataset Card for Clean Italian mC4 🇮🇹 ===================================== Table of Contents ----------------- * Dataset Card for Clean + Table of Contents + Dataset Description - Dataset Summary - Preprocessing - Languages + Dataset Structure - Data Instances - Data Fields - Data Splits + Dataset Creation + Considerations for Using the Data - Social Impact of Dataset - Discussion of Biases - Other Known Limitations + Additional Information - Dataset Curators - Licensing Information - Citation Information - Contributions Dataset Description ------------------- * Original Homepage: HF Hub * Paper: ArXiv ### Dataset Summary A thoroughly cleaned version of the Italian split of the multilingual colossal, cleaned version of Common Crawl's web crawl corpus (mC4). Based on the Common Crawl dataset. The original version was prepared by AllenAI, hosted at the address URL with subsequent preprocessing performed by Gabriele Sarti following a standard procedure for all dataset shards. ### Preprocessing The preprocessing of the dataset follows the procedure used by Yeb Havinga for training the model 't5-base-dutch' on a portion of the cleaned Dutch split of mC4. The original code, that was adapted for Italian in this case, is available on GitLab. In summary, the preprocessing procedure includes: * Removing documents containing words from a selection of the Italian and English List of Dirty Naught Obscene and Otherwise Bad Words. * Removing sentences containing: + Less than 3 words. + A word longer than 1000 characters. + An end symbol not matching end-of-sentence punctuation. + Strings associated to javascript code (e.g. '{'), lorem ipsum, policy information in Italian or English. * Removing documents (after sentence filtering): + Containing less than 5 sentences. + Containing less than 500 or more than 50'000 characters. + Not identified as prevalently Italian by the 'LangDetect' package. Using parallel processing with 96 CPU cores on a TPUv3 via Google Cloud to perform the complete clean of all the original Italian shards of mC4 (1024 of ~220Mb train, 8 of ~24Mb validation) required roughly 10 hours due to the demanding steps of sentence tokenization and language detection. The total size of compressed '.URL' files is roughly halved after the procedure. Dataset Structure ----------------- ### Data Instances An example from the dataset: ### Data Fields The data contains the following fields: * 'url': url of the source as a string * 'text': text content as a string * 'timestamp': timestamp of extraction as a string ### Data Splits To build mC4, the original authors used CLD3 to identify over 100 languages. For Italian, the whole corpus of scraped text was divided in '1032' jsonl files, '1024' for training following the naming style 'URL' and 8 for validation following the naming style 'URL'. The full set of preprocessed files takes roughly 215GB of disk space to download with Git LFS. For ease of use under different storage capacities, the following incremental splits are available (sizes are estimates). Important: The sizes in GB represent the estimated weight for : You can load any subset like this: Since splits are quite large, you may want to traverse them using the streaming mode available starting from Datasets v1.9.0: Dataset Creation ---------------- Refer to the original paper for more considerations regarding the choice of sources and the scraping process for creating 'mC4'. Considerations for Using the Data --------------------------------- ### Social Impact of Dataset With more than 200GB of cleaned Italian text and more than 41B estimated words, this is by far the largest available corpus for the Italian language. The second largest dataset available is OSCAR, which is only 69GB in size for its deduplicated variant. Using this corpus for training language models with adequate computational resources will allow researchers to reach parity with the performances observed for the English language. This can in turn have important repercussions for the development of commercial language technology applications for the Italian language. ### Discussion of Biases Despit the cleaning procedure aimed at removing vulgarity and profanity, it must be considered that model trained on this scraped corpus will inevitably reflect biases present in blog articles and comments on the Internet. This makes the corpus especially interesting in the context of studying data biases and how to limit their impacts. Additional Information ---------------------- ### Dataset Curators Authors at AllenAI are the original curators for the 'mc4' corpus. For inquiries or requests regarding the Italian cleaned portion contained in this repository, please contact me at gabriele.sarti996@URL ### Licensing Information AllenAI are releasing this dataset under the terms of ODC-BY. By using this, you are also bound by the Common Crawl terms of use in respect of the content contained in the dataset. If you use this dataset in your work, please cite us and the original mC4 authors as: ### Contributions Thanks to @dirkgr and @lhoestq for adding this dataset.
[ "### Dataset Summary\n\n\nA thoroughly cleaned version of the Italian split of the multilingual colossal, cleaned version of Common Crawl's web crawl corpus (mC4). Based on the Common Crawl dataset. The original version was prepared by AllenAI, hosted at the address URL with subsequent preprocessing performed by Gabriele Sarti following a standard procedure for all dataset shards.", "### Preprocessing\n\n\nThe preprocessing of the dataset follows the procedure used by Yeb Havinga for training the model 't5-base-dutch' on a portion of the cleaned Dutch split of mC4. The original code, that was adapted for Italian in this case, is available on GitLab. In summary, the preprocessing procedure includes:\n\n\n* Removing documents containing words from a selection of the Italian and English List of Dirty Naught Obscene and Otherwise Bad Words.\n* Removing sentences containing:\n\n\n\t+ Less than 3 words.\n\t+ A word longer than 1000 characters.\n\t+ An end symbol not matching end-of-sentence punctuation.\n\t+ Strings associated to javascript code (e.g. '{'), lorem ipsum, policy information in Italian or English.\n* Removing documents (after sentence filtering):\n\n\n\t+ Containing less than 5 sentences.\n\t+ Containing less than 500 or more than 50'000 characters.\n\t+ Not identified as prevalently Italian by the 'LangDetect' package.\n\n\nUsing parallel processing with 96 CPU cores on a TPUv3 via Google Cloud to perform the complete clean of all the original Italian shards of mC4 (1024 of ~220Mb train, 8 of ~24Mb validation) required roughly 10 hours due to the demanding steps of sentence tokenization and language detection. The total size of compressed '.URL' files is roughly halved after the procedure.\n\n\nDataset Structure\n-----------------", "### Data Instances\n\n\nAn example from the dataset:", "### Data Fields\n\n\nThe data contains the following fields:\n\n\n* 'url': url of the source as a string\n* 'text': text content as a string\n* 'timestamp': timestamp of extraction as a string", "### Data Splits\n\n\nTo build mC4, the original authors used CLD3 to identify over 100 languages. For Italian, the whole corpus of scraped text was divided in '1032' jsonl files, '1024' for training following the naming style 'URL' and 8 for validation following the naming style 'URL'. The full set of preprocessed files takes roughly 215GB of disk space to download with Git LFS.\n\n\nFor ease of use under different storage capacities, the following incremental splits are available (sizes are estimates). Important: The sizes in GB represent the estimated weight for :\n\n\n\nYou can load any subset like this:\n\n\nSince splits are quite large, you may want to traverse them using the streaming mode available starting from Datasets v1.9.0:\n\n\nDataset Creation\n----------------\n\n\nRefer to the original paper for more considerations regarding the choice of sources and the scraping process for creating 'mC4'.\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset\n\n\nWith more than 200GB of cleaned Italian text and more than 41B estimated words, this is by far the largest available corpus for the Italian language. The second largest dataset available is OSCAR, which is only 69GB in size for its deduplicated variant. Using this corpus for training language models with adequate computational resources will allow researchers to reach parity with the performances observed for the English language. This can in turn have important repercussions for the development of commercial language technology applications for the Italian language.", "### Discussion of Biases\n\n\nDespit the cleaning procedure aimed at removing vulgarity and profanity, it must be considered that model trained on this scraped corpus will inevitably reflect biases present in blog articles and comments on the Internet. This makes the corpus especially interesting in the context of studying data biases and how to limit their impacts.\n\n\nAdditional Information\n----------------------", "### Dataset Curators\n\n\nAuthors at AllenAI are the original curators for the 'mc4' corpus. For inquiries or requests regarding the Italian cleaned portion contained in this repository, please contact me at gabriele.sarti996@URL", "### Licensing Information\n\n\nAllenAI are releasing this dataset under the terms of ODC-BY. By using this, you are also bound by the Common Crawl terms of use in respect of the content contained in the dataset.\n\n\nIf you use this dataset in your work, please cite us and the original mC4 authors as:", "### Contributions\n\n\nThanks to @dirkgr and @lhoestq for adding this dataset." ]
[ "TAGS\n#task_categories-text-generation #task_ids-language-modeling #annotations_creators-no-annotation #language_creators-found #multilinguality-monolingual #source_datasets-extended #language-Italian #license-odc-by #arxiv-1910.10683 #arxiv-2203.03759 #region-us \n", "### Dataset Summary\n\n\nA thoroughly cleaned version of the Italian split of the multilingual colossal, cleaned version of Common Crawl's web crawl corpus (mC4). Based on the Common Crawl dataset. The original version was prepared by AllenAI, hosted at the address URL with subsequent preprocessing performed by Gabriele Sarti following a standard procedure for all dataset shards.", "### Preprocessing\n\n\nThe preprocessing of the dataset follows the procedure used by Yeb Havinga for training the model 't5-base-dutch' on a portion of the cleaned Dutch split of mC4. The original code, that was adapted for Italian in this case, is available on GitLab. In summary, the preprocessing procedure includes:\n\n\n* Removing documents containing words from a selection of the Italian and English List of Dirty Naught Obscene and Otherwise Bad Words.\n* Removing sentences containing:\n\n\n\t+ Less than 3 words.\n\t+ A word longer than 1000 characters.\n\t+ An end symbol not matching end-of-sentence punctuation.\n\t+ Strings associated to javascript code (e.g. '{'), lorem ipsum, policy information in Italian or English.\n* Removing documents (after sentence filtering):\n\n\n\t+ Containing less than 5 sentences.\n\t+ Containing less than 500 or more than 50'000 characters.\n\t+ Not identified as prevalently Italian by the 'LangDetect' package.\n\n\nUsing parallel processing with 96 CPU cores on a TPUv3 via Google Cloud to perform the complete clean of all the original Italian shards of mC4 (1024 of ~220Mb train, 8 of ~24Mb validation) required roughly 10 hours due to the demanding steps of sentence tokenization and language detection. The total size of compressed '.URL' files is roughly halved after the procedure.\n\n\nDataset Structure\n-----------------", "### Data Instances\n\n\nAn example from the dataset:", "### Data Fields\n\n\nThe data contains the following fields:\n\n\n* 'url': url of the source as a string\n* 'text': text content as a string\n* 'timestamp': timestamp of extraction as a string", "### Data Splits\n\n\nTo build mC4, the original authors used CLD3 to identify over 100 languages. For Italian, the whole corpus of scraped text was divided in '1032' jsonl files, '1024' for training following the naming style 'URL' and 8 for validation following the naming style 'URL'. The full set of preprocessed files takes roughly 215GB of disk space to download with Git LFS.\n\n\nFor ease of use under different storage capacities, the following incremental splits are available (sizes are estimates). Important: The sizes in GB represent the estimated weight for :\n\n\n\nYou can load any subset like this:\n\n\nSince splits are quite large, you may want to traverse them using the streaming mode available starting from Datasets v1.9.0:\n\n\nDataset Creation\n----------------\n\n\nRefer to the original paper for more considerations regarding the choice of sources and the scraping process for creating 'mC4'.\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset\n\n\nWith more than 200GB of cleaned Italian text and more than 41B estimated words, this is by far the largest available corpus for the Italian language. The second largest dataset available is OSCAR, which is only 69GB in size for its deduplicated variant. Using this corpus for training language models with adequate computational resources will allow researchers to reach parity with the performances observed for the English language. This can in turn have important repercussions for the development of commercial language technology applications for the Italian language.", "### Discussion of Biases\n\n\nDespit the cleaning procedure aimed at removing vulgarity and profanity, it must be considered that model trained on this scraped corpus will inevitably reflect biases present in blog articles and comments on the Internet. This makes the corpus especially interesting in the context of studying data biases and how to limit their impacts.\n\n\nAdditional Information\n----------------------", "### Dataset Curators\n\n\nAuthors at AllenAI are the original curators for the 'mc4' corpus. For inquiries or requests regarding the Italian cleaned portion contained in this repository, please contact me at gabriele.sarti996@URL", "### Licensing Information\n\n\nAllenAI are releasing this dataset under the terms of ODC-BY. By using this, you are also bound by the Common Crawl terms of use in respect of the content contained in the dataset.\n\n\nIf you use this dataset in your work, please cite us and the original mC4 authors as:", "### Contributions\n\n\nThanks to @dirkgr and @lhoestq for adding this dataset." ]
[ 97, 90, 331, 13, 53, 220, 119, 87, 59, 76, 22 ]
[ "passage: TAGS\n#task_categories-text-generation #task_ids-language-modeling #annotations_creators-no-annotation #language_creators-found #multilinguality-monolingual #source_datasets-extended #language-Italian #license-odc-by #arxiv-1910.10683 #arxiv-2203.03759 #region-us \n### Dataset Summary\n\n\nA thoroughly cleaned version of the Italian split of the multilingual colossal, cleaned version of Common Crawl's web crawl corpus (mC4). Based on the Common Crawl dataset. The original version was prepared by AllenAI, hosted at the address URL with subsequent preprocessing performed by Gabriele Sarti following a standard procedure for all dataset shards.", "passage: ### Preprocessing\n\n\nThe preprocessing of the dataset follows the procedure used by Yeb Havinga for training the model 't5-base-dutch' on a portion of the cleaned Dutch split of mC4. The original code, that was adapted for Italian in this case, is available on GitLab. In summary, the preprocessing procedure includes:\n\n\n* Removing documents containing words from a selection of the Italian and English List of Dirty Naught Obscene and Otherwise Bad Words.\n* Removing sentences containing:\n\n\n\t+ Less than 3 words.\n\t+ A word longer than 1000 characters.\n\t+ An end symbol not matching end-of-sentence punctuation.\n\t+ Strings associated to javascript code (e.g. '{'), lorem ipsum, policy information in Italian or English.\n* Removing documents (after sentence filtering):\n\n\n\t+ Containing less than 5 sentences.\n\t+ Containing less than 500 or more than 50'000 characters.\n\t+ Not identified as prevalently Italian by the 'LangDetect' package.\n\n\nUsing parallel processing with 96 CPU cores on a TPUv3 via Google Cloud to perform the complete clean of all the original Italian shards of mC4 (1024 of ~220Mb train, 8 of ~24Mb validation) required roughly 10 hours due to the demanding steps of sentence tokenization and language detection. The total size of compressed '.URL' files is roughly halved after the procedure.\n\n\nDataset Structure\n-----------------### Data Instances\n\n\nAn example from the dataset:### Data Fields\n\n\nThe data contains the following fields:\n\n\n* 'url': url of the source as a string\n* 'text': text content as a string\n* 'timestamp': timestamp of extraction as a string### Data Splits\n\n\nTo build mC4, the original authors used CLD3 to identify over 100 languages. For Italian, the whole corpus of scraped text was divided in '1032' jsonl files, '1024' for training following the naming style 'URL' and 8 for validation following the naming style 'URL'. The full set of preprocessed files takes roughly 215GB of disk space to download with Git LFS.\n\n\nFor ease of use under different storage capacities, the following incremental splits are available (sizes are estimates). Important: The sizes in GB represent the estimated weight for :\n\n\n\nYou can load any subset like this:\n\n\nSince splits are quite large, you may want to traverse them using the streaming mode available starting from Datasets v1.9.0:\n\n\nDataset Creation\n----------------\n\n\nRefer to the original paper for more considerations regarding the choice of sources and the scraping process for creating 'mC4'.\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset\n\n\nWith more than 200GB of cleaned Italian text and more than 41B estimated words, this is by far the largest available corpus for the Italian language. The second largest dataset available is OSCAR, which is only 69GB in size for its deduplicated variant. Using this corpus for training language models with adequate computational resources will allow researchers to reach parity with the performances observed for the English language. This can in turn have important repercussions for the development of commercial language technology applications for the Italian language.### Discussion of Biases\n\n\nDespit the cleaning procedure aimed at removing vulgarity and profanity, it must be considered that model trained on this scraped corpus will inevitably reflect biases present in blog articles and comments on the Internet. This makes the corpus especially interesting in the context of studying data biases and how to limit their impacts.\n\n\nAdditional Information\n----------------------" ]
[ -0.07342391461133957, 0.14106759428977966, -0.002296244725584984, 0.05681093782186508, 0.05769982933998108, 0.04828932136297226, 0.04641299322247505, 0.08750499784946442, -0.018665697425603867, 0.09772170335054398, 0.02021026983857155, -0.06841655820608139, 0.07459866255521774, 0.05764366686344147, 0.0018423255532979965, -0.14508432149887085, 0.04809245467185974, -0.05659087747335434, 0.08060940355062485, 0.07411345839500427, 0.08380912989377975, -0.03318771347403526, 0.06416602432727814, -0.06800161302089691, -0.1109030544757843, 0.05654775723814964, -0.037050407379865646, -0.01738636940717697, 0.04552724212408066, 0.06883180141448975, 0.06271316111087799, -0.0027547068893909454, 0.06758812069892883, -0.06439847499132156, 0.010068378411233425, 0.05795704573392868, 0.009995791129767895, -0.012679869309067726, 0.0722033828496933, 0.02733328565955162, 0.09641765058040619, -0.024004831910133362, -0.02526140958070755, 0.015411164611577988, -0.06088366359472275, -0.0006716353818774223, -0.08104859292507172, 0.02483014017343521, 0.020556826144456863, 0.0908338725566864, -0.017980121076107025, 0.05551102012395859, -0.04528916999697685, 0.06034790351986885, 0.04712771251797676, -0.16969025135040283, -0.07471431791782379, 0.03201811760663986, 0.053944095969200134, 0.12744256854057312, -0.006462854333221912, 0.019948557019233704, 0.005075532011687756, 0.005362005904316902, -0.15070828795433044, -0.07311247289180756, -0.13625484704971313, -0.06041213124990463, -0.08889715373516083, -0.012186541222035885, 0.2536567151546478, -0.01842130720615387, -0.08136094361543655, -0.027303345501422882, -0.07947030663490295, 0.0049502067267894745, -0.01982499286532402, 0.008417043834924698, -0.0023701563477516174, 0.04068329185247421, 0.09734690934419632, -0.07822223007678986, -0.08677098155021667, -0.06387214362621307, -0.043685320764780045, 0.19235099852085114, 0.04688667133450508, -0.0009792824275791645, 0.024783924221992493, 0.05992157384753227, -0.0446857325732708, -0.047547273337841034, -0.01885732263326645, -0.0070335473865270615, -0.04676680266857147, 0.018536046147346497, -0.03989361226558685, -0.13145732879638672, 0.04303766041994095, 0.09975744038820267, 0.07485902309417725, 0.046306315809488297, -0.05240077152848244, 0.03346847742795944, 0.03069411963224411, 0.08478903025388718, -0.07471064478158951, -0.08654490113258362, 0.04575572907924652, -0.0137332733720541, 0.0664360374212265, -0.026483900845050812, -0.08751323819160461, -0.03603198379278183, -0.013820121064782143, 0.06593219935894012, 0.05003654956817627, 0.02710535377264023, -0.031300414353609085, -0.04961790889501572, 0.0848466232419014, -0.14842407405376434, 0.01630776934325695, 0.005419070832431316, -0.06274515390396118, -0.01271466352045536, -0.014166146516799927, -0.0022074058651924133, -0.12980177998542786, 0.013526471331715584, -0.06702966243028641, -0.035368841141462326, -0.07714185863733292, -0.10323440283536911, 0.028056014329195023, -0.10050458461046219, -0.041066840291023254, -0.0906798392534256, -0.1553623080253601, -0.08095981180667877, 0.03359422832727432, -0.03464478999376297, 0.010203943587839603, -0.026590028777718544, 0.034938447177410126, -0.04282812774181366, -0.013464751653373241, 0.03369349613785744, -0.04437076300382614, 0.032732341438531876, -0.09803319722414017, 0.00559404818341136, -0.13753153383731842, 0.02764330431818962, -0.13685455918312073, -0.004446359816938639, -0.10041466355323792, 0.0538390651345253, -0.03730645030736923, -0.004424508661031723, -0.05809776484966278, 0.01174861378967762, -0.1000475063920021, 0.01322060264647007, 0.05420666188001633, 0.134984090924263, -0.17198790609836578, 0.026949800550937653, 0.077384352684021, -0.10292745381593704, -0.016721151769161224, 0.16318641602993011, 0.030266111716628075, 0.1107301414012909, 0.06685754656791687, 0.23647281527519226, 0.04217331483960152, -0.028368132188916206, -0.04924069344997406, 0.009272057563066483, 0.01979939639568329, 0.022721268236637115, 0.061036646366119385, -0.04510588198900223, 0.07158369570970535, 0.01790964975953102, -0.013142064213752747, -0.03917340189218521, 0.010160613805055618, -0.039642397314310074, -0.009658381342887878, -0.0371832475066185, -0.12706659734249115, 0.03135070949792862, 0.0014862101525068283, -0.03670965135097504, -0.06779101490974426, -0.20436805486679077, 0.09239128977060318, -0.07783378660678864, 0.054277338087558746, -0.04621468111872673, 0.054902128875255585, 0.0025715921074151993, 0.03279094025492668, -0.11986066401004791, -0.1135881245136261, 0.09509646147489548, 0.012005288153886795, 0.04497930407524109, -0.031333208084106445, -0.013463793322443962, 0.015953442081809044, -0.028057493269443512, 0.025903109461069107, 0.007298580836504698, -0.05724753066897392, -0.0711076557636261, -0.08843667060136795, -0.0489625409245491, -0.013560649938881397, 0.08083107322454453, -0.074165940284729, 0.01588444598019123, 0.04513068124651909, 0.07387569546699524, -0.023511579260230064, -0.04890262335538864, -0.00048526935279369354, 0.03385539725422859, -0.051271650940179825, -0.05010986328125, 0.014593347907066345, 0.029995374381542206, 0.02475765347480774, 0.06864988803863525, -0.10652187466621399, -0.04535909742116928, 0.05667125806212425, 0.04224419593811035, -0.016698280349373817, 0.053015224635601044, 0.0018917471170425415, -0.06125492975115776, -0.02748662419617176, -0.049535755068063736, 0.10818259418010712, 0.010077172890305519, 0.04942440241575241, -0.09552697092294693, 0.04250933974981308, -0.01574328914284706, 0.025271587073802948, -0.061025962233543396, 0.07810060679912567, 0.0768858790397644, -0.1317024827003479, 0.06299902498722076, 0.005916891619563103, -0.039936717599630356, 0.15796294808387756, 0.03533134609460831, -0.0703248456120491, 0.034992847591638565, 0.07395660877227783, -0.016589699313044548, 0.044420454651117325, -0.13325637578964233, -0.010878605768084526, 0.015072635374963284, 0.032973065972328186, 0.08121851831674576, -0.07677221298217773, 0.023822076618671417, -0.02384057641029358, -0.023373670876026154, -0.01826704479753971, -0.031205743551254272, -0.061346687376499176, 0.07307560741901398, 0.00846668891608715, -0.041517116129398346, 0.004325386136770248, -0.04515587538480759, -0.05863969773054123, 0.11775951087474823, -0.0842837393283844, -0.19448202848434448, -0.14132462441921234, 0.009727047756314278, -0.11702051013708115, 0.033903125673532486, 0.013843178749084473, 0.014646035619080067, -0.02820589765906334, -0.09432169795036316, 0.051955197006464005, -0.07749204337596893, -0.06206762045621872, -0.06302280724048615, 0.003590290667489171, -0.08121515810489655, -0.09175151586532593, 0.021213948726654053, -0.03374220058321953, -0.06525269895792007, -0.011908593587577343, -0.1288110613822937, 0.18575133383274078, 0.11034958064556122, -0.031073568388819695, -0.011432982981204987, 0.007717425003647804, 0.03759610652923584, -0.08245183527469635, 0.04893874377012253, 0.15197435021400452, -0.017735345289111137, 0.010591506958007812, 0.08268044888973236, -0.014613648876547813, -0.07184870541095734, 0.027657534927129745, 0.024520136415958405, -0.06422663480043411, -0.1830056607723236, -0.08232708275318146, -0.06791618466377258, 0.04193669930100441, 0.038882337510585785, 0.04809797927737236, -0.08047877252101898, 0.04892474040389061, -0.07714052498340607, 0.022047171369194984, 0.05845389515161514, 0.04820037633180618, 0.04329267144203186, -0.01022903062403202, 0.059898145496845245, -0.03366237133741379, 0.001466643065214157, 0.11594133824110031, 0.09097196161746979, 0.16442367434501648, -0.018383868038654327, 0.19478586316108704, -0.03026609495282173, 0.08509205281734467, 0.010864447802305222, 0.09724563360214233, 0.03318135067820549, 0.03990311548113823, -0.02881259098649025, -0.04781389981508255, -0.06356021761894226, 0.053992271423339844, 0.026499053463339806, -0.09103121608495712, 0.03209761530160904, 0.028895346447825432, 0.04574571177363396, 0.2714543342590332, 0.006380436476320028, -0.12076177448034286, -0.01706567406654358, 0.01302153617143631, 0.014654753729701042, -0.1355796754360199, 0.051838502287864685, 0.12302173674106598, -0.016311317682266235, -0.0085223987698555, 0.011660575866699219, 0.10135119408369064, -0.1044498160481453, -0.01845582202076912, -0.008674930781126022, 0.018620565533638, -0.016862651333212852, 0.09327386319637299, -0.10872440785169601, 0.0854819193482399, 0.04123256355524063, 0.08224869519472122, -0.08157707750797272, 0.0075045377016067505, -0.006670508533716202, 0.08859212696552277, 0.17264871299266815, -0.004937151446938515, -0.05155043303966522, 0.0031636450439691544, -0.12988297641277313, 0.039940543472766876, 0.14558380842208862, -0.04859814792871475, 0.04090447723865509, 0.0019444047939032316, 0.03806724771857262, -0.014537348411977291, 0.05143940821290016, -0.10380646586418152, -0.1412774920463562, 0.07670946419239044, 0.10405927896499634, -0.02462155558168888, -0.011363230645656586, -0.01701904833316803, 0.04677801579236984, 0.25852853059768677, -0.06522003561258316, -0.04530411958694458, -0.10132641345262527, -0.013482126407325268, 0.0975920706987381, -0.023647602647542953, -0.024781839922070503, -0.0429040864109993, 0.016136987134814262, -0.046047963201999664, -0.0649312362074852, 0.1071576476097107, -0.0678190141916275, -0.04422894865274429, -0.048438772559165955, 0.0745665431022644, 0.031592316925525665, 0.011277851648628712, -0.012356255203485489, 0.03646215423941612, -0.03688044846057892, -0.07811324298381805, -0.038952745497226715, 0.004627554211765528, 0.03507647290825844, 0.12947088479995728, -0.1704259216785431, -0.06371597945690155, -0.021410299465060234, -0.057282768189907074, 0.09653288125991821, 0.0948311910033226, -0.024058673530817032, -0.0029907994903624058, 0.18132200837135315, -0.1131795272231102, -0.2926769554615021, 0.03224647790193558, -0.01150919683277607, 0.05286930501461029, -0.1074984222650528, -0.18977296352386475, 0.04209229350090027, 0.16700705885887146, 0.009876038879156113, 0.12362190335988998, -0.21547681093215942, -0.07377685606479645, 0.024316372349858284, 0.006926930509507656, 0.14820463955402374, -0.10597438365221024, -0.012460250407457352, -0.05163424462080002, -0.06261629611253738, -0.007948950864374638, -0.019004322588443756, 0.08382724225521088, 0.025259261950850487, -0.06010948866605759, 0.019347213208675385, -0.030382301658391953, 0.10445956885814667, 0.08529084920883179, 0.05328121781349182, -0.019351262599229813, -0.006129801273345947, 0.10633247345685959, 0.034348148852586746, 0.13399387896060944, 0.03291101008653641, -0.0049605537205934525, -0.05717811360955238, -0.045169029384851456, -0.05307445675134659, 0.05827036499977112, -0.028802672401070595, -0.04100143536925316, -0.024709638208150864, 0.05769374966621399, -0.00020512379705905914, 0.05511832982301712, 0.14769600331783295, -0.08331657946109772, -0.028060704469680786, 0.13286492228507996, 0.07021849602460861, -0.0629199743270874, 0.040432002395391464, 0.01063922606408596, -0.009555970318615437, 0.05976758524775505, 0.016594484448432922, 0.025149289518594742, 0.10465411841869354, 0.006712808273732662, 0.04197992756962776, 0.025777360424399376, -0.07603666931390762, -0.015688037499785423, 0.03849569708108902, -0.1336369812488556, -0.1027853786945343, -0.015311377122998238, -0.07135143876075745, -0.05474727228283882, 0.020688965916633606, 0.1425931751728058, -0.018658651039004326, -0.018171722069382668, -0.03193805739283562, 0.06898374110460281, 0.004824277013540268, 0.14603635668754578, 0.0025197789072990417, -0.026185238733887672, -0.07561421394348145, 0.18579041957855225, 0.1276126205921173, -0.14538773894309998, -0.0027815918438136578, 0.13715860247612, -0.09438806772232056, -0.07252679765224457, -0.0953933596611023, 0.018204905092716217, -0.01915539801120758, -0.09332945942878723, -0.09363614767789841, -0.04323618859052658, 0.01842975616455078, 0.019806817173957825, 0.03049556165933609, 0.05401548743247986, -0.025441089645028114, -0.039620112627744675, -0.0918169692158699, 0.04884599149227142, 0.030169345438480377, 0.044880226254463196, -0.00602689478546381, 0.035490814596414566, -0.005794998724013567, -0.022081715986132622, -0.015269878320395947, -0.005765512585639954, -0.0494031086564064, 0.006914220750331879, -0.033811744302511215, -0.022629519924521446, -0.023009611293673515, -0.0039792777970433235, -0.022980693727731705, -0.01547517441213131, -0.07606388628482819, 0.023760540410876274, -0.05904587730765343, -0.04574429616332054, -0.07381231337785721, 0.023461394011974335, -0.053939513862133026, -0.009249025024473667, -0.008801499381661415, -0.049230001866817474, 0.07696256041526794, 0.07693253457546234, -0.02816285565495491, -0.008938519284129143, -0.031555406749248505, 0.032469719648361206, -0.030245445668697357, 0.0579056553542614, -0.021941615268588066, -0.0036242189817130566, 0.012677868828177452, 0.06956473737955093, -0.03125918284058571, 0.014024492353200912, 0.10920204967260361, -0.08686205744743347, 0.06882501393556595, -0.05276336148381233, -0.053484171628952026, -0.016686614602804184, 0.06571653485298157, 0.05002615600824356, 0.10622546076774597, 0.03584504872560501, 0.00022547587286680937, 0.014917456544935703, -0.04133441299200058, 0.007050514221191406, 0.033398937433958054, -0.06605906039476395, -0.01635492779314518, -0.0343882218003273, 0.0492294542491436, 0.00923119019716978, 0.11852733790874481, 0.06551890075206757, 0.02425210550427437, 0.019758354872465134, 0.046945538371801376, -0.00252396147698164, 0.004182729870080948, 0.03225865960121155, 0.012530658394098282, -0.016143715009093285, 0.043667249381542206, -0.003516146447509527, 0.006507533602416515, 0.12713374197483063, 0.10102127492427826, 0.11897110939025879, 0.16458387672901154, 0.1131979450583458, -0.0076990071684122086, -0.10382527112960815, -0.055737175047397614, 0.10380687564611435, 0.006903607398271561, 0.08518478274345398, -0.0653802901506424, 0.022070500999689102, 0.07405688613653183, -0.07960714399814606, 0.0144920339807868, -0.0104072205722332, -0.07987329363822937, -0.07695236057043076, -0.12261579930782318, -0.055052414536476135, -0.008721556514501572, -0.02621869370341301, -0.10094691812992096, 0.04175728186964989, 0.08709728717803955, 0.013567229732871056, -0.018753532320261, 0.14558333158493042, -0.171345055103302, -0.11327216029167175, 0.10640814900398254, -0.015037976205348969, 0.07552269101142883, 0.006034666672348976, -0.06091686338186264, 0.017253510653972626, 0.00491664744913578, 0.06487651914358139, 0.043671865016222, 0.10602083057165146, 0.019559534266591072, -0.050420377403497696, -0.010542813688516617, -0.06774408370256424, 0.005450262688100338, 0.05491447448730469, 0.12549859285354614, 0.02883688360452652, -0.05531284958124161, 0.04473114758729935, 0.11405180394649506, -0.0048887114971876144, 0.0012474162504076958, -0.08022823929786682, 0.08750457316637039, 0.018390916287899017, 0.025929395109415054, -0.01060125045478344, -0.09450890123844147, 0.00963449478149414, 0.14958806335926056, 0.13235630095005035, -0.06537685543298721, -0.03973650932312012, 0.04618706554174423, 0.010684553533792496, 0.008877821266651154, 0.059507645666599274, 0.0392141230404377, 0.14116229116916656, -0.030444268137216568, -0.006350018084049225, -0.03062317706644535, 0.008396237157285213, -0.10888829827308655, 0.09926795959472656, -0.022558333352208138, 0.005634398199617863, -0.07925859093666077, 0.061721742153167725, 0.018566643819212914, -0.1429601013660431, 0.025552047416567802, -0.11042098701000214, -0.09294329583644867, 0.006830309517681599, -0.008379124104976654, -0.021301453933119774, 0.09029413759708405, -0.03983842581510544, 0.0018082000315189362, 0.057489071041345596, 0.008378326892852783, -0.10075656324625015, -0.13613063097000122, 0.04686051607131958, -0.05158184468746185, 0.17341968417167664, -0.022195417433977127, 0.06574702262878418, 0.046464644372463226, 0.010074649937450886, -0.07803378999233246, 0.05647680163383484, 0.018812336027622223, 0.02194191887974739, 0.02742145210504532, 0.04175172746181488, -0.07699418067932129, 0.17510251700878143, 0.04521387815475464, -0.0037534951698035, 0.04968039691448212, 0.017313487827777863, -0.008279470726847649, -0.08955933153629303, 0.02356407791376114, -0.13966894149780273, 0.1537225842475891, 0.1384809911251068, -0.0010005463846027851, -0.02151176892220974, -0.048288725316524506, 0.018328335136175156, 0.007876528427004814, 0.15498629212379456, 0.006654243916273117, -0.1740393340587616, -0.01075802557170391, -0.07782364636659622, 0.05659325048327446, -0.1436803936958313, 0.016833536326885223, -0.022263921797275543, -0.011331360787153244, -0.03887338563799858, 0.057927895337343216, 0.03434562683105469, -0.043147340416908264, -0.0436956062912941, -0.16826844215393066, 0.06715545058250427, 0.032571300864219666, -0.06559421122074127, -0.09293915331363678 ]
bc58ae43b22607b3e1e2bf3ae1bc5cb053495abb
# Dataset Card for Flores 101 ## Table of Contents - [Dataset Card for Flores 101](#dataset-card-for-flores-101) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Home:** [WMT](http://www.statmt.org/wmt21/large-scale-multilingual-translation-task.html) - **Repository:** [Github](https://github.com/facebookresearch/flores) - **Blogpost:** [FAIR](https://ai.facebook.com/blog/the-flores-101-data-set-helping-build-better-translation-systems-around-the-world) - **Paper:** [Arxiv](https://arxiv.org/abs/2106.03193) - **Point of Contact:** [[email protected]](mailto:[email protected]) - **Leaderboard** [Dynabench](https://dynabench.org/flores/Flores%20MT%20Evaluation%20(FULL)) ### Dataset Summary FLORES is a benchmark dataset for machine translation between English and low-resource languages. Abstract from the original paper: > One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond. **Disclaimer**: *The Flores-101 dataset is hosted by the Facebook and licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/). ### Supported Tasks and Leaderboards #### Multilingual Machine Translation Refer to the [Dynabench leaderboard](https://dynabench.org/flores/Flores%20MT%20Evaluation%20(FULL)) for additional details on model evaluation on FLORES-101 in the context of the WMT2021 shared task on [Large-Scale Multilingual Machine Translation](http://www.statmt.org/wmt21/large-scale-multilingual-translation-task.html). ### Languages The dataset contains parallel sentences for 101 languages, as mentioned in the original [Github](https://github.com/facebookresearch/flores/blob/master/README.md) page for the project. Languages are identified with the ISO 639-3 code (e.g. `eng`, `fra`, `rus`) as in the original dataset. **New:** Use the configuration `all` to access the full set of parallel sentences for all the available languages in a single command. ## Dataset Structure ### Data Instances A sample from the `dev` split for the Russian language (`rus` config) is provided below. All configurations have the same structure, and all sentences are aligned across configurations and splits. ```python { 'id': 1, 'sentence': 'В понедельник ученые из Медицинской школы Стэнфордского университета объявили об изобретении нового диагностического инструмента, который может сортировать клетки по их типу; это маленький чип, который можно напечатать, используя стандартный струйный принтер примерно за 1 цент США.', 'URL': 'https://en.wikinews.org/wiki/Scientists_say_new_medical_diagnostic_chip_can_sort_cells_anywhere_with_an_inkjet', 'domain': 'wikinews', 'topic': 'health', 'has_image': 0, 'has_hyperlink': 0 } ``` The text is provided as-in the original dataset, without further preprocessing or tokenization. ### Data Fields - `id`: Row number for the data entry, starting at 1. - `sentence`: The full sentence in the specific language. - `URL`: The URL for the English article from which the sentence was extracted. - `domain`: The domain of the sentence. - `topic`: The topic of the sentence. - `has_image`: Whether the original article contains an image. - `has_hyperlink`: Whether the sentence contains a hyperlink. ### Data Splits | config| `dev`| `devtest`| |-----------------:|-----:|---------:| |all configurations| 997| 1012:| ### Dataset Creation Please refer to the original article [The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation](https://arxiv.org/abs/2106.03193) for additional information on dataset creation. ## Additional Information ### Dataset Curators The original authors of FLORES-101 are the curators of the original dataset. For problems or updates on this 🤗 Datasets version, please contact [[email protected]](mailto:[email protected]). ### Licensing Information Licensed with Creative Commons Attribution Share Alike 4.0. License available [here](https://creativecommons.org/licenses/by-sa/4.0/). ### Citation Information Please cite the authors if you use these corpora in your work: ```bibtex @inproceedings{flores101, title={The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation}, author={Goyal, Naman and Gao, Cynthia and Chaudhary, Vishrav and Chen, Peng-Jen and Wenzek, Guillaume and Ju, Da and Krishnan, Sanjana and Ranzato, Marc'Aurelio and Guzm\'{a}n, Francisco and Fan, Angela}, journal={arXiv preprint arXiv:2106.03193}, year={2021} } ```
gsarti/flores_101
[ "task_categories:text-generation", "task_categories:translation", "annotations_creators:found", "language_creators:expert-generated", "multilinguality:multilingual", "multilinguality:translation", "size_categories:unknown", "source_datasets:extended|flores", "language:af", "language:am", "language:ar", "language:hy", "language:as", "language:ast", "language:az", "language:be", "language:bn", "language:bs", "language:bg", "language:my", "language:ca", "language:ceb", "language:zho", "language:hr", "language:cs", "language:da", "language:nl", "language:en", "language:et", "language:tl", "language:fi", "language:fr", "language:ff", "language:gl", "language:lg", "language:ka", "language:de", "language:el", "language:gu", "language:ha", "language:he", "language:hi", "language:hu", "language:is", "language:ig", "language:id", "language:ga", "language:it", "language:ja", "language:jv", "language:kea", "language:kam", "language:kn", "language:kk", "language:km", "language:ko", "language:ky", "language:lo", "language:lv", "language:ln", "language:lt", "language:luo", "language:lb", "language:mk", "language:ms", "language:ml", "language:mt", "language:mi", "language:mr", "language:mn", "language:ne", "language:ns", "language:no", "language:ny", "language:oc", "language:or", "language:om", "language:ps", "language:fa", "language:pl", "language:pt", "language:pa", "language:ro", "language:ru", "language:sr", "language:sn", "language:sd", "language:sk", "language:sl", "language:so", "language:ku", "language:es", "language:sw", "language:sv", "language:tg", "language:ta", "language:te", "language:th", "language:tr", "language:uk", "language:umb", "language:ur", "language:uz", "language:vi", "language:cy", "language:wo", "language:xh", "language:yo", "language:zu", "license:cc-by-sa-4.0", "conditional-text-generation", "arxiv:2106.03193", "region:us" ]
2022-03-02T23:29:22+00:00
{"annotations_creators": ["found"], "language_creators": ["expert-generated"], "language": ["af", "am", "ar", "hy", "as", "ast", "az", "be", "bn", "bs", "bg", "my", "ca", "ceb", "zho", "hr", "cs", "da", "nl", "en", "et", "tl", "fi", "fr", "ff", "gl", "lg", "ka", "de", "el", "gu", "ha", "he", "hi", "hu", "is", "ig", "id", "ga", "it", "ja", "jv", "kea", "kam", "kn", "kk", "km", "ko", "ky", "lo", "lv", "ln", "lt", "luo", "lb", "mk", "ms", "ml", "mt", "mi", "mr", "mn", "ne", "ns", "no", "ny", "oc", "or", "om", "ps", "fa", "pl", "pt", "pa", "ro", "ru", "sr", "sn", "sd", "sk", "sl", "so", "ku", "es", "sw", "sv", "tg", "ta", "te", "th", "tr", "uk", "umb", "ur", "uz", "vi", "cy", "wo", "xh", "yo", "zu"], "license": ["cc-by-sa-4.0"], "multilinguality": ["multilingual", "translation"], "size_categories": ["unknown"], "source_datasets": ["extended|flores"], "task_categories": ["text-generation", "translation"], "task_ids": [], "paperswithcode_id": "flores", "pretty_name": "flores101", "tags": ["conditional-text-generation"]}
2022-10-27T07:37:36+00:00
[ "2106.03193" ]
[ "af", "am", "ar", "hy", "as", "ast", "az", "be", "bn", "bs", "bg", "my", "ca", "ceb", "zho", "hr", "cs", "da", "nl", "en", "et", "tl", "fi", "fr", "ff", "gl", "lg", "ka", "de", "el", "gu", "ha", "he", "hi", "hu", "is", "ig", "id", "ga", "it", "ja", "jv", "kea", "kam", "kn", "kk", "km", "ko", "ky", "lo", "lv", "ln", "lt", "luo", "lb", "mk", "ms", "ml", "mt", "mi", "mr", "mn", "ne", "ns", "no", "ny", "oc", "or", "om", "ps", "fa", "pl", "pt", "pa", "ro", "ru", "sr", "sn", "sd", "sk", "sl", "so", "ku", "es", "sw", "sv", "tg", "ta", "te", "th", "tr", "uk", "umb", "ur", "uz", "vi", "cy", "wo", "xh", "yo", "zu" ]
TAGS #task_categories-text-generation #task_categories-translation #annotations_creators-found #language_creators-expert-generated #multilinguality-multilingual #multilinguality-translation #size_categories-unknown #source_datasets-extended|flores #language-Afrikaans #language-Amharic #language-Arabic #language-Armenian #language-Assamese #language-Asturian #language-Azerbaijani #language-Belarusian #language-Bengali #language-Bosnian #language-Bulgarian #language-Burmese #language-Catalan #language-Cebuano #language-Chinese #language-Croatian #language-Czech #language-Danish #language-Dutch #language-English #language-Estonian #language-Tagalog #language-Finnish #language-French #language-Fulah #language-Galician #language-Ganda #language-Georgian #language-German #language-Modern Greek (1453-) #language-Gujarati #language-Hausa #language-Hebrew #language-Hindi #language-Hungarian #language-Icelandic #language-Igbo #language-Indonesian #language-Irish #language-Italian #language-Japanese #language-Javanese #language-Kabuverdianu #language-Kamba (Kenya) #language-Kannada #language-Kazakh #language-Khmer #language-Korean #language-Kirghiz #language-Lao #language-Latvian #language-Lingala #language-Lithuanian #language-Luo (Kenya and Tanzania) #language-Luxembourgish #language-Macedonian #language-Malay (macrolanguage) #language-Malayalam #language-Maltese #language-Maori #language-Marathi #language-Mongolian #language-Nepali (macrolanguage) #language-ns #language-Norwegian #language-Nyanja #language-Occitan (post 1500) #language-Oriya (macrolanguage) #language-Oromo #language-Pushto #language-Persian #language-Polish #language-Portuguese #language-Panjabi #language-Romanian #language-Russian #language-Serbian #language-Shona #language-Sindhi #language-Slovak #language-Slovenian #language-Somali #language-Kurdish #language-Spanish #language-Swahili (macrolanguage) #language-Swedish #language-Tajik #language-Tamil #language-Telugu #language-Thai #language-Turkish #language-Ukrainian #language-Umbundu #language-Urdu #language-Uzbek #language-Vietnamese #language-Welsh #language-Wolof #language-Xhosa #language-Yoruba #language-Zulu #license-cc-by-sa-4.0 #conditional-text-generation #arxiv-2106.03193 #region-us
Dataset Card for Flores 101 =========================== Table of Contents ----------------- * Dataset Card for Flores 101 + Table of Contents + Dataset Description - Dataset Summary - Supported Tasks and Leaderboards - Languages + Dataset Structure - Data Instances - Data Fields - Data Splits - Dataset Creation + Additional Information - Dataset Curators - Licensing Information - Citation Information Dataset Description ------------------- * Home: WMT * Repository: Github * Blogpost: FAIR * Paper: Arxiv * Point of Contact: flores@URL * Leaderboard Dynabench) ### Dataset Summary FLORES is a benchmark dataset for machine translation between English and low-resource languages. Abstract from the original paper: > > One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond. > > > Disclaimer: \*The Flores-101 dataset is hosted by the Facebook and licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. ### Supported Tasks and Leaderboards #### Multilingual Machine Translation Refer to the Dynabench leaderboard) for additional details on model evaluation on FLORES-101 in the context of the WMT2021 shared task on Large-Scale Multilingual Machine Translation. ### Languages The dataset contains parallel sentences for 101 languages, as mentioned in the original Github page for the project. Languages are identified with the ISO 639-3 code (e.g. 'eng', 'fra', 'rus') as in the original dataset. New: Use the configuration 'all' to access the full set of parallel sentences for all the available languages in a single command. Dataset Structure ----------------- ### Data Instances A sample from the 'dev' split for the Russian language ('rus' config) is provided below. All configurations have the same structure, and all sentences are aligned across configurations and splits. The text is provided as-in the original dataset, without further preprocessing or tokenization. ### Data Fields * 'id': Row number for the data entry, starting at 1. * 'sentence': The full sentence in the specific language. * 'URL': The URL for the English article from which the sentence was extracted. * 'domain': The domain of the sentence. * 'topic': The topic of the sentence. * 'has\_image': Whether the original article contains an image. * 'has\_hyperlink': Whether the sentence contains a hyperlink. ### Data Splits ### Dataset Creation Please refer to the original article The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation for additional information on dataset creation. Additional Information ---------------------- ### Dataset Curators The original authors of FLORES-101 are the curators of the original dataset. For problems or updates on this Datasets version, please contact gabriele.sarti996@URL. ### Licensing Information Licensed with Creative Commons Attribution Share Alike 4.0. License available here. Please cite the authors if you use these corpora in your work:
[ "### Dataset Summary\n\n\nFLORES is a benchmark dataset for machine translation between English and low-resource languages.\n\n\nAbstract from the original paper:\n\n\n\n> \n> One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond.\n> \n> \n> \n\n\nDisclaimer: \\*The Flores-101 dataset is hosted by the Facebook and licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.", "### Supported Tasks and Leaderboards", "#### Multilingual Machine Translation\n\n\nRefer to the Dynabench leaderboard) for additional details on model evaluation on FLORES-101 in the context of the WMT2021 shared task on Large-Scale Multilingual Machine Translation.", "### Languages\n\n\nThe dataset contains parallel sentences for 101 languages, as mentioned in the original Github page for the project. Languages are identified with the ISO 639-3 code (e.g. 'eng', 'fra', 'rus') as in the original dataset.\n\n\nNew: Use the configuration 'all' to access the full set of parallel sentences for all the available languages in a single command.\n\n\nDataset Structure\n-----------------", "### Data Instances\n\n\nA sample from the 'dev' split for the Russian language ('rus' config) is provided below. All configurations have the same structure, and all sentences are aligned across configurations and splits.\n\n\nThe text is provided as-in the original dataset, without further preprocessing or tokenization.", "### Data Fields\n\n\n* 'id': Row number for the data entry, starting at 1.\n* 'sentence': The full sentence in the specific language.\n* 'URL': The URL for the English article from which the sentence was extracted.\n* 'domain': The domain of the sentence.\n* 'topic': The topic of the sentence.\n* 'has\\_image': Whether the original article contains an image.\n* 'has\\_hyperlink': Whether the sentence contains a hyperlink.", "### Data Splits", "### Dataset Creation\n\n\nPlease refer to the original article The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation for additional information on dataset creation.\n\n\nAdditional Information\n----------------------", "### Dataset Curators\n\n\nThe original authors of FLORES-101 are the curators of the original dataset. For problems or updates on this Datasets version, please contact gabriele.sarti996@URL.", "### Licensing Information\n\n\nLicensed with Creative Commons Attribution Share Alike 4.0. License available here.\n\n\nPlease cite the authors if you use these corpora in your work:" ]
[ "TAGS\n#task_categories-text-generation #task_categories-translation #annotations_creators-found #language_creators-expert-generated #multilinguality-multilingual #multilinguality-translation #size_categories-unknown #source_datasets-extended|flores #language-Afrikaans #language-Amharic #language-Arabic #language-Armenian #language-Assamese #language-Asturian #language-Azerbaijani #language-Belarusian #language-Bengali #language-Bosnian #language-Bulgarian #language-Burmese #language-Catalan #language-Cebuano #language-Chinese #language-Croatian #language-Czech #language-Danish #language-Dutch #language-English #language-Estonian #language-Tagalog #language-Finnish #language-French #language-Fulah #language-Galician #language-Ganda #language-Georgian #language-German #language-Modern Greek (1453-) #language-Gujarati #language-Hausa #language-Hebrew #language-Hindi #language-Hungarian #language-Icelandic #language-Igbo #language-Indonesian #language-Irish #language-Italian #language-Japanese #language-Javanese #language-Kabuverdianu #language-Kamba (Kenya) #language-Kannada #language-Kazakh #language-Khmer #language-Korean #language-Kirghiz #language-Lao #language-Latvian #language-Lingala #language-Lithuanian #language-Luo (Kenya and Tanzania) #language-Luxembourgish #language-Macedonian #language-Malay (macrolanguage) #language-Malayalam #language-Maltese #language-Maori #language-Marathi #language-Mongolian #language-Nepali (macrolanguage) #language-ns #language-Norwegian #language-Nyanja #language-Occitan (post 1500) #language-Oriya (macrolanguage) #language-Oromo #language-Pushto #language-Persian #language-Polish #language-Portuguese #language-Panjabi #language-Romanian #language-Russian #language-Serbian #language-Shona #language-Sindhi #language-Slovak #language-Slovenian #language-Somali #language-Kurdish #language-Spanish #language-Swahili (macrolanguage) #language-Swedish #language-Tajik #language-Tamil #language-Telugu #language-Thai #language-Turkish #language-Ukrainian #language-Umbundu #language-Urdu #language-Uzbek #language-Vietnamese #language-Welsh #language-Wolof #language-Xhosa #language-Yoruba #language-Zulu #license-cc-by-sa-4.0 #conditional-text-generation #arxiv-2106.03193 #region-us \n", "### Dataset Summary\n\n\nFLORES is a benchmark dataset for machine translation between English and low-resource languages.\n\n\nAbstract from the original paper:\n\n\n\n> \n> One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond.\n> \n> \n> \n\n\nDisclaimer: \\*The Flores-101 dataset is hosted by the Facebook and licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.", "### Supported Tasks and Leaderboards", "#### Multilingual Machine Translation\n\n\nRefer to the Dynabench leaderboard) for additional details on model evaluation on FLORES-101 in the context of the WMT2021 shared task on Large-Scale Multilingual Machine Translation.", "### Languages\n\n\nThe dataset contains parallel sentences for 101 languages, as mentioned in the original Github page for the project. Languages are identified with the ISO 639-3 code (e.g. 'eng', 'fra', 'rus') as in the original dataset.\n\n\nNew: Use the configuration 'all' to access the full set of parallel sentences for all the available languages in a single command.\n\n\nDataset Structure\n-----------------", "### Data Instances\n\n\nA sample from the 'dev' split for the Russian language ('rus' config) is provided below. All configurations have the same structure, and all sentences are aligned across configurations and splits.\n\n\nThe text is provided as-in the original dataset, without further preprocessing or tokenization.", "### Data Fields\n\n\n* 'id': Row number for the data entry, starting at 1.\n* 'sentence': The full sentence in the specific language.\n* 'URL': The URL for the English article from which the sentence was extracted.\n* 'domain': The domain of the sentence.\n* 'topic': The topic of the sentence.\n* 'has\\_image': Whether the original article contains an image.\n* 'has\\_hyperlink': Whether the sentence contains a hyperlink.", "### Data Splits", "### Dataset Creation\n\n\nPlease refer to the original article The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation for additional information on dataset creation.\n\n\nAdditional Information\n----------------------", "### Dataset Curators\n\n\nThe original authors of FLORES-101 are the curators of the original dataset. For problems or updates on this Datasets version, please contact gabriele.sarti996@URL.", "### Licensing Information\n\n\nLicensed with Creative Commons Attribution Share Alike 4.0. License available here.\n\n\nPlease cite the authors if you use these corpora in your work:" ]
[ 706, 282, 10, 48, 100, 73, 112, 5, 48, 48, 35 ]
[ "passage: ", "passage: TAGS\n#task_categories-text-generation #task_categories-translation #annotations_creators-found #language_creators-expert-generated #multilinguality-multilingual #multilinguality-translation #size_categories-unknown #source_datasets-extended|flores #language-Afrikaans #language-Amharic #language-Arabic #language-Armenian #language-Assamese #language-Asturian #language-Azerbaijani #language-Belarusian #language-Bengali #language-Bosnian #language-Bulgarian #language-Burmese #language-Catalan #language-Cebuano #language-Chinese #language-Croatian #language-Czech #language-Danish #language-Dutch #language-English #language-Estonian #language-Tagalog #language-Finnish #language-French #language-Fulah #language-Galician #language-Ganda #language-Georgian #language-German #language-Modern Greek (1453-) #language-Gujarati #language-Hausa #language-Hebrew #language-Hindi #language-Hungarian #language-Icelandic #language-Igbo #language-Indonesian #language-Irish #language-Italian #language-Japanese #language-Javanese #language-Kabuverdianu #language-Kamba (Kenya) #language-Kannada #language-Kazakh #language-Khmer #language-Korean #language-Kirghiz #language-Lao #language-Latvian #language-Lingala #language-Lithuanian #language-Luo (Kenya and Tanzania) #language-Luxembourgish #language-Macedonian #language-Malay (macrolanguage) #language-Malayalam #language-Maltese #language-Maori #language-Marathi #language-Mongolian #language-Nepali (macrolanguage) #language-ns #language-Norwegian #language-Nyanja #language-Occitan (post 1500) #language-Oriya (macrolanguage) #language-Oromo #language-Pushto #language-Persian #language-Polish #language-Portuguese #language-Panjabi #language-Romanian #language-Russian #language-Serbian #language-Shona #language-Sindhi #language-Slovak #language-Slovenian #language-Somali #language-Kurdish #language-Spanish #language-Swahili (macrolanguage) #language-Swedish #language-Tajik #language-Tamil #language-Telugu #language-Thai #language-Turkish #language-Ukrainian #language-Umbundu #language-Urdu #language-Uzbek #language-Vietnamese #language-Welsh #language-Wolof #language-Xhosa #language-Yoruba #language-Zulu #license-cc-by-sa-4.0 #conditional-text-generation #arxiv-2106.03193 #region-us \n### Dataset Summary\n\n\nFLORES is a benchmark dataset for machine translation between English and low-resource languages.\n\n\nAbstract from the original paper:\n\n\n\n> \n> One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond.\n> \n> \n> \n\n\nDisclaimer: \\*The Flores-101 dataset is hosted by the Facebook and licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.### Supported Tasks and Leaderboards#### Multilingual Machine Translation\n\n\nRefer to the Dynabench leaderboard) for additional details on model evaluation on FLORES-101 in the context of the WMT2021 shared task on Large-Scale Multilingual Machine Translation.### Languages\n\n\nThe dataset contains parallel sentences for 101 languages, as mentioned in the original Github page for the project. Languages are identified with the ISO 639-3 code (e.g. 'eng', 'fra', 'rus') as in the original dataset.\n\n\nNew: Use the configuration 'all' to access the full set of parallel sentences for all the available languages in a single command.\n\n\nDataset Structure\n-----------------" ]
[ 0.03933771699666977, 0.06272390484809875, -0.012651209719479084, 0.025214675813913345, 0.052835118025541306, 0.0031615456100553274, 0.022097010165452957, 0.05800401419401169, 0.021554457023739815, 0.10866372287273407, 0.053686559200286865, 0.03680037707090378, 0.015684403479099274, -0.025978580117225647, 0.05351525545120239, -0.2558194696903229, -0.019417578354477882, -0.04192306101322174, -0.018103694543242455, 0.08562014997005463, 0.028518464416265488, -0.05025920644402504, 0.04679928719997406, -0.09167616814374924, 0.09803280234336853, 0.03240654990077019, -0.013419151306152344, 0.046584196388721466, 0.029391655698418617, 0.052969325333833694, 0.07530207186937332, -0.039999593049287796, 0.009459061548113823, -0.20355302095413208, 0.045410752296447754, -0.010231136344373226, -0.07500637322664261, -0.038140133023262024, 0.015522055327892303, -0.07427352666854858, 0.2168859839439392, -0.0678052082657814, 0.0200501661747694, 0.008620377629995346, -0.10988391935825348, -0.15551891922950745, 0.05508307367563248, 0.07101238518953323, 0.04225645959377289, 0.10121724009513855, -0.07506760954856873, 0.03234998136758804, -0.06096763163805008, 0.07438381761312485, 0.1291414052248001, -0.1592254638671875, -0.08082413673400879, -0.04338943213224411, 0.11952939629554749, 0.11089642345905304, -0.08438248932361603, 0.05058123916387558, -0.02016998827457428, 0.013622159138321877, -0.0761423408985138, -0.10666663944721222, 0.037898655980825424, -0.005549116060137749, -0.14102497696876526, -0.014849523082375526, 0.15522347390651703, -0.04767368733882904, 0.0311052817851305, -0.055257052183151245, -0.01821843348443508, 0.0040009841322898865, -0.04599738493561745, -0.0389045812189579, -0.019612394273281097, 0.023700229823589325, 0.12900860607624054, -0.017269786447286606, -0.07402050495147705, 0.019229769706726074, -0.03630581498146057, 0.10354512184858322, 0.03598702698945999, -0.040511488914489746, 0.006174128502607346, -0.05278186872601509, -0.010789081454277039, -0.07955393195152283, 0.027880236506462097, -0.043281856924295425, 0.026307806372642517, 0.03064052388072014, 0.004813186824321747, 0.06720217317342758, 0.07778047025203705, 0.13956470787525177, -0.037135280668735504, 0.037298426032066345, -0.07003197073936462, 0.00357954204082489, 0.0006842799484729767, 0.008731763809919357, 0.01829199306666851, -0.09127067029476166, -0.14209717512130737, 0.015446273609995842, 0.07039746642112732, -0.02575986087322235, -0.04257603734731674, 0.07627847790718079, -0.06932878494262695, 0.04617557302117348, 0.07432523369789124, 0.0010787583887577057, -0.0016652564518153667, 0.0007825866341590881, -0.018275273963809013, -0.0741906389594078, -0.0010023899376392365, 0.042487870901823044, 0.04535870999097824, -0.0004468373954296112, -0.05958440154790878, -0.0345902256667614, -0.08975202590227127, 0.0015774387866258621, -0.018345996737480164, 0.036572642624378204, -0.016718309372663498, -0.015343965962529182, 0.04838227480649948, -0.04576538875699043, 0.027221422642469406, -0.05414053797721863, 0.015554314479231834, -0.0240163616836071, 0.015196467749774456, -0.09954556822776794, 0.015018006786704063, 0.014009367674589157, 0.005222337320446968, 0.05718681588768959, -0.00161786749958992, -0.06012166291475296, -0.04121503233909607, 0.08474502712488174, -0.0175829716026783, 0.00013078376650810242, 0.04603488743305206, 0.03338038548827171, -0.06606464833021164, 0.028180884197354317, -0.037521835416555405, -0.012476339936256409, -0.06400775909423828, 0.007222667336463928, -0.02788138948380947, 0.021062254905700684, 0.0016809739172458649, 0.03919689357280731, -0.053428079932928085, 0.131382018327713, -0.09290154278278351, -0.1113693118095398, 0.18109461665153503, -0.12291544675827026, -0.06018371880054474, 0.05181809514760971, 0.0595390684902668, 0.044325314462184906, 0.029755592346191406, 0.24819351732730865, 0.0621538907289505, -0.007348589599132538, -0.08830131590366364, 0.08007437735795975, 0.0909736305475235, 0.19235968589782715, 0.10715821385383606, -0.051155105233192444, 0.10889211297035217, -0.01920078881084919, 0.10352781414985657, -0.014278147369623184, 0.000461505725979805, -0.05280514806509018, 0.0563514344394207, 0.031797461211681366, 0.028489597141742706, 0.0687984749674797, -0.05213548615574837, -0.05066138505935669, -0.07845775783061981, 0.03381899371743202, 0.0701802521944046, -0.013208099640905857, 0.032339200377464294, -0.06274379044771194, 0.07976585626602173, 0.07862883806228638, 0.012828037142753601, -0.11255502700805664, 0.0014287643134593964, -0.013342242687940598, 0.04225539043545723, 0.12028337270021439, -0.016556568443775177, 0.05784698575735092, 0.008596867322921753, -0.07828645408153534, 0.012030544690787792, -0.0198482908308506, 0.05196953937411308, -0.02992643043398857, -0.2526419758796692, 0.09071521461009979, -0.04104655236005783, 0.07261183857917786, -0.1573597490787506, -0.003476971760392189, 0.06841017305850983, 0.10783413052558899, -0.0033615287393331528, -0.05128934234380722, 0.007150779478251934, 0.03632155805826187, 0.026341885328292847, -0.0002864263951778412, 0.06137366592884064, -0.02872474119067192, -0.08471989631652832, 0.15249371528625488, -0.13443464040756226, 0.023930680006742477, 0.13478147983551025, -0.1702878177165985, -0.05878276377916336, -0.049724481999874115, -0.02271885611116886, 0.014338460750877857, 0.08568845689296722, 0.011828587390482426, 0.09842342138290405, 0.03293564170598984, 0.06485617905855179, -0.020742647349834442, -0.03785569220781326, -0.00834252405911684, -0.05026959627866745, -0.028414743021130562, 0.177433043718338, 0.006207708269357681, -0.07237810641527176, 0.13349823653697968, 0.2390155792236328, 0.10315874218940735, 0.19691959023475647, -0.030250083655118942, -0.04050953686237335, -0.05107402056455612, -0.011024666018784046, 0.01232854463160038, 0.06481127440929413, -0.11469157040119171, 0.03465651348233223, 0.018979135900735855, 0.01495259627699852, 0.0029730345122516155, -0.0494539737701416, -0.005015305243432522, -0.028865212574601173, 0.03516798093914986, 0.05498957633972168, 0.03845369070768356, -0.07089439779520035, 0.020796343684196472, 0.02248256467282772, -0.04512956738471985, -0.04395993798971176, -0.02268957905471325, -0.05739760026335716, 0.11003400385379791, -0.16285490989685059, -0.1706196665763855, -0.010649633593857288, -0.10489122569561005, 0.028072882443666458, 0.007715828716754913, -0.0059248944744467735, -0.10767009854316711, -0.016650600358843803, -0.05097045749425888, 0.056133754551410675, -0.013975433073937893, -0.057887326925992966, -0.08210049569606781, 0.05555814132094383, -0.04617320001125336, -0.004124507308006287, -0.02289288304746151, -0.0042251646518707275, -0.11301716417074203, -0.022992821410298347, -0.05473768338561058, 0.022590845823287964, 0.09977176785469055, 0.14456483721733093, -0.01615067757666111, -0.05158306658267975, 0.11842796206474304, -0.16376039385795593, 0.01981152594089508, 0.07369300723075867, -0.06840511411428452, 0.031690165400505066, 0.16640585660934448, 0.051032654941082, -0.028190666809678078, 0.008948680944740772, 0.05917733535170555, 0.004074132069945335, -0.15177613496780396, -0.06625630706548691, -0.0502467155456543, 0.12847812473773956, 0.001345040276646614, 0.05678312107920647, 0.002914717420935631, -0.042935870587825775, -0.06329198181629181, -0.10435506701469421, 0.0786595344543457, 0.03877577930688858, 0.22095417976379395, -0.08483630418777466, 0.05804397910833359, -0.02942030131816864, -0.05076099932193756, 0.06732748448848724, -0.05600622296333313, 0.01842312514781952, 0.12096068263053894, 0.08293335139751434, 0.0398780032992363, 0.0307094007730484, -0.07753616571426392, -0.12402822077274323, -0.0032057128846645355, 0.008261892944574356, 0.0011604167520999908, -0.048161402344703674, 0.0050111375749111176, 0.06980323791503906, 0.11630169302225113, -0.0337422639131546, -0.027607832103967667, -0.03953061252832413, 0.11186781525611877, -0.005665808916091919, 0.11710579693317413, 0.07936075329780579, 0.045774538069963455, 0.06938502937555313, -0.014444954693317413, -0.06480605155229568, 0.09190419316291809, 0.002066429704427719, -0.007453678175806999, 0.1290733814239502, -0.011101541109383106, 0.0668325275182724, -0.016756173223257065, 0.04915458336472511, -0.08392664790153503, -0.09696435928344727, -0.006702101789414883, 0.029243119060993195, -0.1965482532978058, 0.20848803222179413, 0.044395871460437775, -0.07637660950422287, 0.0072639454156160355, -0.008350726217031479, 0.013307898305356503, 0.1294405609369278, 0.1599782109260559, 0.019941948354244232, -0.07495538145303726, -0.12515416741371155, -0.054112646728754044, -0.016483090817928314, 0.17177243530750275, -0.12513071298599243, 0.03734797611832619, -0.01109786331653595, -0.04297664016485214, -0.0801020935177803, 0.11438794434070587, 0.0074263326823711395, -0.13874396681785583, 0.07497819513082504, -0.06168188527226448, -0.03004312701523304, 0.0007150284945964813, -0.05373145639896393, 0.050089024007320404, 0.008812129497528076, -0.23652972280979156, -0.01547636091709137, 0.012696951627731323, -0.06595733761787415, 0.0526081882417202, -0.037678834050893784, -0.0386878177523613, -0.006901608780026436, -0.0384991355240345, -0.10071734338998795, 0.05954930558800697, 0.031547509133815765, -0.022021550685167313, -0.07511024922132492, -0.03925240784883499, 0.17211800813674927, -0.03568382188677788, 0.0907212346792221, -0.06591309607028961, 0.07983247935771942, 0.008696986362338066, -0.05271012336015701, 0.034049004316329956, -0.055791378021240234, -0.012785120867192745, 0.035438645631074905, -0.03299589455127716, 0.07086871564388275, -0.1158999353647232, -0.0948774516582489, 0.08240506052970886, 0.17094948887825012, -0.004880629479885101, 0.15403282642364502, 0.15092803537845612, -0.12105841934680939, -0.23031583428382874, -0.19428908824920654, -0.03404698520898819, -0.086199551820755, 0.032816145569086075, -0.20153313875198364, 0.03527236357331276, -0.05692242085933685, 0.007404769770801067, 0.01873423159122467, -0.19385960698127747, -0.11509811878204346, 0.0625593438744545, -0.04538869112730026, 0.019040420651435852, -0.1277742087841034, -0.05476539954543114, 0.00927662942558527, 0.05309277027845383, 0.033217933028936386, -0.010361313819885254, 0.05584637448191643, 0.021272718906402588, -0.1427432894706726, 0.006791033782064915, 0.023276537656784058, 0.13599619269371033, -0.06064433604478836, -0.04377890005707741, -0.12942823767662048, -0.101160928606987, -0.01185670681297779, 0.007743789814412594, -0.11977236717939377, -0.13803434371948242, -0.07791650295257568, -0.1781512200832367, -0.03058590181171894, -0.07464756816625595, 0.016353655606508255, -0.07565605640411377, -0.02413097396492958, -0.01710028387606144, 0.09692119807004929, 0.0014818347990512848, -0.01645331270992756, 0.18194863200187683, -0.1199382096529007, 0.11658667773008347, 0.03391673415899277, 0.08497120440006256, 0.06318577378988266, -0.11055150628089905, -0.031157055869698524, 0.0006458647549152374, 0.026218540966510773, -0.06782951205968857, -0.03855010122060776, 0.10069607198238373, -0.04041977971792221, 0.04231904447078705, -0.024666499346494675, -0.06886354088783264, -0.03830539435148239, 0.07691305130720139, -0.08466581255197525, -0.10237139463424683, -0.0654972493648529, -0.0566844716668129, -0.014607995748519897, -0.11709851771593094, 0.16483795642852783, 0.001082136295735836, -0.015833593904972076, 0.013247950002551079, 0.02284739911556244, -0.02813759632408619, 0.033349957317113876, 0.011565015651285648, 0.04223939776420593, -0.023328537121415138, 0.06820830702781677, 0.12484028190374374, -0.16653288900852203, 0.022800490260124207, 0.25768178701400757, 0.028506072238087654, -0.08364903926849365, -0.0788876861333847, 0.07069958746433258, -0.005318351089954376, -0.0038879122585058212, -0.03163313493132591, -0.044611454010009766, 0.028786852955818176, 0.2413962483406067, 0.03751871734857559, 0.0428120419383049, -0.012609448283910751, -0.020036086440086365, 0.07650270313024521, 0.16607429087162018, -0.0028820782899856567, -0.07821670174598694, -0.010611060075461864, 0.03163754940032959, 0.05923023819923401, 0.01932668499648571, -0.055736199021339417, -0.09332579374313354, -0.11997035145759583, 0.02381093055009842, -0.033641282469034195, -0.03933585062623024, -0.07482772320508957, -0.024686701595783234, -0.03052651882171631, 0.0055784303694963455, -0.05740361660718918, -0.07556900382041931, -0.027547460049390793, 0.06720360368490219, 0.02708389237523079, 0.09271317720413208, -0.09369512647390366, 0.00544491782784462, 0.06944186985492706, -0.0036653983406722546, 0.05035386234521866, 0.006540358066558838, -0.018816905096173286, 0.0714016854763031, 0.009163890033960342, 0.07347161322832108, -0.04696943610906601, -0.01790168508887291, -0.06772999465465546, -0.01856772042810917, -0.03767499327659607, -0.06713716685771942, -0.029525727033615112, 0.03553430736064911, -0.015656527131795883, -0.03685801103711128, 0.041216857731342316, 0.05070747062563896, -0.14412876963615417, 0.02392103150486946, 0.03451838344335556, -0.020475806668400764, -0.02090233378112316, 0.054334044456481934, -0.053757574409246445, 0.07405656576156616, -0.07704201340675354, -0.007734503597021103, -0.013608245179057121, -0.019099228084087372, -0.027636490762233734, -0.031359799206256866, 0.02734541893005371, -0.005363982170820236, 0.09379880130290985, -0.02393687516450882, 0.08182577788829803, 0.08116269111633301, -0.02691226452589035, -0.032872285693883896, 0.02207689732313156, -0.004631067626178265, 0.09241227805614471, -0.057784684002399445, -0.08731535822153091, -0.009926484897732735, -0.03400488197803497, 0.09261278808116913, 0.010699018836021423, 0.17059114575386047, 0.24133363366127014, 0.01784426160156727, 0.02569440007209778, -0.06655088812112808, -0.020520444959402084, -0.0562608540058136, 0.007371727377176285, 0.0486791618168354, -0.10674244165420532, 0.09318339824676514, 0.10351882129907608, -0.025553029030561447, 0.03557198494672775, -0.007252849638462067, -0.028283702209591866, -0.10784454643726349, -0.09255238622426987, 0.009970579296350479, -0.004771839827299118, -0.004526078701019287, -0.04348257929086685, 0.0008208304643630981, -0.02079424262046814, 0.06877459585666656, 0.005116835702210665, 0.08738988637924194, 0.03769373148679733, -0.07561659812927246, 0.07616143673658371, 0.02102157101035118, 0.09918062388896942, -0.05498696491122246, -0.015865925699472427, -0.05243542790412903, -0.07377561926841736, -0.04384399205446243, 0.016639243811368942, -0.06573618948459625, -0.021284375339746475, -0.08938317000865936, -0.045327749103307724, 0.035595133900642395, 0.007542172446846962, 0.019182758405804634, 0.17520171403884888, 0.0028031468391418457, -0.008075437508523464, -0.00278204632923007, 0.1533907949924469, -0.03499754145741463, -0.09060055762529373, -0.05476345494389534, 0.18880750238895416, 0.03893756493926048, 0.049984127283096313, -0.05347967520356178, 0.02865714207291603, 0.008343111723661423, 0.1226869598031044, 0.13402129709720612, 0.016112033277750015, 0.025659937411546707, 0.10888593643903732, 0.07460463792085648, 0.0626235157251358, -0.012574994936585426, 0.028360575437545776, 0.17864781618118286, -0.03860487788915634, -0.031614989042282104, -0.07209286838769913, -0.022133106365799904, -0.03355218470096588, 0.00048540346324443817, 0.1258445829153061, 0.020358877256512642, -0.009240852668881416, 0.10718027502298355, -0.04594239965081215, 0.059347718954086304, 0.03914497792720795, -0.24992799758911133, -0.05164797604084015, -0.05661921203136444, 0.15811167657375336, 0.06836649030447006, 0.011458870023488998, 0.08126241713762283, -0.10320575535297394, -0.0246533565223217, 0.06931748986244202, -0.05634305253624916, -0.10046812891960144, 0.10039075464010239, -0.05962153151631355, 0.07729756087064743, -0.07729874551296234, 0.008881603367626667, 0.07063546776771545, 0.00256961677223444, 0.022860053926706314, 0.03224082291126251, 0.11995365470647812, -0.016277918592095375, -0.07385000586509705, 0.11515741050243378, -0.01851331815123558, 0.10574313998222351, 0.09244638681411743, 0.05097478628158569, 0.06340426206588745, -0.01564755290746689, -0.07520565390586853, 0.09742680937051773, 0.15491244196891785, -0.13375714421272278, 0.038298435509204865, 0.1826564520597458, 0.01701187714934349, -0.10628414154052734, -0.0319594070315361, -0.008864561095833778, -0.03407210111618042, 0.06107131764292717, -0.0394020676612854, -0.023287080228328705, 0.029361335560679436, 0.007704160641878843, 0.05949664115905762, -0.11009613424539566, -0.07806801795959473, 0.11988020688295364, 0.07407756894826889, -0.09825953096151352, 0.0881318598985672, 0.01542646810412407, -0.043820638209581375, -0.03952717036008835, -0.16720780730247498, 0.10291304439306259, 0.05746714025735855, -0.043948329985141754, 0.008351481519639492 ]
f8f98e5c4d3059cf1a00c8eb3d70aa271423f636
# Dataset Card for ItaCoLA ## Table of Contents - [Dataset Card for ItaCoLA](#dataset-card-for-itacola) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Acceptability Classification](#acceptability-classification) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Scores Configuration](#scores-configuration) - [Phenomena Configuration](#phenomena-configuration) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Repository:** [Github](https://github.com/dhfbk/ItaCoLA-dataset) - **Paper:** [Arxiv](http://ceur-ws.org/Vol-2765/paper169.pdf) - **Point of Contact:** [Daniela Trotta]([email protected]) ### Dataset Summary The Italian Corpus of Linguistic Acceptability includes almost 10k sentences taken from linguistic literature with a binary annotation made by the original authors themselves. The work is inspired by the English [Corpus of Linguistic Acceptability](https://nyu-mll.github.io/CoLA/). **Disclaimer**: *The ItaCoLA corpus is hosted on Github by the [Digital Humanities group at FBK](https://dh.fbk.eu/)*. It was introduced in the article [Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus](https://arxiv.org/abs/2109.12053) by [Daniela Trotta](https://dh.fbk.eu/author/daniela/), [Raffaele Guarasci](https://www.icar.cnr.it/persone/guarasci/), [Elisa Leonardelli](https://dh.fbk.eu/author/elisa/), [Sara Tonelli](https://dh.fbk.eu/author/sara/) ### Supported Tasks and Leaderboards #### Acceptability Classification The following table is taken from Table 4 of the original paper, where an LSTM and a BERT model pretrained on the Italian languages are fine-tuned on the `train` split of the corpus and evaluated respectively on the `test` split (*In-domain*, `in`) and on the acceptability portion of the [AcCompl-it] corpus (*Out-of-domain*, `out`). Models are evaluated with accuracy (*Acc.*) and Matthews Correlation Coefficient (*MCC*) in both settings. Results are averaged over 10 runs with ±stdev. error bounds. | | `in`, Acc.| `in`, MCC| `out`, Acc.|`out`, MCC| |---------:|-----------:|----------:|-----------:|---------:| |`LSTM` | 0.794 | 0.278 ± 0.029 | 0.605 | 0.147 ± 0.066 | |`ITA-BERT`| 0.904 | 0.603 ± 0.022 | 0.683 | 0.198 ± 0.036 | ### Languages The language data in ItaCoLA is in Italian (BCP-47 `it`) ## Dataset Structure ### Data Instances #### Scores Configuration The `scores` configuration contains sentences with acceptability judgments. An example from the `train` split of the `scores` config (default) is provided below. ```json { "unique_id": 1, "source": "Graffi_1994", "acceptability": 1, "sentence": "Quest'uomo mi ha colpito." } ``` The text is provided as-is, without further preprocessing or tokenization. The fields are the following: - `unique_id`: Unique identifier for the sentence across configurations. - `source`: Original source for the sentence. - `acceptability`: Binary score, 1 = acceptable, 0 = not acceptable. - `sentence`: The evaluated sentence. #### Phenomena Configuration The `phenomena` configuration contains a sample of sentences from `scores` that has been manually annotated to denote the presence of 9 linguistic phenomena. An example from the `train` split is provided below: ```json { "unique_id": 1, "source": "Graffi_1994", "acceptability": 1, "sentence": "Quest'uomo mi ha colpito.", "cleft_construction": 0, "copular_construction": 0, "subject_verb_agreement": 1, "wh_islands_violations": 0, "simple": 0, "question": 0, "auxiliary": 1, "bind": 0, "indefinite_pronouns": 0 } ``` For each one of the new fields, the value of the binary score denotes the presence (1) or the absence (0) of the respective phenomenon. Refer to the original paper for a detailed description of each phenomenon. ### Data Splits | config| train| test| |----------:|-----:|----:| |`scores` | 7801 | 975 | |`phenomena`| 2088 | - | ### Dataset Creation Please refer to the original article [Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus](https://arxiv.org/abs/2109.12053) for additional information on dataset creation. ## Additional Information ### Dataset Curators The authors are the curators of the original dataset. For problems or updates on this 🤗 Datasets version, please contact [[email protected]](mailto:[email protected]). ### Licensing Information No licensing information available. ### Citation Information Please cite the authors if you use these corpora in your work: ```bibtex @inproceedings{trotta-etal-2021-monolingual-cross, title = "Monolingual and Cross-Lingual Acceptability Judgments with the {I}talian {C}o{LA} corpus", author = "Trotta, Daniela and Guarasci, Raffaele and Leonardelli, Elisa and Tonelli, Sara", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.250", doi = "10.18653/v1/2021.findings-emnlp.250", pages = "2929--2940" } ```
gsarti/itacola
[ "task_categories:text-classification", "task_ids:acceptability-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:unknown", "source_datasets:original", "language:it", "license:unknown", "arxiv:2109.12053", "region:us" ]
2022-03-02T23:29:22+00:00
{"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "language": ["it"], "license": ["unknown"], "multilinguality": ["monolingual"], "size_categories": ["unknown"], "source_datasets": ["original"], "task_categories": ["text-classification"], "task_ids": ["acceptability-classification"], "pretty_name": "itacola"}
2022-07-01T14:38:55+00:00
[ "2109.12053" ]
[ "it" ]
TAGS #task_categories-text-classification #task_ids-acceptability-classification #annotations_creators-expert-generated #language_creators-expert-generated #multilinguality-monolingual #size_categories-unknown #source_datasets-original #language-Italian #license-unknown #arxiv-2109.12053 #region-us
Dataset Card for ItaCoLA ======================== Table of Contents ----------------- * Dataset Card for ItaCoLA + Table of Contents + Dataset Description - Dataset Summary - Supported Tasks and Leaderboards * Acceptability Classification - Languages + Dataset Structure - Data Instances * Scores Configuration * Phenomena Configuration - Data Splits - Dataset Creation + Additional Information - Dataset Curators - Licensing Information - Citation Information Dataset Description ------------------- * Repository: Github * Paper: Arxiv * Point of Contact: Daniela Trotta ### Dataset Summary The Italian Corpus of Linguistic Acceptability includes almost 10k sentences taken from linguistic literature with a binary annotation made by the original authors themselves. The work is inspired by the English Corpus of Linguistic Acceptability. Disclaimer: *The ItaCoLA corpus is hosted on Github by the Digital Humanities group at FBK*. It was introduced in the article Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus by Daniela Trotta, Raffaele Guarasci, Elisa Leonardelli, Sara Tonelli ### Supported Tasks and Leaderboards #### Acceptability Classification The following table is taken from Table 4 of the original paper, where an LSTM and a BERT model pretrained on the Italian languages are fine-tuned on the 'train' split of the corpus and evaluated respectively on the 'test' split (*In-domain*, 'in') and on the acceptability portion of the [AcCompl-it] corpus (*Out-of-domain*, 'out'). Models are evaluated with accuracy (*Acc.*) and Matthews Correlation Coefficient (*MCC*) in both settings. Results are averaged over 10 runs with ±stdev. error bounds. ### Languages The language data in ItaCoLA is in Italian (BCP-47 'it') Dataset Structure ----------------- ### Data Instances #### Scores Configuration The 'scores' configuration contains sentences with acceptability judgments. An example from the 'train' split of the 'scores' config (default) is provided below. The text is provided as-is, without further preprocessing or tokenization. The fields are the following: * 'unique\_id': Unique identifier for the sentence across configurations. * 'source': Original source for the sentence. * 'acceptability': Binary score, 1 = acceptable, 0 = not acceptable. * 'sentence': The evaluated sentence. #### Phenomena Configuration The 'phenomena' configuration contains a sample of sentences from 'scores' that has been manually annotated to denote the presence of 9 linguistic phenomena. An example from the 'train' split is provided below: For each one of the new fields, the value of the binary score denotes the presence (1) or the absence (0) of the respective phenomenon. Refer to the original paper for a detailed description of each phenomenon. ### Data Splits ### Dataset Creation Please refer to the original article Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus for additional information on dataset creation. Additional Information ---------------------- ### Dataset Curators The authors are the curators of the original dataset. For problems or updates on this Datasets version, please contact gabriele.sarti996@URL. ### Licensing Information No licensing information available. Please cite the authors if you use these corpora in your work:
[ "### Dataset Summary\n\n\nThe Italian Corpus of Linguistic Acceptability includes almost 10k sentences taken from linguistic literature with a binary annotation made by the original authors themselves. The work is inspired by the English Corpus of Linguistic Acceptability.\n\n\nDisclaimer: *The ItaCoLA corpus is hosted on Github by the Digital Humanities group at FBK*. It was introduced in the article Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus by Daniela Trotta, Raffaele Guarasci, Elisa Leonardelli, Sara Tonelli", "### Supported Tasks and Leaderboards", "#### Acceptability Classification\n\n\nThe following table is taken from Table 4 of the original paper, where an LSTM and a BERT model pretrained on the Italian languages are fine-tuned on the 'train' split of the corpus and evaluated respectively on the 'test' split (*In-domain*, 'in') and on the acceptability portion of the [AcCompl-it] corpus (*Out-of-domain*, 'out'). Models are evaluated with accuracy (*Acc.*) and Matthews Correlation Coefficient (*MCC*) in both settings. Results are averaged over 10 runs with ±stdev. error bounds.", "### Languages\n\n\nThe language data in ItaCoLA is in Italian (BCP-47 'it')\n\n\nDataset Structure\n-----------------", "### Data Instances", "#### Scores Configuration\n\n\nThe 'scores' configuration contains sentences with acceptability judgments. An example from the 'train' split of the 'scores' config (default) is provided below.\n\n\nThe text is provided as-is, without further preprocessing or tokenization.\n\n\nThe fields are the following:\n\n\n* 'unique\\_id': Unique identifier for the sentence across configurations.\n* 'source': Original source for the sentence.\n* 'acceptability': Binary score, 1 = acceptable, 0 = not acceptable.\n* 'sentence': The evaluated sentence.", "#### Phenomena Configuration\n\n\nThe 'phenomena' configuration contains a sample of sentences from 'scores' that has been manually annotated to denote the presence of 9 linguistic phenomena. An example from the 'train' split is provided below:\n\n\nFor each one of the new fields, the value of the binary score denotes the presence (1) or the absence (0) of the respective phenomenon. Refer to the original paper for a detailed description of each phenomenon.", "### Data Splits", "### Dataset Creation\n\n\nPlease refer to the original article Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus for additional information on dataset creation.\n\n\nAdditional Information\n----------------------", "### Dataset Curators\n\n\nThe authors are the curators of the original dataset. For problems or updates on this Datasets version, please contact gabriele.sarti996@URL.", "### Licensing Information\n\n\nNo licensing information available.\n\n\nPlease cite the authors if you use these corpora in your work:" ]
[ "TAGS\n#task_categories-text-classification #task_ids-acceptability-classification #annotations_creators-expert-generated #language_creators-expert-generated #multilinguality-monolingual #size_categories-unknown #source_datasets-original #language-Italian #license-unknown #arxiv-2109.12053 #region-us \n", "### Dataset Summary\n\n\nThe Italian Corpus of Linguistic Acceptability includes almost 10k sentences taken from linguistic literature with a binary annotation made by the original authors themselves. The work is inspired by the English Corpus of Linguistic Acceptability.\n\n\nDisclaimer: *The ItaCoLA corpus is hosted on Github by the Digital Humanities group at FBK*. It was introduced in the article Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus by Daniela Trotta, Raffaele Guarasci, Elisa Leonardelli, Sara Tonelli", "### Supported Tasks and Leaderboards", "#### Acceptability Classification\n\n\nThe following table is taken from Table 4 of the original paper, where an LSTM and a BERT model pretrained on the Italian languages are fine-tuned on the 'train' split of the corpus and evaluated respectively on the 'test' split (*In-domain*, 'in') and on the acceptability portion of the [AcCompl-it] corpus (*Out-of-domain*, 'out'). Models are evaluated with accuracy (*Acc.*) and Matthews Correlation Coefficient (*MCC*) in both settings. Results are averaged over 10 runs with ±stdev. error bounds.", "### Languages\n\n\nThe language data in ItaCoLA is in Italian (BCP-47 'it')\n\n\nDataset Structure\n-----------------", "### Data Instances", "#### Scores Configuration\n\n\nThe 'scores' configuration contains sentences with acceptability judgments. An example from the 'train' split of the 'scores' config (default) is provided below.\n\n\nThe text is provided as-is, without further preprocessing or tokenization.\n\n\nThe fields are the following:\n\n\n* 'unique\\_id': Unique identifier for the sentence across configurations.\n* 'source': Original source for the sentence.\n* 'acceptability': Binary score, 1 = acceptable, 0 = not acceptable.\n* 'sentence': The evaluated sentence.", "#### Phenomena Configuration\n\n\nThe 'phenomena' configuration contains a sample of sentences from 'scores' that has been manually annotated to denote the presence of 9 linguistic phenomena. An example from the 'train' split is provided below:\n\n\nFor each one of the new fields, the value of the binary score denotes the presence (1) or the absence (0) of the respective phenomenon. Refer to the original paper for a detailed description of each phenomenon.", "### Data Splits", "### Dataset Creation\n\n\nPlease refer to the original article Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus for additional information on dataset creation.\n\n\nAdditional Information\n----------------------", "### Dataset Curators\n\n\nThe authors are the curators of the original dataset. For problems or updates on this Datasets version, please contact gabriele.sarti996@URL.", "### Licensing Information\n\n\nNo licensing information available.\n\n\nPlease cite the authors if you use these corpora in your work:" ]
[ 97, 127, 10, 153, 29, 6, 134, 112, 5, 47, 42, 27 ]
[ "passage: TAGS\n#task_categories-text-classification #task_ids-acceptability-classification #annotations_creators-expert-generated #language_creators-expert-generated #multilinguality-monolingual #size_categories-unknown #source_datasets-original #language-Italian #license-unknown #arxiv-2109.12053 #region-us \n### Dataset Summary\n\n\nThe Italian Corpus of Linguistic Acceptability includes almost 10k sentences taken from linguistic literature with a binary annotation made by the original authors themselves. The work is inspired by the English Corpus of Linguistic Acceptability.\n\n\nDisclaimer: *The ItaCoLA corpus is hosted on Github by the Digital Humanities group at FBK*. It was introduced in the article Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus by Daniela Trotta, Raffaele Guarasci, Elisa Leonardelli, Sara Tonelli### Supported Tasks and Leaderboards#### Acceptability Classification\n\n\nThe following table is taken from Table 4 of the original paper, where an LSTM and a BERT model pretrained on the Italian languages are fine-tuned on the 'train' split of the corpus and evaluated respectively on the 'test' split (*In-domain*, 'in') and on the acceptability portion of the [AcCompl-it] corpus (*Out-of-domain*, 'out'). Models are evaluated with accuracy (*Acc.*) and Matthews Correlation Coefficient (*MCC*) in both settings. Results are averaged over 10 runs with ±stdev. error bounds.### Languages\n\n\nThe language data in ItaCoLA is in Italian (BCP-47 'it')\n\n\nDataset Structure\n-----------------### Data Instances" ]
[ -0.06830436736345291, 0.14584948122501373, -0.00576113210991025, 0.0848657563328743, -0.0171092189848423, 0.06988547742366791, 0.14946171641349792, 0.09355300664901733, 0.07274880260229111, 0.0900547057390213, -0.10198944807052612, -0.027518559247255325, 0.10728037357330322, 0.07558084279298782, -0.0740867406129837, -0.15898655354976654, 0.02686131000518799, -0.07109090685844421, -0.014801428653299809, 0.0901491716504097, 0.16303320229053497, -0.013384578749537468, 0.021925188601017, -0.06811624020338058, -0.04002054035663605, 0.0030701812356710434, 0.009016674011945724, -0.02248311974108219, 0.0672757551074028, 0.07530674338340759, 0.14762528240680695, 0.02228565514087677, 0.04430122300982475, -0.1841283142566681, 0.027860399335622787, 0.07445047795772552, 0.02533991076052189, 0.0013877463061362505, 0.137896329164505, -0.05063187703490257, 0.10493170469999313, -0.00921339076012373, 0.014478566125035286, 0.013094376772642136, -0.09243538230657578, 0.01431960891932249, -0.13856621086597443, 0.04035628214478493, -0.009861488826572895, -0.0036628369707614183, -0.035279083997011185, 0.11339887976646423, -0.0865137055516243, 0.014348010532557964, 0.025565434247255325, -0.029312219470739365, -0.08400935679674149, 0.003188146511092782, -0.027923768386244774, 0.14829906821250916, -0.04255693033337593, 0.006758702453225851, -0.01160173024982214, -0.006372781470417976, -0.10065658390522003, -0.03742901235818863, 0.014984521083533764, -0.052013080567121506, -0.13640689849853516, -0.07339796423912048, 0.17722737789154053, -0.030662495642900467, -0.08789641410112381, -0.1452215015888214, -0.04761772230267525, 0.15312625467777252, -0.005493215750902891, -0.050794243812561035, 0.0010990843875333667, 0.04380819573998451, 0.1936739832162857, -0.011827553622424603, -0.11119675636291504, -0.021730981767177582, -0.0762517973780632, 0.2252391129732132, 0.052182503044605255, -0.020476208999753, 0.061744797974824905, 0.08499926328659058, -0.03475860506296158, -0.11275576800107956, -0.006683700252324343, -0.05839216336607933, -0.1005341187119484, -0.02613799087703228, -0.011445652693510056, -0.07960376143455505, 0.05133520066738129, 0.16513599455356598, -0.0036772582679986954, -0.03516427427530289, -0.09111842513084412, -0.0030918752308934927, 0.11084428429603577, 0.11249814927577972, -0.03355442360043526, -0.012304316274821758, -0.020294353365898132, 0.06195973604917526, 0.04026193916797638, -0.020245125517249107, -0.0026464008260518312, -0.05855095386505127, -0.007366360630840063, 0.07275447994470596, 0.07702554017305374, -0.02093595638871193, -0.13159820437431335, -0.06413636356592178, 0.062042154371738434, -0.18919992446899414, 0.05248348042368889, 0.047321319580078125, -0.008078744634985924, 0.055461905896663666, -0.08227971196174622, 0.02872563898563385, -0.0935431569814682, 0.030721597373485565, -0.03903406858444214, 0.0011016896460205317, -0.05064249783754349, -0.08613813668489456, 0.06631189584732056, -0.10764213651418686, -0.06396342813968658, -0.06845276057720184, 0.001883037155494094, -0.06835237145423889, 0.065739706158638, -0.13450942933559418, 0.05464523285627365, 0.016840903088450432, 0.04866192117333412, -0.027877409011125565, 0.014346851035952568, -0.03394161909818649, -0.03330754116177559, 0.036842916160821915, -0.018891291692852974, 0.007495765574276447, 0.0022952547296881676, 0.010296150110661983, -0.08401073515415192, 0.02567615546286106, -0.1505686491727829, 0.099614217877388, -0.0961308404803276, -0.0518159456551075, -0.0601000040769577, 0.045357879251241684, -0.03185882419347763, 0.02419818565249443, 0.020307941362261772, 0.18570907413959503, -0.19527573883533478, -0.02650950290262699, 0.07680527865886688, -0.1611718386411667, -0.017725100740790367, 0.19063203036785126, -0.015205047093331814, 0.1402660757303238, 0.06923151016235352, 0.20639829337596893, 0.10516545921564102, -0.052014075219631195, -0.049133993685245514, -0.02749444544315338, 0.10454170405864716, 0.20983117818832397, 0.0888904333114624, -0.052548591047525406, 0.12746496498584747, -0.012742944061756134, -0.13194285333156586, -0.035180408507585526, 0.012602802366018295, -0.07481074333190918, -0.019231263548135757, -0.0026049846783280373, -0.014215577393770218, 0.009585671126842499, -0.028665918856859207, -0.028888827189803123, -0.10943253338336945, -0.22279420495033264, 0.05549845099449158, -0.048439107835292816, 0.0367075651884079, -0.07884842902421951, 0.11724909394979477, 0.03157784417271614, 0.006433894857764244, -0.13552024960517883, -0.06153697520494461, 0.13896189630031586, -0.08127675205469131, 0.07697249203920364, 0.0029008539859205484, -0.01989632472395897, -0.01721108891069889, -0.026022950187325478, 0.04544664919376373, -0.003317958675324917, -0.0464043952524662, 0.006185437552630901, -0.17047913372516632, -0.0002180922747356817, -0.04935106635093689, 0.17498357594013214, -0.1363736242055893, -0.0012458337005227804, 0.13991844654083252, 0.13296903669834137, 0.018801186233758926, -0.03795661777257919, -0.022506898269057274, 0.02111818827688694, -0.05576247721910477, -0.03309432044625282, -0.01798967644572258, -0.03224775567650795, 0.00858053658157587, 0.09200988709926605, -0.10529148578643799, -0.08922522515058517, 0.05650518089532852, 0.07860096544027328, -0.03263281658291817, -0.08349338173866272, -0.027350638061761856, -0.0000855430553201586, -0.003055797889828682, -0.054011017084121704, 0.04024844616651535, 0.05652903392910957, 0.015696143731474876, -0.12428335845470428, -0.03802255913615227, -0.011925245635211468, -0.016983866691589355, -0.11826804280281067, 0.06743674725294113, 0.03879191726446152, -0.0773828774690628, 0.07572371512651443, 0.10143963247537613, 0.024837346747517586, 0.13091281056404114, -0.03131629899144173, -0.10521851480007172, -0.007291292771697044, 0.052207253873348236, 0.0017692340770736337, 0.07544758170843124, -0.11795148253440857, 0.029386188834905624, 0.02732802741229534, 0.06020597741007805, 0.02513275481760502, -0.11016713827848434, 0.02862420491874218, 0.004666643682867289, -0.05577812343835831, -0.014576461166143417, -0.013254627585411072, -0.01894903928041458, 0.1102525070309639, 0.01938384585082531, -0.010348168201744556, -0.06273316591978073, -0.08615550398826599, -0.07804691791534424, 0.09186335653066635, -0.1014932245016098, -0.19230803847312927, -0.1513957530260086, -0.032776039093732834, -0.06701543182134628, 0.05491990968585014, -0.03593071550130844, -0.05017998069524765, -0.0670563206076622, -0.09973736852407455, 0.10262585431337357, 0.025371922180056572, -0.0837002769112587, -0.031457316130399704, 0.021872684359550476, -0.07602281123399734, -0.09739162027835846, -0.001609914586879313, 0.004277972038835287, -0.05196642503142357, 0.0007784467888996005, -0.10694550722837448, 0.1367986649274826, 0.1585763394832611, 0.021020470187067986, -0.015908008441329002, -0.01945280097424984, 0.10337959229946136, -0.14531898498535156, 0.10006088018417358, 0.13327312469482422, -0.09001335501670837, 0.019252119585871696, 0.1851985603570938, 0.016180746257305145, -0.05992148071527481, -0.013337446376681328, 0.010893565602600574, -0.012281990610063076, -0.27402952313423157, -0.09633719176054001, -0.055773552507162094, -0.01059480756521225, 0.019497817382216454, 0.014937239699065685, -0.011903006583452225, 0.045767657458782196, -0.0897269919514656, -0.07895117253065109, 0.11773362755775452, 0.04632275179028511, 0.1209375262260437, -0.01061756256967783, 0.04793368652462959, -0.050272129476070404, -0.00591305224224925, 0.1666807383298874, 0.13462968170642853, 0.1668238490819931, -0.008186785504221916, 0.22323207557201385, 0.013111673295497894, 0.08009423315525055, -0.031161535531282425, 0.03382496535778046, 0.0276393573731184, 0.04510599374771118, -0.013086142018437386, -0.048874422907829285, -0.06868889927864075, 0.060795459896326065, 0.07368864119052887, -0.13717195391654968, 0.015523502603173256, -0.04583362489938736, 0.0846569761633873, 0.16032564640045166, 0.05871396139264107, -0.03903570771217346, 0.0018016359535977244, 0.10926032811403275, -0.04056504741311073, -0.07840588688850403, -0.01960768550634384, 0.13955926895141602, -0.05731411278247833, 0.03232571482658386, 0.01018429920077324, 0.0807117447257042, -0.1441294252872467, -0.051361083984375, -0.051432933658361435, 0.012841005809605122, -0.03717690333724022, 0.06903913617134094, -0.15034456551074982, 0.1879197657108307, 0.028199689462780952, 0.03444645181298256, -0.11560720205307007, 0.04308416321873665, 0.018854591995477676, 0.09873044490814209, 0.10858415812253952, -0.004743484780192375, 0.001466641784645617, -0.031244169920682907, -0.055572256445884705, 0.01614689826965332, 0.15861983597278595, -0.10230909287929535, 0.08172788470983505, -0.06721261143684387, 0.04705410450696945, -0.02503015659749508, 0.09094139188528061, -0.08907085657119751, -0.21806633472442627, 0.08526068180799484, -0.03871813043951988, -0.04621267691254616, -0.06365545839071274, -0.06829177588224411, -0.03943554311990738, 0.1500505805015564, -0.15924689173698425, -0.03389215096831322, -0.11195697635412216, -0.03256122022867203, 0.12324649095535278, -0.03681441769003868, -0.023417366668581963, -0.06745174527168274, 0.13121913373470306, -0.0706055611371994, -0.004852077923715115, 0.044883158057928085, -0.0507187582552433, -0.11820787191390991, -0.07048267871141434, 0.12328463047742844, 0.10457520186901093, 0.053675368428230286, 0.050686463713645935, 0.040892139077186584, 0.01631874591112137, -0.04748914763331413, -0.012809746898710728, 0.042743753641843796, 0.011978444643318653, 0.18483778834342957, -0.13890327513217926, -0.11651460081338882, -0.13165681064128876, -0.08276437222957611, 0.05336971580982208, 0.13278912007808685, -0.00702342763543129, 0.062290821224451065, 0.12549951672554016, -0.15201404690742493, -0.21023167669773102, 0.03989322856068611, 0.0393744520843029, 0.0010718462290242314, -0.05313006788492203, -0.16621193289756775, -0.06378032267093658, 0.09797579795122147, -0.004222481045871973, 0.02963479608297348, -0.1492128074169159, -0.07131650298833847, 0.010580407455563545, 0.010644253343343735, -0.07109591364860535, -0.12350199371576309, -0.051151055842638016, -0.04493507370352745, -0.0626930519938469, 0.05691017955541611, 0.05701605603098869, 0.037098873406648636, 0.04062061011791229, -0.053085263818502426, 0.027284929528832436, -0.0010681415442377329, 0.17377161979675293, 0.08261086791753769, 0.03395890071988106, -0.06440310925245285, -0.027838749811053276, 0.09149119257926941, 0.012014503590762615, 0.052123717963695526, 0.03708811104297638, -0.056805700063705444, -0.05100245773792267, -0.06516989320516586, -0.023013360798358917, 0.009748194366693497, -0.07852853089570999, -0.06495939940214157, -0.08455203473567963, 0.11680801212787628, 0.00496272649616003, 0.03150984272360802, 0.05857317894697189, -0.07015497237443924, 0.057713791728019714, 0.09326137602329254, 0.16755026578903198, 0.0012992178089916706, 0.06334976106882095, 0.005458174739032984, 0.02796127460896969, -0.017590070143342018, -0.029774902388453484, 0.03168698027729988, 0.08400541543960571, -0.004815266001969576, 0.1309186816215515, -0.02966621145606041, -0.15455082058906555, -0.030120547860860825, 0.10566879063844681, -0.058986712247133255, -0.17014096677303314, 0.02421911433339119, -0.055408019572496414, -0.1115143895149231, -0.05605446919798851, 0.14929018914699554, 0.05824793502688408, -0.028294412419199944, -0.009698969312012196, 0.09853114187717438, 0.02272341586649418, 0.15334120392799377, 0.025335945188999176, -0.01488276943564415, -0.0316958911716938, 0.125554621219635, 0.12966835498809814, -0.11323869973421097, -0.04244708642363548, 0.08857821673154831, -0.06408680230379105, -0.026558026671409607, -0.03674434870481491, -0.01111541036516428, -0.029413215816020966, -0.0666295513510704, -0.08996998518705368, -0.10218998789787292, -0.002782946452498436, 0.1106080412864685, 0.04677346348762512, 0.06192205473780632, -0.05056357383728027, -0.040885843336582184, -0.01341935619711876, 0.07072670757770538, 0.06602244824171066, 0.04263361170887947, -0.015560084953904152, -0.008396905846893787, -0.015944257378578186, -0.06962484121322632, -0.0036771108862012625, -0.04968631640076637, -0.07163123786449432, -0.008479123003780842, -0.08613847941160202, 0.028432726860046387, -0.044050831347703934, 0.016565503552556038, -0.00899969507008791, -0.07048822194337845, -0.02155887894332409, -0.03284025937318802, -0.05625459551811218, -0.004253562074154615, -0.082160085439682, 0.09806476533412933, -0.1176493689417839, 0.03219130262732506, 0.08592302352190018, -0.08793634176254272, 0.10900386422872543, -0.011806669645011425, -0.03141820430755615, 0.024492796510457993, -0.2271987944841385, 0.045410867780447006, -0.071861132979393, 0.07989270240068436, -0.03347223252058029, -0.19083422422409058, 0.04819699376821518, 0.06577253341674805, -0.020947057753801346, 0.02643621899187565, 0.12004626542329788, -0.03317562863230705, 0.1381167620420456, 0.023793881759047508, -0.14714735746383667, 0.007401658222079277, 0.10773516446352005, 0.08454214781522751, 0.01953417807817459, 0.07766077667474747, 0.0029063851106911898, 0.05294818803668022, -0.10349589586257935, -0.01731606386601925, 0.03720930218696594, -0.028587697073817253, -0.007450038567185402, -0.05635460466146469, 0.0433160774409771, 0.06623724102973938, 0.17270180583000183, 0.08503539115190506, -0.013119661249220371, 0.04772508144378662, 0.00862098392099142, 0.03888913244009018, 0.036112044006586075, 0.018783457577228546, 0.06492938846349716, -0.022365916520357132, -0.0371360220015049, -0.08362306654453278, -0.04134146869182587, -0.084515780210495, 0.08489745110273361, 0.19501039385795593, 0.0763896182179451, -0.01663803495466709, 0.1316584199666977, -0.08690101653337479, -0.006276329979300499, 0.031155293807387352, -0.0037827477790415287, -0.009223499335348606, -0.09080589562654495, 0.08813627809286118, 0.0460331067442894, -0.2121092677116394, 0.0851602703332901, -0.07163488864898682, -0.07345189154148102, -0.06843486428260803, -0.220081627368927, -0.03648361563682556, -0.044561196118593216, -0.027292409911751747, -0.1187884733080864, 0.08394516259431839, 0.10274669528007507, 0.014875761233270168, -0.06964117288589478, 0.07292997092008591, -0.15120267868041992, -0.11449076980352402, 0.0992615595459938, 0.03888363763689995, 0.08093526214361191, 0.024637840688228607, -0.019325491040945053, -0.062023937702178955, 0.08702395856380463, 0.07645363360643387, 0.09233411401510239, 0.07230912894010544, -0.03361287713050842, -0.054625868797302246, -0.03655479475855827, 0.00709232222288847, -0.034382253885269165, -0.02543223462998867, 0.22076964378356934, 0.00989529862999916, -0.009988660924136639, 0.04909959062933922, 0.14587676525115967, 0.04317450150847435, -0.05694901943206787, -0.17246124148368835, 0.05639643594622612, -0.06134466454386711, 0.05594176799058914, 0.03915722668170929, -0.12899979948997498, -0.00489106634631753, 0.10443667322397232, 0.13176411390304565, -0.050228506326675415, 0.006489807739853859, 0.061941783875226974, 0.04519238322973251, 0.018059419468045235, 0.055360838770866394, -0.014437250792980194, 0.18606312572956085, -0.01928473822772503, 0.05276807025074959, -0.01215614564716816, -0.012823615223169327, -0.01985170878469944, 0.17331433296203613, -0.013343891128897667, 0.005296741612255573, -0.12852253019809723, 0.11476198583841324, 0.1096685603260994, -0.23551562428474426, 0.06868664920330048, -0.1382683962583542, -0.10112424194812775, -0.026640795171260834, 0.013485819101333618, -0.10161925852298737, 0.07359769940376282, 0.022402802482247353, -0.07455120235681534, 0.09674586355686188, 0.03718177601695061, -0.020684197545051575, -0.07816287875175476, 0.12264595925807953, -0.08936722576618195, 0.1762116700410843, 0.007096202578395605, 0.09828200191259384, 0.08151902258396149, 0.025460660457611084, -0.06744450330734253, 0.027249934151768684, 0.09238749742507935, 0.03447785601019859, -0.026692425832152367, 0.07540202885866165, -0.03316089138388634, 0.1124107614159584, 0.13565152883529663, -0.004840679932385683, 0.10579796135425568, -0.04235504940152168, -0.0785599946975708, -0.10262659192085266, 0.04365949705243111, -0.1833733469247818, 0.10990705341100693, 0.15883056819438934, 0.009678231552243233, 0.02616044133901596, -0.06744510680437088, 0.018201326951384544, -0.005395985208451748, 0.20434452593326569, 0.008471422828733921, -0.17914383113384247, -0.013728822581470013, -0.012067851610481739, 0.06790843605995178, -0.19878387451171875, -0.0471041314303875, 0.022706756368279457, 0.02661636285483837, -0.03338266536593437, 0.09331595152616501, 0.06300704181194305, 0.023689089342951775, -0.01878909021615982, -0.22404634952545166, 0.044741012156009674, 0.06220396235585213, -0.02328507974743843, 0.029031867161393166 ]
986c40d9c5a10d748051440873fffa65f37e82d9
# Dataset Card for Variance-Aware MT Test Sets ## Table of Contents - [Dataset Card for Variance-Aware MT Test Sets](#dataset-card-for-variance-aware-mt-test-sets) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Machine Translation](#machine-translation) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Repository:** [Github](https://github.com/NLP2CT/Variance-Aware-MT-Test-Sets) - **Paper:** [NeurIPS](https://openreview.net/forum?id=hhKA5k0oVy5) - **Point of Contact:** [Runzhe Zhan](mailto:[email protected]) ### Dataset Summary This dataset comprises 70 small and discriminative test sets for machine translation (MT) evaluation called variance-aware test sets (VAT), covering 35 translation directions from WMT16 to WMT20 competitions. VAT is automatically created by a novel variance-aware filtering method that filters the indiscriminative test instances of the current MT benchmark without any human labor. Experimental results show that VAT outperforms the original WMT benchmark in terms of the correlation with human judgment across mainstream language pairs and test sets. Further analysis on the properties of VAT reveals the challenging linguistic features (e.g., translation of low-frequency words and proper nouns) for the competitive MT systems, providing guidance for constructing future MT test sets. **Disclaimer**: *The VAT test sets are hosted through Github by the [Natural Language Processing & Portuguese-Chinese Machine Translation Laboratory (NLP2CT Lab)](http://nlp2ct.cis.um.edu.mo/) of the University of Macau. They were introduced by the paper [Variance-Aware Machine Translation Test Sets](https://openreview.net/forum?id=hhKA5k0oVy5) by [Runzhe Zhan](https://runzhe.me/), [Xuebo Liu](https://sunbowliu.github.io/), [Derek F. Wong](https://www.fst.um.edu.mo/personal/derek-wong/), [Lidia S. Chao](https://aclanthology.org/people/l/lidia-s-chao/) and follow the original licensing for WMT test sets. ### Supported Tasks and Leaderboards #### Machine Translation Refer to the [original paper](https://openreview.net/forum?id=hhKA5k0oVy5) for additional details on model evaluation on VAT. ### Languages The following table taken from the original paper lists the languages supported by the VAT test sets, for a total of 70 language pairs: | ↔️ | `wmt16` | `wmt17` | `wmt18` | `wmt19` | `wmt20` | |----------:|:--------|:--------|:--------|--------:|--------:| | `xx_en` | `cs`,`de`,`fi`, <br /> `ro`,`ru`,`tr` | `cs`,`de`,`fi`,`lv`, <br /> `ru`,`tr`,`zh` | `cs`,`de`,`et`,`fi`, <br /> `ru`,`tr`,`zh` | `de`,`fi`,`gu`, <br /> `kk`,`lt`,`ru`,`zh` | `cs`,`de`,`iu`,`ja`,`km`, <br /> `pl`,`ps`,`ru`,`ta`,`zh`| | `en_xx` | `ru` | `cs`,`de`,`fi`, <br /> `lv`,`ru`,`tr`,`zh` | `cs`,`de`,`et`,`fi`, <br /> `ru`,`tr`,`zh` | `cs`,`de`,`fi`,`gu`, <br /> `kk`,`lt`,`ru`,`zh` | `cs`,`de`,`ja`,`pl`, <br /> `ru`,`ta`,`zh`| | `xx_yy` | / | / | / | `de_cs`,`de_fr`, <br /> `fr_de` | / | To use any one of the test set, pass `wmtXX_src_tgt` as configuration name to the `load_dataset` command. E.g. to load the English-Russian test set from `wmt16`, use `load_dataset('gsarti/wmt_vat', 'wmt16_en_ru')`. ## Dataset Structure ### Data Instances A sample from the `test` split (the only available split) for the WMT16 English-Russian language (`wmt16_en_ru` config) is provided below. All configurations have the same structure. ```python { 'orig_id': 0, 'source': 'The social card of residents of Ivanovo region is to be recognised as an electronic payment instrument.', 'reference': 'Социальная карта жителя Ивановской области признается электронным средством платежа.' } ``` The text is provided as-in the original dataset, without further preprocessing or tokenization. ### Data Fields - `orig_id`: Id corresponding to the row id in the original dataset, before variance-aware filtering. - `source`: The source sentence. - `reference`: The reference sentence in the target language. ### Data Splits Taken from the original repository: | Configuration | # Sentences | # Words | # Vocabulary | | :-----------: | :--------: | :-----: | :--------------: | | `wmt20_km_en` | 928 | 17170 | 3645 | | `wmt20_cs_en` | 266 | 12568 | 3502 | | `wmt20_en_de` | 567 | 21336 | 5945 | | `wmt20_ja_en` | 397 | 10526 | 3063 | | `wmt20_ps_en` | 1088 | 20296 | 4303 | | `wmt20_en_zh` | 567 | 18224 | 5019 | | `wmt20_en_ta` | 400 | 7809 | 4028 | | `wmt20_de_en` | 314 | 16083 | 4046 | | `wmt20_zh_en` | 800 | 35132 | 6457 | | `wmt20_en_ja` | 400 | 12718 | 2969 | | `wmt20_en_cs` | 567 | 16579 | 6391 | | `wmt20_en_pl` | 400 | 8423 | 3834 | | `wmt20_en_ru` | 801 | 17446 | 6877 | | `wmt20_pl_en` | 400 | 7394 | 2399 | | `wmt20_iu_en` | 1188 | 23494 | 3876 | | `wmt20_ru_en` | 396 | 6966 | 2330 | | `wmt20_ta_en` | 399 | 7427 | 2148 | | `wmt19_zh_en` | 800 | 36739 | 6168 | | `wmt19_en_cs` | 799 | 15433 | 6111 | | `wmt19_de_en` | 800 | 15219 | 4222 | | `wmt19_en_gu` | 399 | 8494 | 3548 | | `wmt19_fr_de` | 680 | 12616 | 3698 | | `wmt19_en_zh` | 799 | 20230 | 5547 | | `wmt19_fi_en` | 798 | 13759 | 3555 | | `wmt19_en_fi` | 799 | 13303 | 6149 | | `wmt19_kk_en` | 400 | 9283 | 2584 | | `wmt19_de_cs` | 799 | 15080 | 6166 | | `wmt19_lt_en` | 400 | 10474 | 2874 | | `wmt19_en_lt` | 399 | 7251 | 3364 | | `wmt19_ru_en` | 800 | 14693 | 3817 | | `wmt19_en_kk` | 399 | 6411 | 3252 | | `wmt19_en_ru` | 799 | 16393 | 6125 | | `wmt19_gu_en` | 406 | 8061 | 2434 | | `wmt19_de_fr` | 680 | 16181 | 3517 | | `wmt19_en_de` | 799 | 18946 | 5340 | | `wmt18_en_cs` | 1193 | 19552 | 7926 | | `wmt18_cs_en` | 1193 | 23439 | 5453 | | `wmt18_en_fi` | 1200 | 16239 | 7696 | | `wmt18_en_tr` | 1200 | 19621 | 8613 | | `wmt18_en_et` | 800 | 13034 | 6001 | | `wmt18_ru_en` | 1200 | 26747 | 6045 | | `wmt18_et_en` | 800 | 20045 | 5045 | | `wmt18_tr_en` | 1200 | 25689 | 5955 | | `wmt18_fi_en` | 1200 | 24912 | 5834 | | `wmt18_zh_en` | 1592 | 42983 | 7985 | | `wmt18_en_zh` | 1592 | 34796 | 8579 | | `wmt18_en_ru` | 1200 | 22830 | 8679 | | `wmt18_de_en` | 1199 | 28275 | 6487 | | `wmt18_en_de` | 1199 | 25473 | 7130 | | `wmt17_en_lv` | 800 | 14453 | 6161 | | `wmt17_zh_en` | 800 | 20590 | 5149 | | `wmt17_en_tr` | 1203 | 17612 | 7714 | | `wmt17_lv_en` | 800 | 18653 | 4747 | | `wmt17_en_de` | 1202 | 22055 | 6463 | | `wmt17_ru_en` | 1200 | 24807 | 5790 | | `wmt17_en_fi` | 1201 | 17284 | 7763 | | `wmt17_tr_en` | 1203 | 23037 | 5387 | | `wmt17_en_zh` | 800 | 18001 | 5629 | | `wmt17_en_ru` | 1200 | 22251 | 8761 | | `wmt17_fi_en` | 1201 | 23791 | 5300 | | `wmt17_en_cs` | 1202 | 21278 | 8256 | | `wmt17_de_en` | 1202 | 23838 | 5487 | | `wmt17_cs_en` | 1202 | 22707 | 5310 | | `wmt16_tr_en` | 1200 | 19225 | 4823 | | `wmt16_ru_en` | 1199 | 23010 | 5442 | | `wmt16_ro_en` | 800 | 16200 | 3968 | | `wmt16_de_en` | 1200 | 22612 | 5511 | | `wmt16_en_ru` | 1199 | 20233 | 7872 | | `wmt16_fi_en` | 1200 | 20744 | 5176 | | `wmt16_cs_en` | 1200 | 23235 | 5324 | ### Dataset Creation The dataset was created by retaining a subset of the top 40% instances from various WMT test sets for which the variance between automatic scores (BLEU, BLEURT, COMET, BERTScore) was the highest. Please refer to the original article [Variance-Aware Machine Translation Test Sets](https://openreview.net/forum?id=hhKA5k0oVy5) for additional information on dataset creation. ## Additional Information ### Dataset Curators The original authors of VAT are the curators of the original dataset. For problems or updates on this 🤗 Datasets version, please contact [[email protected]](mailto:[email protected]). ### Licensing Information The variance-aware test set were created based on the original WMT test set. Thus, the the [original data licensing plan](http://www.statmt.org/wmt20/translation-task.html) already stated by WMT organizers is still applicable: > The data released for the WMT news translation task can be freely used for research purposes, we just ask that you cite the WMT shared task overview paper, and respect any additional citation requirements on the individual data sets. For other uses of the data, you should consult with original owners of the data sets. ### Citation Information Please cite the authors if you use these corpora in your work. It is also advised to cite the original WMT shared task paper for the specific test sets that were used. ```bibtex @inproceedings{ zhan2021varianceaware, title={Variance-Aware Machine Translation Test Sets}, author={Runzhe Zhan and Xuebo Liu and Derek F. Wong and Lidia S. Chao}, booktitle={Thirty-fifth Conference on Neural Information Processing Systems, Datasets and Benchmarks Track}, year={2021}, url={https://openreview.net/forum?id=hhKA5k0oVy5} } ```
gsarti/wmt_vat
[ "task_categories:text-generation", "task_categories:translation", "annotations_creators:found", "language_creators:expert-generated", "multilinguality:multilingual", "multilinguality:translation", "size_categories:unknown", "source_datasets:extended|wmt16", "source_datasets:extended|wmt17", "source_datasets:extended|wmt18", "source_datasets:extended|wmt19", "source_datasets:extended|wmt20", "language:cs", "language:de", "language:en", "language:et", "language:fi", "language:fr", "language:gu", "language:iu", "language:ja", "language:kk", "language:km", "language:lt", "language:lv", "language:pl", "language:ps", "language:ro", "language:ru", "language:ta", "language:tr", "language:zh", "license:unknown", "conditional-text-generation", "region:us" ]
2022-03-02T23:29:22+00:00
{"annotations_creators": ["found"], "language_creators": ["expert-generated"], "language": ["cs", "de", "en", "et", "fi", "fr", "gu", "iu", "ja", "kk", "km", "lt", "lv", "pl", "ps", "ro", "ru", "ta", "tr", "zh"], "license": ["unknown"], "multilinguality": ["multilingual", "translation"], "size_categories": ["unknown"], "source_datasets": ["extended|wmt16", "extended|wmt17", "extended|wmt18", "extended|wmt19", "extended|wmt20"], "task_categories": ["text-generation", "translation"], "task_ids": [], "pretty_name": "wmt_vat", "tags": ["conditional-text-generation"]}
2022-10-27T07:37:41+00:00
[]
[ "cs", "de", "en", "et", "fi", "fr", "gu", "iu", "ja", "kk", "km", "lt", "lv", "pl", "ps", "ro", "ru", "ta", "tr", "zh" ]
TAGS #task_categories-text-generation #task_categories-translation #annotations_creators-found #language_creators-expert-generated #multilinguality-multilingual #multilinguality-translation #size_categories-unknown #source_datasets-extended|wmt16 #source_datasets-extended|wmt17 #source_datasets-extended|wmt18 #source_datasets-extended|wmt19 #source_datasets-extended|wmt20 #language-Czech #language-German #language-English #language-Estonian #language-Finnish #language-French #language-Gujarati #language-Inuktitut #language-Japanese #language-Kazakh #language-Khmer #language-Lithuanian #language-Latvian #language-Polish #language-Pushto #language-Romanian #language-Russian #language-Tamil #language-Turkish #language-Chinese #license-unknown #conditional-text-generation #region-us
Dataset Card for Variance-Aware MT Test Sets ============================================ Table of Contents ----------------- * Dataset Card for Variance-Aware MT Test Sets + Table of Contents + Dataset Description - Dataset Summary - Supported Tasks and Leaderboards * Machine Translation - Languages + Dataset Structure - Data Instances - Data Fields - Data Splits - Dataset Creation + Additional Information - Dataset Curators - Licensing Information - Citation Information Dataset Description ------------------- * Repository: Github * Paper: NeurIPS * Point of Contact: Runzhe Zhan ### Dataset Summary This dataset comprises 70 small and discriminative test sets for machine translation (MT) evaluation called variance-aware test sets (VAT), covering 35 translation directions from WMT16 to WMT20 competitions. VAT is automatically created by a novel variance-aware filtering method that filters the indiscriminative test instances of the current MT benchmark without any human labor. Experimental results show that VAT outperforms the original WMT benchmark in terms of the correlation with human judgment across mainstream language pairs and test sets. Further analysis on the properties of VAT reveals the challenging linguistic features (e.g., translation of low-frequency words and proper nouns) for the competitive MT systems, providing guidance for constructing future MT test sets. Disclaimer: \*The VAT test sets are hosted through Github by the Natural Language Processing & Portuguese-Chinese Machine Translation Laboratory (NLP2CT Lab) of the University of Macau. They were introduced by the paper Variance-Aware Machine Translation Test Sets by Runzhe Zhan, Xuebo Liu, Derek F. Wong, Lidia S. Chao and follow the original licensing for WMT test sets. ### Supported Tasks and Leaderboards #### Machine Translation Refer to the original paper for additional details on model evaluation on VAT. ### Languages The following table taken from the original paper lists the languages supported by the VAT test sets, for a total of 70 language pairs: To use any one of the test set, pass 'wmtXX\_src\_tgt' as configuration name to the 'load\_dataset' command. E.g. to load the English-Russian test set from 'wmt16', use 'load\_dataset('gsarti/wmt\_vat', 'wmt16\_en\_ru')'. Dataset Structure ----------------- ### Data Instances A sample from the 'test' split (the only available split) for the WMT16 English-Russian language ('wmt16\_en\_ru' config) is provided below. All configurations have the same structure. The text is provided as-in the original dataset, without further preprocessing or tokenization. ### Data Fields * 'orig\_id': Id corresponding to the row id in the original dataset, before variance-aware filtering. * 'source': The source sentence. * 'reference': The reference sentence in the target language. ### Data Splits Taken from the original repository: ### Dataset Creation The dataset was created by retaining a subset of the top 40% instances from various WMT test sets for which the variance between automatic scores (BLEU, BLEURT, COMET, BERTScore) was the highest. Please refer to the original article Variance-Aware Machine Translation Test Sets for additional information on dataset creation. Additional Information ---------------------- ### Dataset Curators The original authors of VAT are the curators of the original dataset. For problems or updates on this Datasets version, please contact gabriele.sarti996@URL. ### Licensing Information The variance-aware test set were created based on the original WMT test set. Thus, the the original data licensing plan already stated by WMT organizers is still applicable: > > The data released for the WMT news translation task can be freely used for research purposes, we just ask that you cite the WMT shared task overview paper, and respect any additional citation requirements on the individual data sets. For other uses of the data, you should consult with original owners of the data sets. > > > Please cite the authors if you use these corpora in your work. It is also advised to cite the original WMT shared task paper for the specific test sets that were used.
[ "### Dataset Summary\n\n\nThis dataset comprises 70 small and discriminative test sets for machine translation (MT) evaluation called variance-aware test sets (VAT), covering 35 translation directions from WMT16 to WMT20 competitions. VAT is automatically created by a novel variance-aware filtering method that filters the indiscriminative test instances of the current MT benchmark without any human labor. Experimental results show that VAT outperforms the original WMT benchmark in terms of the correlation with human judgment across mainstream language pairs and test sets. Further analysis on the properties of VAT reveals the challenging linguistic features (e.g., translation of low-frequency words and proper nouns) for the competitive MT systems, providing guidance for constructing future MT test sets.\n\n\nDisclaimer: \\*The VAT test sets are hosted through Github by the Natural Language Processing & Portuguese-Chinese Machine Translation Laboratory (NLP2CT Lab) of the University of Macau. They were introduced by the paper Variance-Aware Machine Translation Test Sets by Runzhe Zhan, Xuebo Liu, Derek F. Wong, Lidia S. Chao and follow the original licensing for WMT test sets.", "### Supported Tasks and Leaderboards", "#### Machine Translation\n\n\nRefer to the original paper for additional details on model evaluation on VAT.", "### Languages\n\n\nThe following table taken from the original paper lists the languages supported by the VAT test sets, for a total of 70 language pairs:\n\n\n\nTo use any one of the test set, pass 'wmtXX\\_src\\_tgt' as configuration name to the 'load\\_dataset' command. E.g. to load the English-Russian test set from 'wmt16', use 'load\\_dataset('gsarti/wmt\\_vat', 'wmt16\\_en\\_ru')'.\n\n\nDataset Structure\n-----------------", "### Data Instances\n\n\nA sample from the 'test' split (the only available split) for the WMT16 English-Russian language ('wmt16\\_en\\_ru' config) is provided below. All configurations have the same structure.\n\n\nThe text is provided as-in the original dataset, without further preprocessing or tokenization.", "### Data Fields\n\n\n* 'orig\\_id': Id corresponding to the row id in the original dataset, before variance-aware filtering.\n* 'source': The source sentence.\n* 'reference': The reference sentence in the target language.", "### Data Splits\n\n\nTaken from the original repository:", "### Dataset Creation\n\n\nThe dataset was created by retaining a subset of the top 40% instances from various WMT test sets for which the variance between automatic scores (BLEU, BLEURT, COMET, BERTScore) was the highest. Please refer to the original article Variance-Aware Machine Translation Test Sets for additional information on dataset creation.\n\n\nAdditional Information\n----------------------", "### Dataset Curators\n\n\nThe original authors of VAT are the curators of the original dataset. For problems or updates on this Datasets version, please contact gabriele.sarti996@URL.", "### Licensing Information\n\n\nThe variance-aware test set were created based on the original WMT test set. Thus, the the original data licensing plan already stated by WMT organizers is still applicable:\n\n\n\n> \n> The data released for the WMT news translation task can be freely used for research purposes, we just ask that you cite the WMT shared task overview paper, and respect any additional citation requirements on the individual data sets. For other uses of the data, you should consult with original owners of the data sets.\n> \n> \n> \n\n\nPlease cite the authors if you use these corpora in your work. It is also advised to cite the original WMT shared task paper for the specific test sets that were used." ]
[ "TAGS\n#task_categories-text-generation #task_categories-translation #annotations_creators-found #language_creators-expert-generated #multilinguality-multilingual #multilinguality-translation #size_categories-unknown #source_datasets-extended|wmt16 #source_datasets-extended|wmt17 #source_datasets-extended|wmt18 #source_datasets-extended|wmt19 #source_datasets-extended|wmt20 #language-Czech #language-German #language-English #language-Estonian #language-Finnish #language-French #language-Gujarati #language-Inuktitut #language-Japanese #language-Kazakh #language-Khmer #language-Lithuanian #language-Latvian #language-Polish #language-Pushto #language-Romanian #language-Russian #language-Tamil #language-Turkish #language-Chinese #license-unknown #conditional-text-generation #region-us \n", "### Dataset Summary\n\n\nThis dataset comprises 70 small and discriminative test sets for machine translation (MT) evaluation called variance-aware test sets (VAT), covering 35 translation directions from WMT16 to WMT20 competitions. VAT is automatically created by a novel variance-aware filtering method that filters the indiscriminative test instances of the current MT benchmark without any human labor. Experimental results show that VAT outperforms the original WMT benchmark in terms of the correlation with human judgment across mainstream language pairs and test sets. Further analysis on the properties of VAT reveals the challenging linguistic features (e.g., translation of low-frequency words and proper nouns) for the competitive MT systems, providing guidance for constructing future MT test sets.\n\n\nDisclaimer: \\*The VAT test sets are hosted through Github by the Natural Language Processing & Portuguese-Chinese Machine Translation Laboratory (NLP2CT Lab) of the University of Macau. They were introduced by the paper Variance-Aware Machine Translation Test Sets by Runzhe Zhan, Xuebo Liu, Derek F. Wong, Lidia S. Chao and follow the original licensing for WMT test sets.", "### Supported Tasks and Leaderboards", "#### Machine Translation\n\n\nRefer to the original paper for additional details on model evaluation on VAT.", "### Languages\n\n\nThe following table taken from the original paper lists the languages supported by the VAT test sets, for a total of 70 language pairs:\n\n\n\nTo use any one of the test set, pass 'wmtXX\\_src\\_tgt' as configuration name to the 'load\\_dataset' command. E.g. to load the English-Russian test set from 'wmt16', use 'load\\_dataset('gsarti/wmt\\_vat', 'wmt16\\_en\\_ru')'.\n\n\nDataset Structure\n-----------------", "### Data Instances\n\n\nA sample from the 'test' split (the only available split) for the WMT16 English-Russian language ('wmt16\\_en\\_ru' config) is provided below. All configurations have the same structure.\n\n\nThe text is provided as-in the original dataset, without further preprocessing or tokenization.", "### Data Fields\n\n\n* 'orig\\_id': Id corresponding to the row id in the original dataset, before variance-aware filtering.\n* 'source': The source sentence.\n* 'reference': The reference sentence in the target language.", "### Data Splits\n\n\nTaken from the original repository:", "### Dataset Creation\n\n\nThe dataset was created by retaining a subset of the top 40% instances from various WMT test sets for which the variance between automatic scores (BLEU, BLEURT, COMET, BERTScore) was the highest. Please refer to the original article Variance-Aware Machine Translation Test Sets for additional information on dataset creation.\n\n\nAdditional Information\n----------------------", "### Dataset Curators\n\n\nThe original authors of VAT are the curators of the original dataset. For problems or updates on this Datasets version, please contact gabriele.sarti996@URL.", "### Licensing Information\n\n\nThe variance-aware test set were created based on the original WMT test set. Thus, the the original data licensing plan already stated by WMT organizers is still applicable:\n\n\n\n> \n> The data released for the WMT news translation task can be freely used for research purposes, we just ask that you cite the WMT shared task overview paper, and respect any additional citation requirements on the individual data sets. For other uses of the data, you should consult with original owners of the data sets.\n> \n> \n> \n\n\nPlease cite the authors if you use these corpora in your work. It is also advised to cite the original WMT shared task paper for the specific test sets that were used." ]
[ 265, 279, 10, 18, 132, 79, 59, 14, 89, 45, 160 ]
[ "passage: TAGS\n#task_categories-text-generation #task_categories-translation #annotations_creators-found #language_creators-expert-generated #multilinguality-multilingual #multilinguality-translation #size_categories-unknown #source_datasets-extended|wmt16 #source_datasets-extended|wmt17 #source_datasets-extended|wmt18 #source_datasets-extended|wmt19 #source_datasets-extended|wmt20 #language-Czech #language-German #language-English #language-Estonian #language-Finnish #language-French #language-Gujarati #language-Inuktitut #language-Japanese #language-Kazakh #language-Khmer #language-Lithuanian #language-Latvian #language-Polish #language-Pushto #language-Romanian #language-Russian #language-Tamil #language-Turkish #language-Chinese #license-unknown #conditional-text-generation #region-us \n", "passage: ### Dataset Summary\n\n\nThis dataset comprises 70 small and discriminative test sets for machine translation (MT) evaluation called variance-aware test sets (VAT), covering 35 translation directions from WMT16 to WMT20 competitions. VAT is automatically created by a novel variance-aware filtering method that filters the indiscriminative test instances of the current MT benchmark without any human labor. Experimental results show that VAT outperforms the original WMT benchmark in terms of the correlation with human judgment across mainstream language pairs and test sets. Further analysis on the properties of VAT reveals the challenging linguistic features (e.g., translation of low-frequency words and proper nouns) for the competitive MT systems, providing guidance for constructing future MT test sets.\n\n\nDisclaimer: \\*The VAT test sets are hosted through Github by the Natural Language Processing & Portuguese-Chinese Machine Translation Laboratory (NLP2CT Lab) of the University of Macau. They were introduced by the paper Variance-Aware Machine Translation Test Sets by Runzhe Zhan, Xuebo Liu, Derek F. Wong, Lidia S. Chao and follow the original licensing for WMT test sets.### Supported Tasks and Leaderboards#### Machine Translation\n\n\nRefer to the original paper for additional details on model evaluation on VAT.### Languages\n\n\nThe following table taken from the original paper lists the languages supported by the VAT test sets, for a total of 70 language pairs:\n\n\n\nTo use any one of the test set, pass 'wmtXX\\_src\\_tgt' as configuration name to the 'load\\_dataset' command. E.g. to load the English-Russian test set from 'wmt16', use 'load\\_dataset('gsarti/wmt\\_vat', 'wmt16\\_en\\_ru')'.\n\n\nDataset Structure\n-----------------### Data Instances\n\n\nA sample from the 'test' split (the only available split) for the WMT16 English-Russian language ('wmt16\\_en\\_ru' config) is provided below. All configurations have the same structure.\n\n\nThe text is provided as-in the original dataset, without further preprocessing or tokenization.### Data Fields\n\n\n* 'orig\\_id': Id corresponding to the row id in the original dataset, before variance-aware filtering.\n* 'source': The source sentence.\n* 'reference': The reference sentence in the target language.### Data Splits\n\n\nTaken from the original repository:### Dataset Creation\n\n\nThe dataset was created by retaining a subset of the top 40% instances from various WMT test sets for which the variance between automatic scores (BLEU, BLEURT, COMET, BERTScore) was the highest. Please refer to the original article Variance-Aware Machine Translation Test Sets for additional information on dataset creation.\n\n\nAdditional Information\n----------------------### Dataset Curators\n\n\nThe original authors of VAT are the curators of the original dataset. For problems or updates on this Datasets version, please contact gabriele.sarti996@URL." ]
[ -0.0835341289639473, 0.13253408670425415, -0.004766944330185652, 0.008830179460346699, 0.07722695171833038, -0.009909792803227901, 0.07103513926267624, 0.09925028681755066, -0.009860329329967499, 0.06975138187408447, -0.0023337751626968384, -0.03192479535937309, 0.09632477164268494, 0.05321842059493065, 0.06727133691310883, -0.21233001351356506, 0.03966906666755676, -0.07417271286249161, -0.13797838985919952, 0.07622767984867096, 0.08629670739173889, -0.054695695638656616, 0.05923648923635483, -0.017448443919420242, -0.012896817177534103, 0.03027244471013546, -0.06886540353298187, -0.07342755049467087, 0.03374682739377022, 0.05097641050815582, 0.026306627318263054, 0.003716224804520607, 0.047843895852565765, -0.1563146412372589, 0.009554699063301086, 0.006355348974466324, -0.0005630026571452618, -0.027733735740184784, 0.13779690861701965, -0.05246932804584503, 0.14635470509529114, -0.12018808722496033, -0.019160961732268333, 0.06680706888437271, -0.0407690554857254, -0.11995088309049606, -0.08037540316581726, 0.025374585762619972, 0.027152512222528458, 0.08678597211837769, -0.06771218031644821, 0.11544081568717957, -0.03452572971582413, 0.04937909543514252, 0.09561523795127869, -0.1698046326637268, -0.017859242856502533, 0.027673257514834404, 0.05243788659572601, 0.044497206807136536, -0.06912443041801453, 0.026761770248413086, -0.02175528183579445, 0.013134539127349854, -0.094490185379982, -0.05401552841067314, -0.07307451218366623, -0.008971219882369041, -0.12021090090274811, 0.010554413311183453, 0.17055080831050873, -0.024307657033205032, -0.015299666672945023, -0.09989036619663239, -0.002962205559015274, 0.0783759132027626, -0.053885266184806824, 0.013481252826750278, -0.02985531836748123, -0.012583374977111816, 0.09289824217557907, -0.014855442568659782, -0.06415343284606934, 0.011901834979653358, -0.018304774537682533, 0.14725607633590698, 0.05617871880531311, 0.008506790734827518, -0.014645429328083992, 0.02312316559255123, 0.08407237380743027, -0.08411037921905518, -0.013179054483771324, -0.041330043226480484, -0.1119651049375534, 0.033543266355991364, 0.03986004739999771, -0.1285240650177002, 0.09176984429359436, 0.059983573853969574, -0.0757848396897316, 0.05818456411361694, -0.04058552160859108, -0.0012069540098309517, 0.03384026139974594, 0.14440909028053284, -0.08870835602283478, -0.11388632655143738, -0.026256542652845383, -0.048687055706977844, -0.043008215725421906, -0.0053319004364311695, -0.03781324625015259, -0.03437437862157822, -0.01968478411436081, 0.1054893210530281, 0.07337682694196701, 0.08274411410093307, 0.009375113993883133, -0.07251417636871338, 0.08810249716043472, -0.13651609420776367, 0.01140221580862999, 0.04337804764509201, -0.05763249099254608, 0.09007401764392853, -0.016650516539812088, -0.01892683282494545, -0.12470419704914093, -0.00017014332115650177, -0.0005487222224473953, 0.03160184249281883, -0.059508875012397766, -0.10381942987442017, 0.04648279771208763, 0.026651307940483093, -0.02159145101904869, -0.07623011618852615, -0.08320571482181549, -0.05161532014608383, 0.0010588672012090683, -0.03892877697944641, 0.062452103942632675, -0.035526666790246964, -0.03579428419470787, 0.011134089902043343, 0.021615296602249146, 0.029180144891142845, -0.041969090700149536, 0.007109754253178835, -0.0893864557147026, 0.010732278227806091, 0.02962210588157177, 0.04469352960586548, -0.0942058265209198, 0.03423259034752846, -0.09366471320390701, 0.10353158414363861, -0.17880147695541382, 0.0866909995675087, -0.09777804464101791, -0.021001387387514114, 0.031483471393585205, 0.01855105720460415, -0.0024191532284021378, 0.14633086323738098, -0.2151080071926117, -0.041304100304841995, 0.1373114138841629, -0.10660119354724884, -0.03283630311489105, 0.09226425737142563, 0.01592230051755905, 0.05882490798830986, 0.033242955803871155, 0.1541009098291397, 0.129133939743042, -0.008172079920768738, -0.06737195700407028, -0.08467374742031097, 0.010652817785739899, 0.15101444721221924, 0.08618548512458801, -0.05973054841160774, 0.040662266314029694, 0.038207683712244034, -0.02005733922123909, -0.012959081679582596, 0.007318243850022554, -0.05346164479851723, 0.0136649738997221, -0.02621885947883129, 0.05820613354444504, 0.024513237178325653, 0.057539310306310654, -0.054966919124126434, -0.060169804841279984, 0.03534291684627533, 0.08689813315868378, -0.025594379752874374, 0.026728734374046326, -0.09866800159215927, 0.09807967394590378, 0.06562331318855286, 0.03915829584002495, -0.14105866849422455, -0.02965952642261982, 0.0768425315618515, -0.03516087681055069, 0.11358579993247986, 0.002765156328678131, 0.023088308051228523, 0.020065898075699806, -0.027761507779359818, 0.02036035805940628, 0.004526444710791111, 0.01782038062810898, 0.002997792325913906, -0.16966143250465393, 0.038683898746967316, -0.030034460127353668, 0.033092573285102844, -0.1144256740808487, -0.010901663452386856, 0.08874842524528503, 0.12045766413211823, 0.013379662297666073, -0.019598335027694702, 0.025926843285560608, 0.058996908366680145, -0.026965072378516197, -0.03266872093081474, -0.0036716070026159286, -0.05353726074099541, -0.03699657320976257, 0.11689197272062302, -0.09940841048955917, -0.0791965052485466, 0.09928449988365173, 0.013259530067443848, -0.025234408676624298, -0.005162253975868225, -0.02426484413444996, -0.02802298404276371, 0.03210262954235077, -0.02033265307545662, 0.0784667432308197, 0.0015419851988554, 0.041589319705963135, -0.06338438391685486, -0.035885464400053024, -0.027436237782239914, 0.025936724618077278, -0.04922144114971161, 0.1340159773826599, 0.07436143606901169, -0.1578880250453949, 0.11491808295249939, 0.04103769361972809, 0.10277367383241653, 0.21504633128643036, -0.04223978519439697, -0.07203884422779083, 0.01095590926706791, 0.007955235429108143, 0.02445090562105179, 0.10490676760673523, -0.09102561324834824, 0.016999635845422745, 0.03694278746843338, 0.057084307074546814, 0.04930741339921951, -0.025507831946015358, 0.016156930476427078, -0.029934458434581757, -0.03413836658000946, -0.0011723784264177084, 0.049077749252319336, 0.0022585345432162285, 0.061489470303058624, -0.026610117405653, 0.09450805932283401, -0.08415518701076508, -0.048263777047395706, -0.10641331970691681, 0.11295554041862488, -0.18877676129341125, -0.24991720914840698, -0.127767413854599, 0.014146501198410988, -0.05211351066827774, -0.03905438631772995, -0.006351531483232975, -0.1020566076040268, -0.08756056427955627, -0.06471869349479675, 0.1537431925535202, -0.044409774243831635, -0.0825326219201088, -0.03549734503030777, 0.07783334702253342, -0.04710482805967331, -0.09210401028394699, 0.03332992270588875, 0.017493240535259247, -0.03782191127538681, 0.018948666751384735, -0.049352265894412994, 0.06386271119117737, 0.061847325414419174, -0.0011046649888157845, -0.025232261046767235, -0.04993405193090439, 0.18129602074623108, -0.12415669113397598, 0.08463258296251297, 0.058977264910936356, -0.032241374254226685, 0.0009304791456088424, 0.1459020972251892, 0.032423052936792374, -0.04539598897099495, 0.013478619046509266, 0.01141311600804329, 0.0008056368678808212, -0.27483677864074707, -0.15824247896671295, -0.07230008393526077, 0.035294242203235626, -0.010132214054465294, 0.04427522420883179, -0.03767332807183266, -0.0028872648254036903, -0.08399511128664017, -0.002822255715727806, 0.04730767756700516, 0.0439850389957428, 0.10437284409999847, 0.025151662528514862, 0.023693569004535675, -0.08101819455623627, 0.030179958790540695, 0.08213477581739426, 0.025808880105614662, 0.21505685150623322, 0.017399052157998085, 0.16358768939971924, 0.03876523673534393, 0.1238609179854393, 0.0610448382794857, 0.029405690729618073, -0.007125284522771835, 0.04311364144086838, 0.03228798508644104, -0.07508113980293274, 0.053701989352703094, 0.05909497290849686, 0.1170925498008728, -0.0704437792301178, 0.021355390548706055, -0.009452085942029953, 0.09945959597826004, 0.11081628501415253, -0.017876114696264267, 0.004572977311909199, -0.04891451075673103, 0.049467865377664566, -0.052445847541093826, -0.0716349259018898, 0.01504998467862606, 0.05830216780304909, -0.13651201128959656, 0.1178666427731514, -0.011552540585398674, 0.09605015814304352, 0.010266179218888283, -0.02157437987625599, -0.027500469237565994, 0.0020850226283073425, -0.016460906714200974, 0.09748555719852448, -0.1723986566066742, 0.19075548648834229, 0.043200068175792694, 0.012822777032852173, -0.0803612694144249, 0.010828228667378426, 0.023216426372528076, 0.038549210876226425, 0.08854197710752487, 0.045573364943265915, -0.16455504298210144, -0.02528274618089199, -0.08349162340164185, 0.014120867475867271, 0.10189851373434067, -0.006659697741270065, 0.07995077967643738, 0.0013725468888878822, -0.020783834159374237, -0.07592925429344177, -0.018328778445720673, -0.13654223084449768, -0.17734430730342865, 0.08581254631280899, -0.11953091621398926, 0.012216253206133842, -0.04911556839942932, -0.07300451397895813, -0.11286196112632751, 0.12497276067733765, -0.17835764586925507, -0.03971444070339203, -0.10471997410058975, -0.019788328558206558, 0.1869777888059616, -0.06668761372566223, 0.04299517348408699, -0.01669471524655819, 0.05474620312452316, -0.03578251972794533, -0.07148054987192154, 0.0596185140311718, -0.043210648000240326, -0.1547597199678421, -0.025106607005000114, 0.10428988188505173, 0.06239713355898857, 0.07952337712049484, -0.005131627433001995, 0.03236386552453041, 0.04639048874378204, -0.09448540210723877, -0.03986705467104912, 0.12259034067392349, -0.035765938460826874, 0.09325334429740906, -0.07732982933521271, -0.17850971221923828, -0.1229049488902092, -0.13948166370391846, 0.1307903379201889, 0.09245579689741135, -0.08307912945747375, 0.16834165155887604, 0.06279118359088898, -0.10846877098083496, -0.2319095879793167, 0.036089710891246796, 0.016689255833625793, 0.04379211366176605, 0.017290005460381508, -0.16516178846359253, 0.0026343632489442825, -0.03459438681602478, 0.015760796144604683, 0.047462500631809235, -0.15498203039169312, -0.1404235064983368, 0.02435685321688652, 0.0004764944314956665, -0.11482188105583191, -0.10798995196819305, -0.04014962911605835, -0.023380260914564133, -0.04235278069972992, 0.06732481718063354, 0.05266939103603363, 0.029727384448051453, 0.006199229508638382, 0.02841215953230858, 0.0247656162828207, -0.018782733008265495, 0.1336195021867752, 0.001488707959651947, -0.03280935809016228, -0.06461919844150543, 0.022355778142809868, 0.09711375832557678, 0.05206751450896263, 0.07274764031171799, 0.019283505156636238, -0.008747663348913193, -0.10894382745027542, -0.02483939938247204, -0.04523256793618202, 0.05401589721441269, -0.06950097531080246, -0.014584611169993877, -0.08388834446668625, 0.1069299578666687, 0.03216354176402092, -0.023189518600702286, 0.009323090314865112, -0.04461684823036194, -0.02389240264892578, 0.02630624547600746, 0.17230984568595886, 0.04301387071609497, 0.05045950040221214, 0.015228207223117352, 0.025745999068021774, 0.0329982191324234, -0.05385952815413475, 0.007092093117535114, 0.13509711623191833, -0.014268016442656517, 0.043367043137550354, -0.03262954205274582, -0.1705949604511261, 0.022045686841011047, 0.06495668739080429, -0.036111995577812195, -0.19486233592033386, -0.03291934356093407, 0.03264336287975311, 0.00015683472156524658, -0.03317246213555336, 0.09285029023885727, -0.03768336772918701, -0.048032231628894806, -0.0016661696135997772, 0.05118022859096527, -0.0021415799856185913, 0.12039563804864883, 0.01023636944591999, 0.021103717386722565, -0.07280467450618744, 0.12966594099998474, 0.1063716933131218, -0.0811193585395813, 0.03499347344040871, 0.17304113507270813, -0.07277059555053711, -0.05386098474264145, 0.06683044135570526, 0.06951741874217987, 0.008605821058154106, -0.05747445300221443, -0.010991048067808151, -0.11025689542293549, 0.035537369549274445, 0.16410166025161743, 0.011621576733887196, 0.01875627413392067, 0.011350026354193687, -0.05253441631793976, 0.01926581934094429, 0.09009572863578796, 0.07332809269428253, -0.017399488016963005, -0.03780777379870415, 0.012446532025933266, 0.03494492918252945, 0.022024359554052353, -0.010308444499969482, -0.03837151825428009, -0.10507307946681976, -0.00028875190764665604, -0.16606181859970093, 0.020655613392591476, -0.11418917775154114, -0.0025941883213818073, -0.023285970091819763, -0.09535062313079834, -0.024325447157025337, 0.005534141790121794, -0.08479403704404831, -0.017759840935468674, -0.07691705226898193, 0.09246973693370819, -0.07144007831811905, 0.017896659672260284, 0.0720483809709549, -0.03246806561946869, 0.09409651160240173, 0.03369387611746788, -0.045313604176044464, 0.10473304241895676, -0.07729741185903549, -0.010033247992396355, -0.07122436910867691, 0.08212827146053314, 0.05644098296761513, -0.08335043489933014, -0.01876414753496647, 0.014187207445502281, 0.01376178115606308, 0.020633460953831673, 0.04773695021867752, -0.036353856325149536, 0.012186253443360329, -0.0442156121134758, -0.04854082316160202, -0.0075329928658902645, 0.06672954559326172, 0.03436698019504547, -0.024939803406596184, 0.06902828812599182, -0.052764251828193665, 0.09655925631523132, -0.07565030455589294, -0.01302461139857769, -0.018081815913319588, -0.03137757629156113, 0.003894491121172905, -0.002054293639957905, 0.08076828718185425, 0.027376901358366013, 0.17607569694519043, 0.012979446910321712, 0.06286916136741638, 0.03358116000890732, -0.011164597235620022, -0.06607788056135178, 0.06917399913072586, 0.03939414769411087, 0.020122746005654335, 0.031254880130290985, -0.06273644417524338, -0.04896174371242523, -0.07579353451728821, 0.02828346937894821, 0.04800504446029663, 0.1530454307794571, 0.09769786149263382, 0.015721404924988747, 0.040461841970682144, -0.08530014008283615, -0.06410659104585648, 0.027402963489294052, -0.07546644657850266, 0.03645824268460274, -0.11185523867607117, 0.09691654145717621, 0.11240833252668381, -0.17867690324783325, 0.1010889858007431, -0.04824284091591835, -0.08528494834899902, -0.05062384158372879, -0.1857243776321411, -0.046522047370672226, -0.0855003148317337, 0.006256676744669676, -0.08798643201589584, 0.05859997868537903, -0.04783882945775986, 0.08266698569059372, -0.030878562480211258, 0.10490036010742188, -0.04540327191352844, -0.0888763815164566, 0.04764450341463089, 0.0056658838875591755, 0.0456661656498909, 0.04202844202518463, 0.04269692301750183, -0.020254556089639664, 0.03467845916748047, 0.015139726921916008, 0.08031128346920013, -0.09304304420948029, 0.0305364727973938, -0.05183655768632889, -0.02573716640472412, 0.012633128091692924, -0.029705025255680084, -0.01540058571845293, 0.20144444704055786, 0.06869569420814514, -0.009828710928559303, 0.004557959735393524, 0.12238766998052597, 0.0339406356215477, -0.1642935425043106, -0.1404465138912201, 0.021598942577838898, 0.00895729474723339, 0.0040544550865888596, 0.024875352159142494, -0.0639704167842865, -0.002565443515777588, 0.21628135442733765, 0.24088895320892334, 0.02115349844098091, 0.023515518754720688, 0.006159147247672081, 0.021126966923475266, -0.026648206636309624, 0.07544739544391632, 0.014651070348918438, 0.197772815823555, -0.015753434970974922, -0.07465440779924393, -0.10394088923931122, -0.03742680698633194, -0.09094317257404327, 0.0851929634809494, 0.005869562737643719, -0.0721433162689209, -0.008725772611796856, 0.13561248779296875, -0.14112946391105652, -0.14670100808143616, -0.05922853201627731, -0.14008992910385132, -0.11534397304058075, -0.03073018044233322, 0.05565257370471954, 0.06260938197374344, -0.010672367177903652, 0.0438060387969017, -0.014339983463287354, 0.02526499144732952, 0.06025601550936699, -0.048887699842453, -0.039844341576099396, 0.11629548668861389, -0.10090220719575882, 0.13038897514343262, -0.01331136655062437, 0.04514043405652046, 0.0638810396194458, 0.07693485915660858, -0.1030406728386879, 0.0072886887937784195, 0.07937232404947281, -0.008885329589247704, 0.04088905453681946, 0.14735059440135956, 0.006918559782207012, 0.14718684554100037, 0.06407959759235382, 0.06592084467411041, 0.12249813973903656, 0.023657526820898056, 0.004169884137809277, -0.019082438200712204, 0.12213319540023804, -0.12628835439682007, 0.13162532448768616, 0.1506832242012024, -0.0293011162430048, 0.008723264560103416, -0.06854385137557983, 0.005297188181430101, -0.07675255089998245, 0.07941358536481857, -0.05190761759877205, -0.19631224870681763, -0.005995587445795536, -0.0772523507475853, 0.06636874377727509, -0.09591154754161835, -0.030888307839632034, 0.01596970111131668, 0.012180659919977188, -0.058189813047647476, 0.14111670851707458, 0.07459356635808945, -0.03786056488752365, -0.03383762389421463, -0.12474408745765686, 0.03356310725212097, 0.06879881024360657, -0.10940899699926376, -0.024054300040006638 ]
03ec56387c1aaf87b9db106a1389074390b9cb84
Dataset Summary The Common Voice dataset consists of a unique MP3 and corresponding text file. Many of the 9,283 recorded hours in the dataset also include demographic metadata like age, sex, and accent that can help train the accuracy of speech recognition engines. The dataset currently consists of 7,335 validated hours in 60 languages, but were always adding more voices and languages. Take a look at our Languages page to request a language or start contributing. Supported Tasks and Leaderboards [Needs More Information] Languages English Dataset Structure Data Instances A typical data point comprises the path to the audio file, called path and its sentence. Additional fields include accent, age, client_id, up_votes down_votes, gender, locale and segment. {'accent': 'netherlands', 'age': 'fourties', 'client_id': 'bbbcb732e0f422150c30ff3654bbab572e2a617da107bca22ff8b89ab2e4f124d03b6a92c48322862f60bd0179ae07baf0f9b4f9c4e11d581e0cec70f703ba54', 'down_votes': 0, 'gender': 'male', 'locale': 'nl', 'path': 'nl/clips/common_voice_nl_23522441.mp3', 'segment': "''", 'sentence': 'Ik vind dat een dubieuze procedure.', 'up_votes': 2, 'audio': {'path':nl/clips/common_voice_nl_23522441.mp3', 'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32), 'sampling_rate': 48000} ` Data Fields client_id: An id for which client (voice) made the recording path: The path to the audio file audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: dataset[0]["audio"] the audio file is automatically decoded and resampled to dataset.features["audio"].sampling_rate. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should always be preferred over dataset["audio"][0]. sentence: The sentence the user was prompted to speak up_votes: How many upvotes the audio file has received from reviewers down_votes: How many downvotes the audio file has received from reviewers age: The age of the speaker. gender: The gender of the speaker accent: Accent of the speaker locale: The locale of the speaker segment: Usually empty field Data Splits The speech material has been subdivided into portions for dev, train, test, validated, invalidated, reported and other. The validated data is data that has been validated with reviewers and recieved upvotes that the data is of high quality. The invalidated data is data has been invalidated by reviewers and recieved downvotes that the data is of low quality. The reported data is data that has been reported, for different reasons. The other data is data that has not yet been reviewed. The dev, test, train are all data that has been reviewed, deemed of high quality and split into dev, test and train. Dataset Creation Curation Rationale [Needs More Information] Source Data Initial Data Collection and Normalization [Needs More Information] Who are the source language producers? [Needs More Information] Annotations Annotation process [Needs More Information] Who are the annotators? [Needs More Information] Personal and Sensitive Information The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in the Common Voice dataset. Considerations for Using the Data Social Impact of Dataset The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in the Common Voice dataset. Discussion of Biases [More Information Needed] Other Known Limitations [More Information Needed] Additional Information Dataset Curators [More Information Needed] Licensing Information Public Domain, CC-0 Citation Information @inproceedings{commonvoice:2020, author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.}, title = {Common Voice: A Massively-Multilingual Speech Corpus}, booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)}, pages = {4211--4215}, year = 2020 }
guoqiang/cuge
[ "region:us" ]
2022-03-02T23:29:22+00:00
{}
2022-01-25T05:30:29+00:00
[]
[]
TAGS #region-us
Dataset Summary The Common Voice dataset consists of a unique MP3 and corresponding text file. Many of the 9,283 recorded hours in the dataset also include demographic metadata like age, sex, and accent that can help train the accuracy of speech recognition engines. The dataset currently consists of 7,335 validated hours in 60 languages, but were always adding more voices and languages. Take a look at our Languages page to request a language or start contributing. Supported Tasks and Leaderboards Languages English Dataset Structure Data Instances A typical data point comprises the path to the audio file, called path and its sentence. Additional fields include accent, age, client_id, up_votes down_votes, gender, locale and segment. {'accent': 'netherlands', 'age': 'fourties', 'client_id': 'bbbcb732e0f422150c30ff3654bbab572e2a617da107bca22ff8b89ab2e4f124d03b6a92c48322862f60bd0179ae07baf0f9b4f9c4e11d581e0cec70f703ba54', 'down_votes': 0, 'gender': 'male', 'locale': 'nl', 'path': 'nl/clips/common_voice_nl_23522441.mp3', 'segment': "''", 'sentence': 'Ik vind dat een dubieuze procedure.', 'up_votes': 2, 'audio': {'path':nl/clips/common_voice_nl_23522441.mp3', 'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32), 'sampling_rate': 48000} ' Data Fields client_id: An id for which client (voice) made the recording path: The path to the audio file audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: dataset[0]["audio"] the audio file is automatically decoded and resampled to dataset.features["audio"].sampling_rate. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should always be preferred over dataset["audio"][0]. sentence: The sentence the user was prompted to speak up_votes: How many upvotes the audio file has received from reviewers down_votes: How many downvotes the audio file has received from reviewers age: The age of the speaker. gender: The gender of the speaker accent: Accent of the speaker locale: The locale of the speaker segment: Usually empty field Data Splits The speech material has been subdivided into portions for dev, train, test, validated, invalidated, reported and other. The validated data is data that has been validated with reviewers and recieved upvotes that the data is of high quality. The invalidated data is data has been invalidated by reviewers and recieved downvotes that the data is of low quality. The reported data is data that has been reported, for different reasons. The other data is data that has not yet been reviewed. The dev, test, train are all data that has been reviewed, deemed of high quality and split into dev, test and train. Dataset Creation Curation Rationale Source Data Initial Data Collection and Normalization Who are the source language producers? Annotations Annotation process Who are the annotators? Personal and Sensitive Information The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in the Common Voice dataset. Considerations for Using the Data Social Impact of Dataset The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in the Common Voice dataset. Discussion of Biases Other Known Limitations Additional Information Dataset Curators Licensing Information Public Domain, CC-0 Citation Information @inproceedings{commonvoice:2020, author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.}, title = {Common Voice: A Massively-Multilingual Speech Corpus}, booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)}, pages = {4211--4215}, year = 2020 }
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
ec57bf8c8b1653a209c13f6e9ee66b12df0fc2db
This dataset includes 2 document images of the [DocVQA](https://docvqa.org/) dataset. They are used for testing the LayoutLMv2FeatureExtractor + LayoutLMv2Processor inside the HuggingFace Transformers library. More specifically, they are used in `tests/test_feature_extraction_layoutlmv2.py` and `tests/test_processor_layoutlmv2.py`.
hf-internal-testing/fixtures_docvqa
[ "region:us" ]
2022-03-02T23:29:22+00:00
{}
2023-09-18T16:39:07+00:00
[]
[]
TAGS #region-us
This dataset includes 2 document images of the DocVQA dataset. They are used for testing the LayoutLMv2FeatureExtractor + LayoutLMv2Processor inside the HuggingFace Transformers library. More specifically, they are used in 'tests/test_feature_extraction_layoutlmv2.py' and 'tests/test_processor_layoutlmv2.py'.
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
8665b8ad25d24519d073c267af0765cb43578523
This dataset includes 5 images for testing. It includes 4 different kinds of images (RGBA, LA, L, Rotated Image) as well as an original cats image of the COCO dataset. This dataset is used for testing in the HuggingFace Transformers library. You can see [here](https://github.com/huggingface/transformers/search?q=fixtures_image_utils) where this dataset is used.
hf-internal-testing/fixtures_image_utils
[ "region:us" ]
2022-03-02T23:29:22+00:00
{}
2021-12-07T08:06:37+00:00
[]
[]
TAGS #region-us
This dataset includes 5 images for testing. It includes 4 different kinds of images (RGBA, LA, L, Rotated Image) as well as an original cats image of the COCO dataset. This dataset is used for testing in the HuggingFace Transformers library. You can see here where this dataset is used.
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
fbeeabc448702f972cfa1c708c04cbcddf1bac81
This dataset includes 2 images: one of the [IAM Handwriting Database](https://fki.tic.heia-fr.ch/databases/iam-handwriting-database) and one of the [SRIOE](https://rrc.cvc.uab.es/?ch=13) dataset. They are used for testing OCR models that are part of the HuggingFace Transformers library. See [here](https://github.com/huggingface/transformers/search?q=fixtures_ocr) for details. More specifically, they are used inside `test_modeling_vision_encoder_decoder_model.py`, for testing the TrOCR models.
hf-internal-testing/fixtures_ocr
[ "region:us" ]
2022-03-02T23:29:22+00:00
{}
2021-12-07T08:07:29+00:00
[]
[]
TAGS #region-us
This dataset includes 2 images: one of the IAM Handwriting Database and one of the SRIOE dataset. They are used for testing OCR models that are part of the HuggingFace Transformers library. See here for details. More specifically, they are used inside 'test_modeling_vision_encoder_decoder_model.py', for testing the TrOCR models.
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
b02c58310ffb9713f6579afc2e4c73de016c3f3d
Swedish text corpus created by extracting the `"text"` from `dataset = load_dataset("europarl_bilingual", lang1="en", lang2="sv", split="train")` and processing it with: ```python import re def extract_text(batch): text = batch["translation"]["sv"] batch["text"] = re.sub(chars_to_ignore_regex, "", text.lower()) return batch ```
hf-test/sv_corpora_parliament_processed
[ "region:us" ]
2022-03-02T23:29:22+00:00
{}
2022-01-10T10:17:51+00:00
[]
[]
TAGS #region-us
Swedish text corpus created by extracting the '"text"' from 'dataset = load_dataset("europarl_bilingual", lang1="en", lang2="sv", split="train")' and processing it with:
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
f9653921a210c090fdde832534d5ac9cf3930330
# ❤️‍🩹 Sensai: Toxic Chat Dataset Sensai is a toxic chat dataset consists of live chats from Virtual YouTubers' live streams. Download the dataset from [Kaggle Datasets](https://www.kaggle.com/uetchy/sensai) and join `#livechat-dataset` channel on [holodata Discord](https://holodata.org/discord) for discussions. ## Provenance - **Source:** YouTube Live Chat events (all streams covered by [Holodex](https://holodex.net), including Hololive, Nijisanji, 774inc, etc) - **Temporal Coverage:** From 2021-01-15T05:15:33Z - **Update Frequency:** At least once per month ## Research Ideas - Toxic Chat Classification - Spam Detection - Sentence Transformer for Live Chats See [public notebooks](https://www.kaggle.com/uetchy/sensai/code) for ideas. ## Files | filename | summary | size | | ------------------------- | -------------------------------------------------------------- | -------- | | `chats_flagged_%Y-%m.csv` | Chats flagged as either deleted or banned by mods (3,100,000+) | ~ 400 MB | | `chats_nonflag_%Y-%m.csv` | Non-flagged chats (3,100,000+) | ~ 300 MB | To make it a balanced dataset, the number of `chats_nonflags` is adjusted (randomly sampled) to be the same as `chats_flagged`. Ban and deletion are equivalent to `markChatItemsByAuthorAsDeletedAction` and `markChatItemAsDeletedAction` respectively. ## Dataset Breakdown ### Chats (`chats_%Y-%m.csv`) | column | type | description | | --------------- | ------ | ---------------------------- | | body | string | chat message | | membership | string | membership status | | authorChannelId | string | anonymized author channel id | | channelId | string | source channel id | #### Membership status | value | duration | | ----------------- | ------------------------- | | unknown | Indistinguishable | | non-member | 0 | | less than 1 month | < 1 month | | 1 month | >= 1 month, < 2 months | | 2 months | >= 2 months, < 6 months | | 6 months | >= 6 months, < 12 months | | 1 year | >= 12 months, < 24 months | | 2 years | >= 24 months | #### Pandas usage Set `keep_default_na` to `False` and `na_values` to `''` in `read_csv`. Otherwise, chat message like `NA` would incorrectly be treated as NaN value. ```python import pandas as pd from glob import iglob flagged = pd.concat([ pd.read_csv(f, na_values='', keep_default_na=False) for f in iglob('../input/sensai/chats_flagged_*.csv') ], ignore_index=True) ``` ## Consideration ### Anonymization `authorChannelId` are anonymized by SHA-1 hashing algorithm with a pinch of undisclosed salt. ### Handling Custom Emojis All custom emojis are replaced with a Unicode replacement character `U+FFFD`. ## Citation ```latex @misc{sensai-dataset, author={Yasuaki Uechi}, title={Sensai: Toxic Chat Dataset}, year={2021}, month={8}, version={31}, url={https://github.com/holodata/sensai-dataset} } ``` ## License - Code: [MIT License](https://github.com/holodata/sensai-dataset/blob/master/LICENSE) - Dataset: [ODC Public Domain Dedication and Licence (PDDL)](https://opendatacommons.org/licenses/pddl/1-0/index.html)
holodata/sensai
[ "region:us" ]
2022-03-02T23:29:22+00:00
{}
2021-11-01T05:16:32+00:00
[]
[]
TAGS #region-us
️‍ Sensai: Toxic Chat Dataset ============================= Sensai is a toxic chat dataset consists of live chats from Virtual YouTubers' live streams. Download the dataset from Kaggle Datasets and join '#livechat-dataset' channel on holodata Discord for discussions. Provenance ---------- * Source: YouTube Live Chat events (all streams covered by Holodex, including Hololive, Nijisanji, 774inc, etc) * Temporal Coverage: From 2021-01-15T05:15:33Z * Update Frequency: At least once per month Research Ideas -------------- * Toxic Chat Classification * Spam Detection * Sentence Transformer for Live Chats See public notebooks for ideas. Files ----- filename: 'chats\_flagged\_%Y-%m.csv', summary: Chats flagged as either deleted or banned by mods (3,100,000+), size: ~ 400 MB filename: 'chats\_nonflag\_%Y-%m.csv', summary: Non-flagged chats (3,100,000+), size: ~ 300 MB To make it a balanced dataset, the number of 'chats\_nonflags' is adjusted (randomly sampled) to be the same as 'chats\_flagged'. Ban and deletion are equivalent to 'markChatItemsByAuthorAsDeletedAction' and 'markChatItemAsDeletedAction' respectively. Dataset Breakdown ----------------- ### Chats ('chats\_%Y-%m.csv') column: body, type: string, description: chat message column: membership, type: string, description: membership status column: authorChannelId, type: string, description: anonymized author channel id column: channelId, type: string, description: source channel id #### Membership status #### Pandas usage Set 'keep\_default\_na' to 'False' and 'na\_values' to '''' in 'read\_csv'. Otherwise, chat message like 'NA' would incorrectly be treated as NaN value. Consideration ------------- ### Anonymization 'authorChannelId' are anonymized by SHA-1 hashing algorithm with a pinch of undisclosed salt. ### Handling Custom Emojis All custom emojis are replaced with a Unicode replacement character 'U+FFFD'. License ------- * Code: MIT License * Dataset: ODC Public Domain Dedication and Licence (PDDL)
[ "### Chats ('chats\\_%Y-%m.csv')\n\n\ncolumn: body, type: string, description: chat message\ncolumn: membership, type: string, description: membership status\ncolumn: authorChannelId, type: string, description: anonymized author channel id\ncolumn: channelId, type: string, description: source channel id", "#### Membership status", "#### Pandas usage\n\n\nSet 'keep\\_default\\_na' to 'False' and 'na\\_values' to '''' in 'read\\_csv'. Otherwise, chat message like 'NA' would incorrectly be treated as NaN value.\n\n\nConsideration\n-------------", "### Anonymization\n\n\n'authorChannelId' are anonymized by SHA-1 hashing algorithm with a pinch of undisclosed salt.", "### Handling Custom Emojis\n\n\nAll custom emojis are replaced with a Unicode replacement character 'U+FFFD'.\n\n\nLicense\n-------\n\n\n* Code: MIT License\n* Dataset: ODC Public Domain Dedication and Licence (PDDL)" ]
[ "TAGS\n#region-us \n", "### Chats ('chats\\_%Y-%m.csv')\n\n\ncolumn: body, type: string, description: chat message\ncolumn: membership, type: string, description: membership status\ncolumn: authorChannelId, type: string, description: anonymized author channel id\ncolumn: channelId, type: string, description: source channel id", "#### Membership status", "#### Pandas usage\n\n\nSet 'keep\\_default\\_na' to 'False' and 'na\\_values' to '''' in 'read\\_csv'. Otherwise, chat message like 'NA' would incorrectly be treated as NaN value.\n\n\nConsideration\n-------------", "### Anonymization\n\n\n'authorChannelId' are anonymized by SHA-1 hashing algorithm with a pinch of undisclosed salt.", "### Handling Custom Emojis\n\n\nAll custom emojis are replaced with a Unicode replacement character 'U+FFFD'.\n\n\nLicense\n-------\n\n\n* Code: MIT License\n* Dataset: ODC Public Domain Dedication and Licence (PDDL)" ]
[ 6, 86, 5, 64, 33, 52 ]
[ "passage: TAGS\n#region-us \n### Chats ('chats\\_%Y-%m.csv')\n\n\ncolumn: body, type: string, description: chat message\ncolumn: membership, type: string, description: membership status\ncolumn: authorChannelId, type: string, description: anonymized author channel id\ncolumn: channelId, type: string, description: source channel id#### Membership status#### Pandas usage\n\n\nSet 'keep\\_default\\_na' to 'False' and 'na\\_values' to '''' in 'read\\_csv'. Otherwise, chat message like 'NA' would incorrectly be treated as NaN value.\n\n\nConsideration\n-------------### Anonymization\n\n\n'authorChannelId' are anonymized by SHA-1 hashing algorithm with a pinch of undisclosed salt.### Handling Custom Emojis\n\n\nAll custom emojis are replaced with a Unicode replacement character 'U+FFFD'.\n\n\nLicense\n-------\n\n\n* Code: MIT License\n* Dataset: ODC Public Domain Dedication and Licence (PDDL)" ]
[ -0.0027985419146716595, 0.0474601611495018, -0.0029359699692577124, 0.00821362342685461, 0.1334296613931656, 0.009409885853528976, 0.2826771140098572, -0.0512455590069294, 0.05669444426894188, 0.06834213435649872, 0.003852235618978739, 0.016054095700383186, 0.11450523138046265, 0.15564151108264923, -0.07709112018346786, -0.10037732124328613, 0.026221709325909615, -0.04261104017496109, 0.08287104219198227, 0.008465760387480259, 0.06983372569084167, -0.0010595002677291632, 0.09491223841905594, 0.009754839353263378, -0.04770072177052498, -0.015703774988651276, 0.03762388974428177, -0.02888922207057476, 0.014162135310471058, 0.04729044437408447, 0.023133208975195885, 0.032951463013887405, -0.020723026245832443, -0.24783837795257568, 0.03662789240479469, 0.0422765277326107, -0.07959675788879395, -0.002220721682533622, 0.1151517704129219, 0.06252232193946838, 0.27656906843185425, -0.030924402177333832, -0.037848617881536484, 0.051422711461782455, -0.056232258677482605, -0.08430317044258118, -0.13660399615764618, 0.041076015681028366, 0.05290549620985985, 0.0503409281373024, -0.003657663008198142, 0.0946226567029953, -0.120826356112957, 0.04130547121167183, -0.05186499282717705, -0.19440975785255432, 0.06526460498571396, 0.14603127539157867, -0.026857394725084305, 0.12223644554615021, -0.07395593822002411, -0.018535321578383446, 0.07496830075979233, -0.015512008219957352, -0.09888121485710144, -0.020185086876153946, -0.029455630108714104, -0.03722685948014259, -0.020853692665696144, -0.1223081573843956, 0.27900606393814087, 0.08887476474046707, -0.07246123999357224, -0.01149225514382124, -0.02213522233068943, -0.05576804652810097, 0.03799568861722946, -0.011848053894937038, -0.00741223432123661, 0.10338589549064636, 0.1178305521607399, -0.016626931726932526, -0.1112440973520279, -0.017220087349414825, -0.0825294554233551, -0.09856267273426056, 0.02057577297091484, 0.06834312528371811, -0.15121090412139893, -0.004087843932211399, -0.058670319616794586, -0.03302808105945587, -0.008752557449042797, -0.05232088267803192, 0.08538422733545303, 0.03367803245782852, -0.011519156396389008, -0.04707786440849304, 0.10092108696699142, 0.06119506433606148, -0.17533212900161743, 0.02129623107612133, -0.1509789526462555, 0.09319157153367996, 0.035613320767879486, -0.009476196952164173, 0.01315267477184534, 0.1574999839067459, 0.04630846530199051, -0.11408323049545288, 0.07574240118265152, -0.05012744292616844, -0.07357556372880936, 0.0295509472489357, 0.05613749846816063, 0.08178693056106567, -0.03919316455721855, 0.026607129722833633, -0.056815337389707565, -0.004360886290669441, 0.2723786532878876, -0.004197162110358477, 0.02921796590089798, 0.08105886727571487, -0.0005593412206508219, 0.02188269980251789, 0.03021577186882496, 0.05382354184985161, -0.057903777807950974, 0.05620413273572922, -0.04964549094438553, -0.022403759881854057, -0.050689686089754105, -0.0513136126101017, 0.03650375083088875, 0.0500347726047039, -0.04820753633975983, -0.11587445437908173, -0.049900174140930176, -0.013974766246974468, -0.029059579595923424, 0.07755278795957565, -0.0028322895523160696, 0.005722533445805311, -0.033574122935533524, -0.05530043691396713, -0.03997105732560158, -0.20269359648227692, -0.10811753571033478, 0.027873864397406578, -0.04936642944812775, -0.014281176961958408, -0.17498944699764252, 0.07033701986074448, -0.06499337404966354, 0.08859582990407944, -0.07885275781154633, 0.04290110245347023, -0.043192021548748016, 0.04548081383109093, -0.002325528534129262, -0.014136988669633865, -0.003688186639919877, -0.03350235894322395, -0.012430138885974884, 0.08214238286018372, -0.15827588737010956, -0.0376792773604393, 0.09151356667280197, -0.12420643121004105, -0.07851606607437134, 0.11512640863656998, -0.008933192119002342, -0.1515890508890152, 0.059323519468307495, 0.30039143562316895, 0.026676515117287636, -0.06796982884407043, -0.07623904943466187, -0.028644734993577003, 0.006681377533823252, -0.10963697731494904, 0.08927477896213531, -0.08940013498067856, 0.03937358409166336, 0.02178812213242054, -0.03745138272643089, -0.0113176004961133, 0.004072657320648432, -0.061507705599069595, -0.04342586547136307, -0.015479999594390392, -0.07819236069917679, -0.012135151773691177, -0.09031882137060165, -0.08459485322237015, 0.02534346841275692, -0.15143448114395142, 0.03175516799092293, -0.003285385901108384, 0.07728122919797897, -0.06030077487230301, 0.005041018594056368, 0.09850462526082993, 0.03499715402722359, -0.039260394871234894, -0.09200525283813477, 0.06592622399330139, -0.04722804203629494, 0.11586050689220428, 0.13387830555438995, -0.05957015976309776, 0.03537992015480995, 0.06610200554132462, -0.026028858497738838, 0.07098656892776489, 0.0065458002500236034, 0.005434140097349882, -0.19663961231708527, 0.020524214953184128, 0.0045080934651196, 0.1388881802558899, -0.185902938246727, 0.01661963015794754, 0.09884266555309296, 0.02680356614291668, -0.0122410599142313, -0.01525143999606371, -0.009169730357825756, 0.027876324951648712, -0.03311609476804733, -0.00024229720293078572, -0.023502198979258537, 0.03669202700257301, -0.09891755133867264, 0.13699495792388916, -0.23196367919445038, 0.04472321644425392, 0.11356284469366074, 0.016000395640730858, 0.02278614602982998, 0.01302677858620882, -0.03178401663899422, 0.0009807203896343708, 0.06826221197843552, 0.03742947056889534, 0.11444146186113358, -0.05756578594446182, 0.0618523433804512, -0.07280164211988449, 0.06199444457888603, -0.019317960366606712, -0.09389553219079971, -0.11277691274881363, 0.0979103222489357, 0.08017206192016602, -0.12628591060638428, 0.1343572437763214, 0.009361404925584793, 0.029997477307915688, 0.17785198986530304, 0.02470368705689907, -0.016010703518986702, -0.0370539091527462, 0.09956938773393631, 0.013261240907013416, 0.04960877448320389, -0.05926701799035072, 0.053791679441928864, 0.037983041256666183, 0.10132642835378647, 0.07428974658250809, -0.11177166551351547, -0.04329874739050865, 0.04267367720603943, -0.09306309372186661, -0.16172917187213898, -0.015253517776727676, 0.010743353515863419, 0.10742446780204773, -0.05886038392782211, 0.0031389156356453896, 0.05710022896528244, -0.047326043248176575, -0.20321394503116608, 0.1105036586523056, -0.16906030476093292, -0.1603294163942337, -0.1321699023246765, -0.040197163820266724, -0.12720820307731628, 0.018262891098856926, 0.12018126994371414, -0.0939236432313919, -0.10043664276599884, -0.07008431851863861, -0.15006040036678314, -0.035481397062540054, -0.08536646515130997, 0.006266511511057615, -0.04026913642883301, 0.012158064171671867, -0.11142101138830185, -0.04044010117650032, 0.0021385792642831802, -0.09313938766717911, 0.06212689355015755, -0.0207869540899992, 0.14342357218265533, 0.1226254403591156, -0.04753968492150307, 0.006687126122415066, -0.014441809616982937, 0.1278991401195526, -0.01103676576167345, -0.012118629179894924, 0.13071373105049133, 0.02995935268700123, 0.08580628037452698, 0.20800469815731049, -0.008354880847036839, -0.02604345604777336, 0.05706370994448662, -0.015063483268022537, -0.06398170441389084, -0.2982068955898285, -0.1138475313782692, -0.0820305347442627, 0.0437430702149868, -0.11079554259777069, 0.09818657487630844, 0.18830375373363495, -0.03813868388533592, -0.10271403938531876, 0.06875935196876526, 0.03056308813393116, 0.06638071686029434, 0.04276746138930321, 0.053649622946977615, 0.03267265111207962, -0.0591791570186615, 0.08234626799821854, 0.14161892235279083, 0.011226817034184933, 0.15971511602401733, 0.03709883987903595, 0.19094990193843842, 0.09732312709093094, 0.16516812145709991, 0.010284430347383022, -0.10830757766962051, -0.008067511022090912, 0.04905906319618225, -0.015690093860030174, -0.03825170919299126, -0.04531024396419525, 0.047648392617702484, 0.031993318349123, -0.1033422201871872, -0.03965577110648155, 0.029185829684138298, 0.06197051331400871, -0.04636900871992111, -0.009928745217621326, -0.13542108237743378, -0.025006551295518875, 0.03318018466234207, 0.0654706209897995, -0.05347773805260658, 0.03163381293416023, 0.12297069281339645, -0.04549800977110863, 0.050222672522068024, 0.07034853100776672, 0.07077498733997345, -0.09992975741624832, 0.04839668050408363, -0.02850441262125969, 0.018087022006511688, -0.02403610572218895, 0.10034555941820145, -0.3367011845111847, 0.07569140940904617, 0.004690606612712145, 0.06577057391405106, -0.04377563297748566, 0.006324701942503452, 0.02705577202141285, 0.17958970367908478, -0.01217873115092516, 0.04403058812022209, -0.1108032837510109, -0.07312692701816559, 0.010406430810689926, 0.03193039074540138, 0.050754159688949585, 0.0609552375972271, -0.051462773233652115, 0.0033353781327605247, 0.05308868736028671, 0.007223313674330711, 0.05209029093384743, -0.21350425481796265, -0.09671104699373245, 0.08858537673950195, 0.19609683752059937, 0.05831553786993027, -0.05063214898109436, 0.05047217756509781, 0.003864767961204052, 0.10438082367181778, -0.09171310812234879, -0.047988470643758774, -0.0413496196269989, -0.11880435794591904, -0.0842919871211052, -0.07544615864753723, -0.04432110860943794, -0.056878771632909775, 0.0650058165192604, -0.044614821672439575, -0.12674787640571594, 0.05117049440741539, -0.08803720027208328, -0.05129224807024002, -0.048096105456352234, -0.006031168159097433, 0.06559915840625763, 0.024113081395626068, 0.02872963435947895, -0.042295608669519424, -0.04455205053091049, -0.15492889285087585, -0.003862598678097129, 0.08092878013849258, 0.06129337474703789, 0.06344538182020187, -0.03809205815196037, -0.24210673570632935, -0.06817816942930222, -0.07483737170696259, -0.007341277319937944, 0.3310716450214386, 0.01240699551999569, 0.09822645783424377, 0.24997439980506897, -0.09513860195875168, -0.11521116644144058, -0.052127111703157425, -0.13703592121601105, -0.050872910767793655, 0.06801322102546692, -0.08573555946350098, -0.009517422877252102, 0.08495679497718811, -0.007292724214494228, 0.19661284983158112, -0.12033375352621078, -0.06549661606550217, 0.12385368347167969, -0.0024728034622967243, 0.029092876240611076, -0.19243626296520233, -0.12840068340301514, -0.07584042847156525, -0.19560423493385315, 0.16113285720348358, -0.026723342016339302, 0.03740663081407547, 0.02371642366051674, 0.10226865112781525, -0.03602464869618416, -0.04477539658546448, 0.12377419322729111, 0.013711852952837944, 0.05713251233100891, -0.13720737397670746, -0.04245145991444588, 0.12480586022138596, -0.049615878611803055, 0.12690086662769318, -0.1754026859998703, 0.030364567413926125, -0.10446090996265411, 0.015141598880290985, -0.036386504769325256, 0.014217655174434185, -0.03493720665574074, -0.03098343312740326, -0.14754489064216614, -0.042680930346250534, 0.06948384642601013, 0.04543972387909889, 0.03260301798582077, 0.0004954446339979768, 0.05072951316833496, 0.0852585881948471, 0.0846560150384903, -0.051358912140131, 0.027911700308322906, -0.10402794927358627, -0.030780654400587082, 0.05625191330909729, -0.03130783885717392, 0.009474145248532295, 0.0958983451128006, -0.04308849200606346, 0.15269024670124054, 0.023934785276651382, -0.10141663253307343, 0.041787050664424896, 0.019657496362924576, -0.14626388251781464, -0.13120971620082855, 0.05376332625746727, 0.2376105636358261, 0.04318632930517197, 0.06434959918260574, 0.02007037214934826, -0.03901619464159012, 0.02513088285923004, 0.001975396880879998, 0.07914961129426956, -0.028163237497210503, -0.04769746959209442, 0.08051405102014542, -0.008992934599518776, -0.10667287558317184, 0.04068555310368538, 0.10907640308141708, -0.00010968514834530652, 0.07841719686985016, 0.07201538234949112, -0.13753780722618103, -0.0507487989962101, -0.04262390732765198, 0.17849968373775482, 0.007072912994772196, -0.1868421584367752, -0.027335774153470993, -0.08668885380029678, -0.013920421712100506, -0.022870581597089767, -0.028563937172293663, 0.05556844547390938, -0.015354706905782223, 0.005569453351199627, -0.058022137731313705, -0.0002791994484141469, -0.11947079002857208, 0.051611099392175674, -0.04117264971137047, 0.010232873260974884, -0.020788995549082756, 0.05184883251786232, 0.042186032980680466, -0.017978275194764137, -0.054764434695243835, -0.018277807161211967, -0.15441268682479858, 0.0589216873049736, -0.014186161570250988, -0.01578717865049839, 0.03505542501807213, -0.029171818867325783, 0.006498733069747686, 0.018944857642054558, -0.027385307475924492, -0.10526442527770996, 0.002452666172757745, 0.087682344019413, -0.24737466871738434, -0.03660138323903084, 0.014619763940572739, 0.03984891250729561, 0.04421202465891838, 0.07997263967990875, -0.05027582123875618, -0.038490861654281616, -0.2446688860654831, 0.005857392679899931, 0.019186807796359062, 0.03620023652911186, 0.052703239023685455, 0.0072453320026397705, -0.043419547379016876, 0.08696630597114563, -0.07847757637500763, -0.0007975964108482003, 0.11842337250709534, -0.06172399967908859, -0.047096967697143555, -0.07684376835823059, -0.0981808677315712, -0.030400896444916725, 0.0568232424557209, 0.08276893198490143, 0.05956649407744408, 0.11359357088804245, -0.03929046541452408, -0.021330321207642555, -0.07126699388027191, -0.036332134157419205, 0.08112558722496033, -0.011115837842226028, -0.04472862184047699, 0.007886805571615696, -0.018874552100896835, -0.02249012142419815, 0.14147724211215973, 0.05753795802593231, -0.167837992310524, 0.00022746543982066214, 0.0423981174826622, -0.0007518089842051268, -0.03984121233224869, 0.1420421451330185, -0.019152451306581497, 0.026757417246699333, 0.021418774500489235, -0.03782781586050987, 0.06684596836566925, -0.05408444255590439, 0.23383821547031403, -0.012799958698451519, 0.02281476929783821, 0.004404239822179079, 0.037661489099264145, -0.13181421160697937, -0.10544552654027939, -0.10870363563299179, -0.0693173035979271, 0.08224986493587494, 0.04165926203131676, 0.12650257349014282, 0.195280522108078, -0.1652124524116516, 0.0659676268696785, -0.026076454669237137, -0.08006198704242706, -0.0481540746986866, -0.1861243098974228, 0.019934194162487984, -0.12207840383052826, 0.004941008053719997, -0.09550250321626663, 0.04169777035713196, 0.1437549591064453, -0.009663638658821583, -0.12032987177371979, 0.008814177475869656, -0.022817671298980713, -0.040122997015714645, -0.051046375185251236, -0.052490245550870895, -0.005596599075943232, 0.018664823845028877, -0.04799666628241539, 0.07121738791465759, -0.04207821562886238, 0.09126673638820648, 0.07366514205932617, 0.11267436295747757, 0.10362199693918228, -0.06356891244649887, -0.06049331650137901, 0.006842243950814009, -0.03494597226381302, -0.015233533456921577, 0.21413543820381165, 0.05212290585041046, 0.027144500985741615, 0.06788045912981033, -0.00563200656324625, 0.058728910982608795, 0.008097794838249683, -0.07157190144062042, 0.09635062515735626, -0.05417308956384659, 0.00838254950940609, 0.0020875907503068447, -0.14803466200828552, -0.04713485762476921, 0.12367003411054611, 0.21928225457668304, -0.10183742642402649, 0.0056518386118113995, -0.08297359198331833, 0.002277349354699254, 0.0039003847632557154, 0.12253355234861374, 0.059397775679826736, 0.18370063602924347, 0.05425385385751724, 0.09649425745010376, -0.024886086583137512, 0.0267862007021904, -0.08913536369800568, 0.0680108442902565, -0.0196243803948164, -0.09075073897838593, 0.003600646276026964, 0.08747975528240204, -0.13512514531612396, -0.017871558666229248, 0.05760710686445236, 0.027862364426255226, 0.010150914080440998, 0.002659265650436282, 0.11912894994020462, -0.014580333605408669, 0.03282838314771652, -0.07953920215368271, 0.023355960845947266, 0.13415297865867615, -0.004742256365716457, -0.09400983154773712, -0.02436080388724804, 0.008288078010082245, 0.005302361212670803, 0.18230387568473816, 0.0312242079526186, 0.11665396392345428, 0.04845694452524185, 0.05659211799502373, -0.031734853982925415, 0.1450633853673935, 0.027754900977015495, 0.05634090304374695, -0.03668959066271782, -0.04001855105161667, -0.06452850997447968, 0.06751569360494614, 0.07819470763206482, -0.08829730749130249, 0.034806013107299805, 0.033568255603313446, 0.0292335394769907, -0.07494353502988815, 0.07897301018238068, -0.1353224515914917, 0.06431441754102707, 0.0358797051012516, -0.018635300919413567, -0.018527576699852943, -0.0168744083493948, -0.015781963244080544, -0.012681746855378151, -0.031793925911188126, 0.034198857843875885, -0.0038993079215288162, 0.0312918946146965, 0.12313173711299896, 0.15197715163230896, -0.2252017706632614, 0.04112470522522926, -0.10816147923469543, -0.007986164651811123, -0.10560983419418335, 0.05435781180858612, 0.06186182051897049, -0.04794193059206009, -0.05931408330798149, -0.0014924771385267377, 0.03400848060846329, 0.07869371771812439, 0.005197309423238039, -0.05749311298131943 ]
1061da9ff8290ae64d2ab4659eccd5c78407ff13
# ReCAM: Reading Comprehension of Abstract Meaning ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description This dataset is from SemEval 2021 Task 4: Reading Comprehension of Abstract Meaning. [Original repository for the dataset and baseline code can be accessed here.](https://github.com/boyuanzheng010/SemEval2021-Reading-Comprehension-of-Abstract-Meaning) - **Paper:** [SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning in ACL](https://aclanthology.org/2021.semeval-1.4.pdf) - **Leaderboard:** [CodaLab](https://competitions.codalab.org/competitions/26153#learn_the_details) ### Dataset Summary Refer to [this page](https://competitions.codalab.org/competitions/26153#learn_the_details). ## Dataset Structure Refer to [the GitHub](https://github.com/boyuanzheng010/SemEval2021-Reading-Comprehension-of-Abstract-Meaning). ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information ``` @inproceedings{zheng-etal-2021-semeval, title = "{S}em{E}val-2021 Task 4: Reading Comprehension of Abstract Meaning", author = "Zheng, Boyuan and Yang, Xiaoyu and Ruan, Yu-Ping and Ling, Zhenhua and Liu, Quan and Wei, Si and Zhu, Xiaodan", booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.semeval-1.4", doi = "10.18653/v1/2021.semeval-1.4", pages = "37--50", } ``` ### Contributions Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
holylovenia/recam
[ "region:us" ]
2022-03-02T23:29:22+00:00
{"YAML tags": [{"copy-paste the tags obtained with the tagging app": "https://github.com/huggingface/datasets-tagging"}]}
2021-10-18T02:28:53+00:00
[]
[]
TAGS #region-us
# ReCAM: Reading Comprehension of Abstract Meaning ## Table of Contents - Table of Contents - Dataset Description - Dataset Summary - Supported Tasks and Leaderboards - Languages - Dataset Structure - Data Instances - Data Fields - Data Splits - Dataset Creation - Curation Rationale - Source Data - Annotations - Personal and Sensitive Information - Considerations for Using the Data - Social Impact of Dataset - Discussion of Biases - Other Known Limitations - Additional Information - Dataset Curators - Licensing Information - Citation Information - Contributions ## Dataset Description This dataset is from SemEval 2021 Task 4: Reading Comprehension of Abstract Meaning. Original repository for the dataset and baseline code can be accessed here. - Paper: SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning in ACL - Leaderboard: CodaLab ### Dataset Summary Refer to this page. ## Dataset Structure Refer to the GitHub. ### Data Instances ### Data Fields ### Data Splits ## Dataset Creation ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information ## Considerations for Using the Data ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations ## Additional Information ### Dataset Curators ### Licensing Information ### Contributions Thanks to @github-username for adding this dataset.
[ "# ReCAM: Reading Comprehension of Abstract Meaning", "## Table of Contents\n- Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions", "## Dataset Description\n\nThis dataset is from SemEval 2021 Task 4: Reading Comprehension of Abstract Meaning. Original repository for the dataset and baseline code can be accessed here.\n\n- Paper: SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning in ACL\n- Leaderboard: CodaLab", "### Dataset Summary\n\nRefer to this page.", "## Dataset Structure\n\nRefer to the GitHub.", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions\n\nThanks to @github-username for adding this dataset." ]
[ "TAGS\n#region-us \n", "# ReCAM: Reading Comprehension of Abstract Meaning", "## Table of Contents\n- Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions", "## Dataset Description\n\nThis dataset is from SemEval 2021 Task 4: Reading Comprehension of Abstract Meaning. Original repository for the dataset and baseline code can be accessed here.\n\n- Paper: SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning in ACL\n- Leaderboard: CodaLab", "### Dataset Summary\n\nRefer to this page.", "## Dataset Structure\n\nRefer to the GitHub.", "### Data Instances", "### Data Fields", "### Data Splits", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information", "## Considerations for Using the Data", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations", "## Additional Information", "### Dataset Curators", "### Licensing Information", "### Contributions\n\nThanks to @github-username for adding this dataset." ]
[ 6, 13, 125, 74, 11, 13, 6, 5, 5, 5, 7, 4, 10, 10, 5, 5, 9, 8, 8, 7, 8, 7, 5, 6, 6, 19 ]
[ "passage: TAGS\n#region-us \n# ReCAM: Reading Comprehension of Abstract Meaning## Table of Contents\n- Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions## Dataset Description\n\nThis dataset is from SemEval 2021 Task 4: Reading Comprehension of Abstract Meaning. Original repository for the dataset and baseline code can be accessed here.\n\n- Paper: SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning in ACL\n- Leaderboard: CodaLab### Dataset Summary\n\nRefer to this page.## Dataset Structure\n\nRefer to the GitHub.### Data Instances### Data Fields### Data Splits## Dataset Creation### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information## Considerations for Using the Data### Social Impact of Dataset### Discussion of Biases### Other Known Limitations## Additional Information### Dataset Curators### Licensing Information### Contributions\n\nThanks to @github-username for adding this dataset." ]
[ -0.011781840585172176, 0.2078053206205368, -0.006432934198528528, -0.00043026305502280593, 0.11118614673614502, -0.00027456702082417905, 0.011360781267285347, 0.0923255905508995, -0.03761354833841324, 0.13639460504055023, -0.018624579533934593, 0.10305722057819366, 0.1353216916322708, 0.11129625141620636, -0.012893285602331161, -0.2227925956249237, 0.043261464685201645, -0.06480102241039276, -0.04328956454992294, 0.09213569760322571, 0.13638553023338318, -0.08990944921970367, 0.07564608007669449, -0.05848667398095131, -0.01685251295566559, 0.03970000892877579, -0.02945990301668644, -0.06045019254088402, 0.04796227440237999, 0.050849635154008865, 0.027104925364255905, 0.012553979642689228, 0.06388459354639053, -0.31293514370918274, 0.01887284778058529, 0.06098064407706261, -0.0005193442921154201, 0.05666032433509827, 0.0764433741569519, -0.0939502939581871, 0.04770488664507866, -0.16881436109542847, 0.1184430867433548, 0.07956916838884354, -0.1452801674604416, -0.0709378719329834, -0.11057130247354507, 0.02890908531844616, 0.16562224924564362, 0.03630158677697182, -0.03460398316383362, 0.00516785541549325, -0.039893362671136856, 0.02174336649477482, 0.08976156264543533, -0.11502902209758759, -0.07341764122247696, 0.07608844339847565, 0.0189314354211092, 0.07580114901065826, -0.13998402655124664, 0.03516939654946327, -0.016614442691206932, 0.0250678900629282, 0.07665316760540009, -0.031430862843990326, -0.017888374626636505, 0.05487224459648132, -0.09038619697093964, -0.05346518009901047, 0.11360330134630203, -0.02437140792608261, -0.0102058295160532, -0.15766601264476776, -0.04779201000928879, 0.018280258402228355, -0.06335067003965378, -0.014892959035933018, 0.04690740630030632, 0.009997036308050156, 0.043377719819545746, -0.04881390556693077, -0.04377681761980057, -0.030264992266893387, -0.022143276408314705, 0.027769679203629494, 0.02842755988240242, 0.0003903755568899214, 0.03476117178797722, 0.04831304773688316, 0.053092703223228455, -0.09746310114860535, -0.00537912268191576, -0.03374470770359039, -0.13922466337680817, -0.009404836222529411, 0.04957835376262665, -0.06594544649124146, 0.050741709768772125, 0.18910010159015656, -0.0784018263220787, 0.07607748359441757, -0.0628223791718483, -0.03104936145246029, 0.06760701537132263, 0.11132638156414032, -0.0648670420050621, -0.09662578254938126, -0.016889527440071106, -0.004433208145201206, -0.007942021824419498, -0.03999869525432587, 0.0111295310780406, 0.05467838793992996, 0.032558903098106384, 0.13627392053604126, 0.10272698104381561, -0.014369462616741657, -0.09597514569759369, -0.03513243421912193, 0.10754592716693878, -0.1375289261341095, 0.03106442652642727, 0.02673727460205555, 0.009694310836493969, -0.024626756086945534, -0.04675986245274544, 0.031710460782051086, -0.08570738136768341, 0.10290039330720901, -0.08363192528486252, -0.04801299422979355, -0.0759136974811554, -0.004888313356786966, 0.06665834784507751, -0.039598558098077774, -0.06810632348060608, 0.020908473059535027, -0.09836620837450027, -0.061612389981746674, 0.04579250141978264, -0.10365872085094452, -0.07106877863407135, -0.009079006500542164, -0.007850650697946548, 0.03547384962439537, 0.016880031675100327, 0.04338042810559273, -0.053053420037031174, 0.019005421549081802, -0.051018230617046356, 0.014631385914981365, 0.1007755845785141, 0.04163901507854462, -0.0699848160147667, 0.09300152212381363, -0.1330530345439911, 0.10133692622184753, -0.13398918509483337, 0.02411002665758133, -0.15208646655082703, -0.0033632575068622828, 0.052935536950826645, -0.0055370391346514225, -0.03451191633939743, 0.11673416942358017, -0.2585192322731018, -0.026125678792595863, 0.13671131432056427, -0.08015227317810059, -0.042344722896814346, 0.04578708857297897, -0.03415418043732643, -0.025987226516008377, 0.06495735049247742, 0.12441986799240112, -0.08726031333208084, -0.005468789488077164, -0.0463319830596447, -0.11552398651838303, 0.047006819397211075, 0.20230084657669067, 0.08386274427175522, -0.0855690985918045, 0.11043518781661987, 0.019343113526701927, -0.018763668835163116, -0.10121461749076843, 0.017329085618257523, -0.08799411356449127, 0.006742794997990131, 0.0319666787981987, -0.037254780530929565, -0.010929441079497337, -0.07628244906663895, -0.03294908255338669, -0.07478976249694824, -0.01902170479297638, -0.01571633853018284, -0.012153866700828075, 0.021896183490753174, -0.06106838211417198, 0.006067974958568811, 0.023664435371756554, 0.03083038330078125, -0.14636166393756866, -0.12692172825336456, 0.05392582714557648, -0.03823157399892807, 0.12504549324512482, -0.10809838026762009, -0.0026966796722263098, -0.018907694146037102, -0.037408798933029175, -0.024151600897312164, 0.01664891466498375, 0.02114792913198471, 0.0097236642614007, -0.19737865030765533, 0.0023726834915578365, -0.04497142508625984, 0.0501621849834919, -0.08656042814254761, 0.004718969576060772, 0.16564786434173584, 0.21661277115345, 0.05820209160447121, -0.06722474843263626, 0.04825834184885025, 0.011905311606824398, 0.0024331186432391405, -0.057165659964084625, 0.001920553157106042, -0.08866994827985764, -0.029452072456479073, 0.0614422969520092, -0.14199545979499817, -0.05857306346297264, 0.03989015892148018, 0.05220942944288254, -0.06516321003437042, -0.07923281937837601, -0.04560232535004616, -0.03812835365533829, -0.04242226108908653, -0.08701138198375702, 0.14360283315181732, 0.06295177340507507, 0.0020999961998313665, -0.0750839114189148, -0.044478658586740494, -0.06366607546806335, 0.005118625238537788, -0.0813353881239891, 0.09981509298086166, 0.05788343772292137, -0.15532106161117554, 0.14148086309432983, 0.05909542366862297, 0.1158038079738617, 0.11605731397867203, -0.05592777952551842, -0.07641707360744476, -0.0036044528242200613, -0.04876945912837982, 0.03257092833518982, 0.09409799426794052, -0.03589162230491638, 0.030183488503098488, 0.03457939997315407, 0.001955140382051468, 0.03484834358096123, -0.0700962021946907, 0.056611403822898865, -0.008771211840212345, -0.046849314123392105, 0.060576554387807846, -0.01762211322784424, 0.045275960117578506, 0.08849180489778519, 0.04272739961743355, 0.1259184181690216, -0.02273678034543991, -0.05597200617194176, -0.08105127513408661, 0.13377268612384796, -0.17191338539123535, -0.19464509189128876, -0.10241175442934036, -0.04710744321346283, -0.04304831102490425, -0.020567353814840317, 0.005853486247360706, -0.04452068358659744, -0.12331191450357437, -0.06890814006328583, 0.12449926137924194, 0.06117965281009674, -0.12434764951467514, -0.024540340527892113, 0.0072977012023329735, -0.009346635080873966, -0.13737672567367554, 0.012390957213938236, 0.08599238097667694, -0.09145303070545197, 0.0009198176558129489, 0.04368060082197189, 0.12263088673353195, 0.11987008154392242, 0.0862077847123146, -0.03821263089776039, -0.010983279906213284, 0.27280861139297485, -0.1354190856218338, 0.1421063244342804, 0.07246048003435135, -0.05806326866149902, 0.07001261413097382, 0.27019378542900085, 0.029505180194973946, -0.07046154886484146, 0.001180754043161869, 0.09277702122926712, -0.045005060732364655, -0.2568984031677246, -0.0911819338798523, -0.07252112030982971, -0.009028877131640911, 0.043373215943574905, 0.07368471473455429, -0.011105974204838276, 0.009111544117331505, -0.11166317760944366, -0.06326723098754883, 0.11706950515508652, 0.0912613496184349, 0.13734975457191467, 0.0024209723342210054, 0.05919571593403816, -0.008496078662574291, 0.0016411617398262024, 0.07256369292736053, 0.1273486167192459, 0.19849412143230438, 0.03960319608449936, 0.250320702791214, 0.048990312963724136, -0.01652408391237259, 0.0012736618518829346, 0.016406388953328133, -0.030266867950558662, 0.0837736576795578, -0.02453993447124958, -0.04496757686138153, -0.002717044670134783, 0.07922589033842087, 0.08133648335933685, -0.10042627900838852, 0.08183502405881882, -0.06012260541319847, 0.11250369250774384, 0.17046736180782318, -0.006443897727876902, -0.08057841658592224, -0.00966518186032772, 0.15083792805671692, -0.08573099970817566, -0.09162717312574387, 0.03922363743185997, -0.005857774987816811, -0.16124789416790009, 0.09130886942148209, -0.04824959114193916, 0.13930438458919525, -0.05221441760659218, -0.030851703137159348, -0.031702637672424316, 0.07228158414363861, -0.028242917731404305, 0.07479862868785858, -0.17072756588459015, 0.11630065739154816, 0.027343202382326126, 0.024165669456124306, -0.05970072001218796, 0.06307360529899597, -0.020901303738355637, -0.0016210480825975537, 0.14053191244602203, 0.004255437757819891, -0.203042134642601, -0.015202833339571953, -0.0891842246055603, 0.022099515423178673, 0.07333031296730042, -0.14934027194976807, 0.0940922275185585, -0.0138234943151474, -0.015691673383116722, -0.06479687988758087, -0.08314918726682663, -0.09980137646198273, -0.2438114583492279, 0.05797109380364418, -0.08171745389699936, 0.11359246075153351, -0.0836854949593544, 0.00607089139521122, 0.0513322688639164, 0.14713890850543976, -0.13169382512569427, -0.10069909691810608, -0.15320360660552979, -0.05127926170825958, 0.1726698875427246, -0.03493213653564453, 0.07950674742460251, -0.04115799814462662, 0.18696773052215576, -0.024160582572221756, -0.057516779750585556, 0.08345673978328705, -0.03615657612681389, -0.22815945744514465, -0.047111984342336655, 0.19700634479522705, 0.028311889618635178, 0.048648785799741745, 0.01422811858355999, 0.1138695776462555, 0.03196842968463898, -0.1149633452296257, 0.05467580631375313, 0.11312348395586014, 0.049253784120082855, 0.09645385295152664, -0.035957179963588715, -0.21546721458435059, -0.13685891032218933, -0.04811796918511391, 0.10863859206438065, 0.09914333373308182, -0.040542859584093094, 0.19680537283420563, 0.13054969906806946, -0.10592340677976608, -0.20467939972877502, -0.02785179205238819, -0.0016064764931797981, -0.04160726070404053, 0.05222822725772858, -0.20706555247306824, 0.04564154893159866, 0.055859070271253586, -0.019102202728390694, 0.02100270241498947, -0.21819916367530823, -0.12496916204690933, 0.0006031692610122263, 0.03829563036561012, -0.23928490281105042, -0.17112129926681519, -0.10521716624498367, -0.05782899633049965, -0.202989861369133, 0.16374793648719788, 0.06156693771481514, 0.0036373150069266558, -0.023991767317056656, 0.06711816042661667, 0.013603284023702145, -0.033056892454624176, 0.14686661958694458, 0.025768058374524117, 0.02700500562787056, -0.04846940562129021, -0.043220359832048416, 0.06814995408058167, 0.003223142120987177, 0.02241707034409046, -0.04318753257393837, 0.006879320368170738, -0.08818924427032471, -0.029294395819306374, -0.04772895947098732, 0.019444935023784637, -0.12091407179832458, -0.0676795095205307, -0.06706159561872482, 0.09263216704130173, 0.10452853888273239, -0.05846981704235077, 0.10526662319898605, -0.0688006803393364, 0.08363792300224304, 0.15839554369449615, 0.12459696829319, -0.0008940460393205285, -0.10614870488643646, -0.0023672485258430243, -0.001908626640215516, -0.022568438202142715, -0.10529109090566635, 0.09315183758735657, 0.13247288763523102, 0.012684470973908901, 0.15733128786087036, -0.030168429017066956, -0.15411457419395447, -0.010477357544004917, 0.058338213711977005, -0.06939835846424103, -0.22173380851745605, 0.023562418296933174, 0.09691435843706131, -0.11335104703903198, -0.05160955712199211, 0.06012299656867981, 0.05242288112640381, -0.06463480740785599, 0.050809018313884735, 0.14778824150562286, 0.04336955398321152, 0.09107790887355804, 0.010590453632175922, 0.04881775751709938, -0.10571993887424469, 0.12431485950946808, 0.13043266534805298, -0.12849938869476318, -0.01928946189582348, 0.18257616460323334, -0.04318462312221527, -0.023885857313871384, 0.01032419316470623, 0.062136631458997726, -0.03063831850886345, 0.005464136600494385, 0.05792814865708351, -0.17457684874534607, 0.019763091579079628, 0.11841297149658203, -0.02925068326294422, 0.03978472948074341, 0.006729433313012123, -0.018509740009903908, -0.004903608001768589, 0.13798169791698456, 0.042924437671899796, 0.05687488615512848, -0.04380318894982338, -0.023512305691838264, -0.008004258386790752, -0.06996329873800278, 0.00118651008233428, -0.0066811018623411655, -0.11493925750255585, -0.013643929734826088, -0.14230576157569885, 0.014965232461690903, -0.1376984417438507, 0.003255919786170125, 0.00328360334970057, -0.04047982767224312, -0.024997949600219727, -0.014442769810557365, -0.051298659294843674, -0.06622336059808731, -0.06233280152082443, 0.1077250987291336, -0.18354679644107819, -0.0038809063844382763, 0.1376669704914093, -0.08817439526319504, 0.09681707620620728, -0.00027019757544621825, -0.014944624155759811, 0.03809294104576111, -0.11302867531776428, 0.022126145660877228, -0.014036133885383606, 0.02796216495335102, 0.04603711515665054, -0.13174191117286682, -0.03928530216217041, -0.008610764518380165, -0.06882518529891968, 0.02318470925092697, -0.006334175821393728, -0.11570356041193008, 0.05618344992399216, -0.03037009947001934, -0.11032889038324356, -0.011929955333471298, 0.012880172580480576, 0.12681207060813904, 0.009142381139099598, 0.1119614839553833, -0.03694180026650429, 0.10553792119026184, -0.11768149584531784, 0.006278179120272398, -0.009779131039977074, -0.02007683552801609, -0.02076690085232258, 0.002649573376402259, 0.05295334756374359, -0.03313719481229782, 0.22281576693058014, -0.04170235991477966, 0.009806630201637745, 0.10539005696773529, 0.02789461426436901, -0.05035717040300369, 0.07961027324199677, -0.019050374627113342, 0.010990649461746216, -0.02223111502826214, 0.0018596361624076962, -0.07597380876541138, -0.08824105560779572, -0.079475037753582, 0.12250926345586777, 0.15903924405574799, 0.13663676381111145, -0.03577909618616104, 0.05830550566315651, -0.08807914704084396, -0.050529032945632935, 0.12857718765735626, -0.020460454747080803, 0.00985837820917368, -0.05588855221867561, 0.05750546604394913, 0.1147608533501625, -0.2414773553609848, 0.11443204432725906, -0.06446777284145355, -0.07917768508195877, -0.031341519206762314, -0.12823224067687988, -0.07834669202566147, -0.0016687446041032672, -0.006318749859929085, -0.12498310953378677, 0.10785450786352158, 0.07113708555698395, -0.028703011572360992, -0.022722626104950905, 0.13083377480506897, -0.04667718708515167, -0.0836712196469307, 0.033601004630327225, 0.11639655381441116, 0.04811744764447212, 0.06180638074874878, 0.08952036499977112, -0.038234204053878784, 0.07038106769323349, 0.05474313721060753, 0.08984004706144333, -0.008608638308942318, -0.006820639595389366, -0.07709646224975586, -0.05227217823266983, 0.029392994940280914, -0.031024357303977013, -0.09563431143760681, 0.16207411885261536, 0.023635834455490112, 0.03462003171443939, 0.024604426696896553, 0.2507394850254059, -0.044011760503053665, -0.044119011610746384, -0.14871783554553986, 0.05126994103193283, -0.02764301374554634, 0.00877056922763586, 0.05800244212150574, -0.1552196890115738, 0.0002692858106456697, 0.07220955938100815, 0.1469729095697403, -0.03829337656497955, 0.016125522553920746, -0.05760790407657623, 0.037225235253572464, 0.023686425760388374, 0.01371990516781807, 0.033686887472867966, 0.20893250405788422, -0.08144369721412659, 0.0146065354347229, -0.029460225254297256, -0.04711274057626724, -0.12566512823104858, 0.12525981664657593, 0.008169190026819706, -0.019823666661977768, -0.06939709186553955, 0.14392410218715668, -0.09825737774372101, -0.272582083940506, -0.011962439864873886, -0.1460254192352295, -0.12989069521427155, -0.05336720123887062, 0.03196442499756813, -0.02011839672923088, -0.002327160444110632, 0.09027881175279617, -0.0451650433242321, 0.12245211005210876, 0.10967978835105896, -0.030504630878567696, 0.0058544897474348545, 0.13204513490200043, -0.05756669119000435, 0.2218499630689621, 0.008454211056232452, 0.0021443383302539587, 0.08941812068223953, -0.03297159820795059, -0.09671546518802643, 0.03461141139268875, 0.10265651345252991, -0.0023734632413834333, -0.01851729303598404, 0.1739184409379959, 0.03271911293268204, 0.10966146737337112, 0.09541495144367218, -0.04151710867881775, 0.04223254323005676, 0.03454360365867615, -0.03720845282077789, -0.05618884786963463, 0.09570024907588959, -0.14258114993572235, 0.09253904968500137, 0.125790074467659, -0.05756039917469025, 0.02268914133310318, -0.03735526278614998, 0.023701136931777, -0.03885504603385925, 0.1679804027080536, -0.0011236426653340459, -0.15538901090621948, 0.0064668008126318455, 0.007483685854822397, 0.07982797920703888, -0.1110907569527626, -0.06391079723834991, 0.014972970820963383, 0.029296336695551872, -0.06355948746204376, 0.13991707563400269, 0.08456259220838547, -0.01689152419567108, -0.03639419376850128, -0.10611648857593536, 0.03461422026157379, 0.11888113617897034, -0.05975339934229851, 0.043200042098760605 ]
9afb7128141a75b91efe36a2bc29e5a8a5072c04
# Dataset Card for "huggingartists/100-gecs" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.182347 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9fd98af9a817af8cd78636f71895b6ad.500x500x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/100-gecs"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">100 gecs</div> <a href="https://genius.com/artists/100-gecs"> <div style="text-align: center; font-size: 14px;">@100-gecs</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/100-gecs). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/100-gecs") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |140| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/100-gecs") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/100-gecs
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:20:43+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/100-gecs" ========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.182347 MB HuggingArtists Model 100 gecs [@100-gecs](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
a57512972a8db01d96eacae0d9d01645d961e831
# Dataset Card for "huggingartists/21-savage" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 1.073984 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/aa32202cc20d1dde62e57940a8b278b2.770x770x1.png&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/21-savage"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">21 Savage</div> <a href="https://genius.com/artists/21-savage"> <div style="text-align: center; font-size: 14px;">@21-savage</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/21-savage). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/21-savage") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |435| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/21-savage") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/21-savage
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:20:49+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/21-savage" =========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 1.073984 MB HuggingArtists Model 21 Savage [@21-savage](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
9c72440451a339fc53722f5c1d8c36679af02c66
# Dataset Card for "huggingartists/25-17" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.678946 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4fedc5dd2830a874a5274bf1cac62002.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/25-17"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">25/17</div> <a href="https://genius.com/artists/25-17"> <div style="text-align: center; font-size: 14px;">@25-17</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/25-17). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/25-17") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |195| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/25-17") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/25-17
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:20:55+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/25-17" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.678946 MB HuggingArtists Model 25/17 [@25-17](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
921cd4a4253b5e18fd1c78ad97b52762574a1375
# Dataset Card for "huggingartists/50-cent" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 2.267733 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2aa85f8fdffe5d0552ff319221fc63e4.959x959x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/50-cent"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">50 Cent</div> <a href="https://genius.com/artists/50-cent"> <div style="text-align: center; font-size: 14px;">@50-cent</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/50-cent). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/50-cent") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |840| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/50-cent") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/50-cent
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:21:02+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/50-cent" ========================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 2.267733 MB HuggingArtists Model 50 Cent [@50-cent](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
70a16443bb1235ae7cda785b235ad01b8be152d6
# Dataset Card for "huggingartists/5nizza" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.13617 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/289ded19d51d41798be99217d6059eb3.458x458x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/5nizza"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">5’Nizza</div> <a href="https://genius.com/artists/5nizza"> <div style="text-align: center; font-size: 14px;">@5nizza</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/5nizza). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/5nizza") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |51| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/5nizza") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/5nizza
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:22:00+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/5nizza" ======================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.13617 MB HuggingArtists Model 5’Nizza [@5nizza](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
c11e5903c0eeb4af4e08a2776591d0bd7751b7e7
# Dataset Card for "huggingartists/5opka" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.110132 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c56dce03a151e17a9626e55e6c295bb1.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/5opka"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">5opka</div> <a href="https://genius.com/artists/5opka"> <div style="text-align: center; font-size: 14px;">@5opka</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/5opka). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/5opka") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |35| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/5opka") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/5opka
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:22:06+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/5opka" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.110132 MB HuggingArtists Model 5opka [@5opka](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
a23afc79eb3bf6a714dbf13e818404c3e90dd4da
# Dataset Card for "huggingartists/6ix9ine" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.350166 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b2b164a7c6c02dd0843ad597df5dbf4b.1000x1000x1.png&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/6ix9ine"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">6ix9ine</div> <a href="https://genius.com/artists/6ix9ine"> <div style="text-align: center; font-size: 14px;">@6ix9ine</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/6ix9ine). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/6ix9ine") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |173| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/6ix9ine") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/6ix9ine
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:22:13+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/6ix9ine" ========================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.350166 MB HuggingArtists Model 6ix9ine [@6ix9ine](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
f3f921e36fd178eb85ecc777acaa6df65b24dee0
# Dataset Card for "huggingartists/aaron-watson" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.266584 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/894021d09a748eef8c6d63ad898b814b.650x430x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/aaron-watson"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Aaron Watson</div> <a href="https://genius.com/artists/aaron-watson"> <div style="text-align: center; font-size: 14px;">@aaron-watson</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/aaron-watson). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aaron-watson") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |181| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/aaron-watson") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/aaron-watson
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:22:20+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/aaron-watson" ============================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.266584 MB HuggingArtists Model Aaron Watson [@aaron-watson](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
aab13ac8c61a1eb65e78d32884fcc37513d7e099
# Dataset Card for "huggingartists/abba" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.309428 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2fa03267661cbc8112b4ef31685e2721.220x220x1.png&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/abba"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">ABBA</div> <a href="https://genius.com/artists/abba"> <div style="text-align: center; font-size: 14px;">@abba</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/abba). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/abba") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |202| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/abba") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/abba
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:22:26+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/abba" ====================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.309428 MB HuggingArtists Model ABBA [@abba](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
98a09d23a1203e7d8591575cf5ef866fbca54470
# Dataset Card for "huggingartists/adele" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.304292 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/45ccf22bba4c1f80989e645c2fd4ec44.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/adele"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Adele</div> <a href="https://genius.com/artists/adele"> <div style="text-align: center; font-size: 14px;">@adele</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/adele). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/adele") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |203| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/adele") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/adele
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:22:32+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/adele" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.304292 MB HuggingArtists Model Adele [@adele](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
71d7d9f05be661df1e40e3f9c69e908934531c7b
# Dataset Card for "huggingartists/agata-christie" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.143508 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/61b6b0a0b7f6587d1b33542d5c18ad3c.489x489x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/agata-christie"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Агата Кристи (Agata Christie)</div> <a href="https://genius.com/artists/agata-christie"> <div style="text-align: center; font-size: 14px;">@agata-christie</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/agata-christie). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/agata-christie") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |78| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/agata-christie") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/agata-christie
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:22:38+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/agata-christie" ================================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.143508 MB HuggingArtists Model Агата Кристи (Agata Christie) [@agata-christie](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
4de2290c08655371befbf808d6c9a83b3dcc7333
# Dataset Card for "huggingartists/aikko" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 1.029888 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a1a40316d1405fa83df2a21923d64168.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/aikko"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">⁣aikko</div> <a href="https://genius.com/artists/aikko"> <div style="text-align: center; font-size: 14px;">@aikko</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/aikko). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aikko") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |305| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/aikko") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/aikko
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:22:45+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/aikko" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 1.029888 MB HuggingArtists Model ⁣aikko [@aikko](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
39ff9f1875b2ab9845c984c1b9e674f1ce62d45d
# Dataset Card for "huggingartists/aimer" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.237926 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/123a0b2ef09a25207b610c5bd7b21d0f.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/aimer"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Aimer</div> <a href="https://genius.com/artists/aimer"> <div style="text-align: center; font-size: 14px;">@aimer</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/aimer). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aimer") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |171| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/aimer") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/aimer
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:22:51+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/aimer" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.237926 MB HuggingArtists Model Aimer [@aimer](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
0478eadd5d4885bb11f3eebc621ecf44baf67509
# Dataset Card for "huggingartists/ajr" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.216409 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/84cbe6ced3b5398a810e82a9b65cff26.1000x1000x1.png&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/ajr"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">AJR</div> <a href="https://genius.com/artists/ajr"> <div style="text-align: center; font-size: 14px;">@ajr</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/ajr). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ajr") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |142| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/ajr") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/ajr
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:22:58+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/ajr" ===================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.216409 MB HuggingArtists Model AJR [@ajr](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
5df99427f8960dcb72941ffe58575e5f8c36970f
# Dataset Card for "huggingartists/alan-walker" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.269381 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/70b44d7b5a4be028e87b865dd425a4cc.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/alan-walker"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Alan Walker</div> <a href="https://genius.com/artists/alan-walker"> <div style="text-align: center; font-size: 14px;">@alan-walker</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/alan-walker). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/alan-walker") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |206| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/alan-walker") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/alan-walker
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:23:05+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/alan-walker" ============================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.269381 MB HuggingArtists Model Alan Walker [@alan-walker](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
997739bec00b4f2cd3b7c21376f7f96900a1f78d
# Dataset Card for "huggingartists/andre-3000" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.907585 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/64b15c9489c65f5bf8f6577334347404.434x434x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/andre-3000"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">André 3000</div> <a href="https://genius.com/artists/andre-3000"> <div style="text-align: center; font-size: 14px;">@andre-3000</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/andre-3000). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/andre-3000") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |338| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/andre-3000") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/andre-3000
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:23:12+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/andre-3000" ============================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.907585 MB HuggingArtists Model André 3000 [@andre-3000](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
e2e6a82fbb2f7ee13b495d30f56afed982d1cc70
# Dataset Card for "huggingartists/arash" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.154835 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/de78420433126e9e426443d10bf22edf.600x600x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/arash"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Arash</div> <a href="https://genius.com/artists/arash"> <div style="text-align: center; font-size: 14px;">@arash</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/arash). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/arash") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |105| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/arash") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/arash
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:23:18+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/arash" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.154835 MB HuggingArtists Model Arash [@arash](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
aeb776931516844da9d49ceeb1bb916e7cf6d3d8
# Dataset Card for "huggingartists/architects" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.189248 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d2cd8787bdf913fc1518987f971c6bd3.960x960x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/architects"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Architects</div> <a href="https://genius.com/artists/architects"> <div style="text-align: center; font-size: 14px;">@architects</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/architects). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/architects") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |134| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/architects") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/architects
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:23:24+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/architects" ============================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.189248 MB HuggingArtists Model Architects [@architects](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
32c8416b57a06deb178c45edbbb5c80e053e095f
# Dataset Card for "huggingartists/arctic-monkeys" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.246691 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/12c27f4fbb06ef32dc1c1e432098f447.570x570x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/arctic-monkeys"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Arctic Monkeys</div> <a href="https://genius.com/artists/arctic-monkeys"> <div style="text-align: center; font-size: 14px;">@arctic-monkeys</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/arctic-monkeys). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/arctic-monkeys") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |186| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/arctic-monkeys") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/arctic-monkeys
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:23:30+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/arctic-monkeys" ================================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.246691 MB HuggingArtists Model Arctic Monkeys [@arctic-monkeys](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
1fe94f9ac692c7bcd4ff126fe24b330f016dd68e
# Dataset Card for "huggingartists/ariana-grande" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.997954 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d36a47955ac0ddb12748c5e7c2bd4b4b.640x640x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/ariana-grande"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Ariana Grande</div> <a href="https://genius.com/artists/ariana-grande"> <div style="text-align: center; font-size: 14px;">@ariana-grande</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/ariana-grande). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ariana-grande") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |596| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/ariana-grande") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/ariana-grande
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:23:36+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/ariana-grande" =============================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.997954 MB HuggingArtists Model Ariana Grande [@ariana-grande](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
0cdb6ed64a501585652afb96c292bbc7d194f38e
# Dataset Card for "huggingartists/ariya" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.070471 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/975b03ba317602498bed5321f12caebe.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/ariya"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Ария (Ariya)</div> <a href="https://genius.com/artists/ariya"> <div style="text-align: center; font-size: 14px;">@ariya</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/ariya). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ariya") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |22| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/ariya") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/ariya
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:23:42+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/ariya" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.070471 MB HuggingArtists Model Ария (Ariya) [@ariya](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
4ac9237b41a5a67ac9502b83168d27f6b7fd74c3
# Dataset Card for "huggingartists/armin-van-buuren" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.358063 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b1a35069a1a44927425ef26c0bbda4a4.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/armin-van-buuren"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Armin van Buuren</div> <a href="https://genius.com/artists/armin-van-buuren"> <div style="text-align: center; font-size: 14px;">@armin-van-buuren</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/armin-van-buuren). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/armin-van-buuren") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |546| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/armin-van-buuren") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/armin-van-buuren
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:23:48+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/armin-van-buuren" ================================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.358063 MB HuggingArtists Model Armin van Buuren [@armin-van-buuren](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
1c7c8f8792d08d5a26ca2c39b8b64f457c6d0868
# Dataset Card for "huggingartists/as-i-lay-dying" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.112142 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1584118378f9cfa83c281027ef8b2141.528x528x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/as-i-lay-dying"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">As I Lay Dying</div> <a href="https://genius.com/artists/as-i-lay-dying"> <div style="text-align: center; font-size: 14px;">@as-i-lay-dying</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/as-i-lay-dying). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/as-i-lay-dying") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |102| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/as-i-lay-dying") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/as-i-lay-dying
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:23:54+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/as-i-lay-dying" ================================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.112142 MB HuggingArtists Model As I Lay Dying [@as-i-lay-dying](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
b18a2f61c5af74a6e3ea779b34f7a2dff921ad98
# Dataset Card for "huggingartists/asdfgfa" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.031015 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a45b76e855b1bbcd0e0e1e25988d7050.975x180x1.png&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/asdfgfa"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">​asdfgfa</div> <a href="https://genius.com/artists/asdfgfa"> <div style="text-align: center; font-size: 14px;">@asdfgfa</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/asdfgfa). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/asdfgfa") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |TRAIN_0.031015| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/asdfgfa") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/asdfgfa
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:24:00+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/asdfgfa" ========================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.031015 MB HuggingArtists Model ​asdfgfa [@asdfgfa](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 47 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.013914619572460651, 0.28591373562812805, -0.005060648545622826, 0.08367841690778732, 0.10712352395057678, -0.004416224081069231, 0.10258012264966965, 0.10038145631551743, -0.014376970008015633, 0.1803581267595291, -0.026323102414608, 0.08147774636745453, 0.10512193292379379, 0.10908423364162445, 0.006217150017619133, -0.2622038722038269, -0.008330135606229305, -0.11258503049612045, 0.015385456383228302, 0.08546699583530426, 0.11700425297021866, -0.07605063915252686, 0.06404223293066025, -0.07858122885227203, -0.038442693650722504, 0.04214240238070488, -0.0669354721903801, -0.03682253509759903, 0.02877460978925228, 0.042809661477804184, 0.02908368408679962, -0.0007097263587638736, 0.047616515308618546, -0.286223441362381, 0.011775211431086063, 0.06281538307666779, 0.017140565440058708, 0.03796713426709175, 0.09273633360862732, -0.07995326071977615, 0.07118507474660873, -0.11710904538631439, 0.07283369451761246, 0.035505492240190506, -0.09028968214988708, -0.08075229823589325, -0.15913143754005432, 0.03439744934439659, 0.15539026260375977, 0.08029472827911377, -0.03524215891957283, 0.038990192115306854, -0.06621471792459488, 0.04160933941602707, 0.19776947796344757, -0.14141146838665009, -0.06575373560190201, 0.046632904559373856, -0.0009715995984151959, 0.10326006263494492, -0.11622261255979538, 0.03454980254173279, 0.0003053778491448611, 0.031021954491734505, 0.058150436729192734, -0.027303926646709442, -0.08766186237335205, 0.041207537055015564, -0.15329784154891968, -0.08238294720649719, 0.1133502870798111, -0.019596019759774208, -0.025172032415866852, -0.1460258513689041, -0.009799492545425892, 0.012913200072944164, -0.02026335336267948, 0.005346686579287052, 0.02039371430873871, -0.007605564780533314, 0.0012143823551014066, -0.1064935103058815, -0.05408698692917824, -0.03814329952001572, 0.022493241354823112, 0.08789648860692978, 0.03488171100616455, -0.013313430361449718, 0.05373772978782654, 0.0913248211145401, 0.014734169468283653, -0.1064276397228241, -0.002432184061035514, -0.03353055566549301, -0.07231196761131287, -0.02887876331806183, 0.0493854396045208, -0.04776472598314285, 0.062410689890384674, 0.1663452684879303, -0.02183423563838005, 0.008177993819117546, -0.0777459666132927, -0.014637312851846218, 0.07240843772888184, 0.10696843266487122, -0.06906316429376602, -0.04739132523536682, 0.019671326503157616, 0.014414350502192974, 0.01425251830369234, -0.025044314563274384, -0.04915029928088188, 0.047086652368307114, -0.002383278915658593, 0.14036212861537933, 0.11148421466350555, -0.04414576292037964, -0.07055597752332687, -0.0332430824637413, 0.07973501086235046, -0.1567080318927765, 0.06808985024690628, 0.02589581534266472, -0.038424938917160034, -0.08577524870634079, -0.07179911434650421, 0.018291179090738297, -0.09305728226900101, 0.09318316727876663, -0.03536573424935341, -0.01982000656425953, -0.09188081324100494, -0.06789957731962204, 0.03762153163552284, -0.035872772336006165, -0.05056946352124214, -0.001869230531156063, -0.11588121950626373, -0.07546965777873993, 0.02930769883096218, -0.1104811578989029, -0.08688344061374664, -0.01859656535089016, -0.026342658326029778, -0.0183928981423378, -0.006150456611067057, -0.020071806386113167, -0.05552898347377777, 0.04565480723977089, -0.04117101430892944, 0.02253466099500656, 0.0915255919098854, 0.07928367704153061, -0.10169215500354767, 0.0865284651517868, -0.1353057324886322, 0.10437662154436111, -0.13507747650146484, 0.03128323704004288, -0.10323640704154968, -0.04191167280077934, 0.06159349903464317, -0.034726906567811966, 0.00668701808899641, 0.11806855350732803, -0.23074321448802948, -0.02590094320476055, 0.08575354516506195, -0.06982637941837311, -0.060784514993429184, 0.11278332769870758, -0.04394638165831566, -0.008129274472594261, 0.057960253208875656, 0.12130680680274963, 0.09729654341936111, 0.02231062948703766, -0.05449189990758896, -0.05357876047492027, 0.03463694080710411, 0.19656215608119965, 0.09842625260353088, -0.06747540831565857, 0.09413674473762512, 0.0005493781645782292, -0.0066053252667188644, -0.0577242374420166, 0.002551515819504857, -0.08353251218795776, 0.006860355380922556, -0.0347110778093338, -0.010549228638410568, 0.022295625880360603, -0.05960462614893913, -0.047022219747304916, -0.038678884506225586, 0.02556135319173336, 0.03418932482600212, -0.01594417169690132, 0.00669514387845993, -0.035014282912015915, 0.027549251914024353, 0.02759643830358982, 0.007136376574635506, -0.1665947437286377, -0.07843567430973053, 0.08091063797473907, -0.08179216086864471, 0.12694469094276428, -0.08431648463010788, -0.022032365202903748, 0.0008075088262557983, -0.018827129155397415, 0.0028094882145524025, 0.014113030396401882, 0.0005999623681418598, -0.01766238734126091, -0.15158133208751678, -0.010635224170982838, -0.031209394335746765, 0.06850481778383255, -0.08684232085943222, 0.01657947152853012, 0.1000104546546936, 0.1798057109117508, 0.038978517055511475, -0.053647562861442566, 0.07724488526582718, 0.03213623911142349, -0.015896618366241455, -0.06897704303264618, -0.022672466933727264, -0.05131125450134277, 0.05563701316714287, 0.01794167049229145, -0.08859163522720337, -0.10743282735347748, 0.04925943911075592, 0.11686856299638748, -0.039857055991888046, 0.0006751000182703137, -0.049890175461769104, -0.03359635919332504, -0.12253773212432861, -0.034765664488077164, 0.09747260808944702, 0.05213579908013344, 0.008290091529488564, -0.06681123375892639, -0.071953184902668, -0.055010490119457245, -0.02745371125638485, -0.07269418984651566, 0.11240214109420776, -0.02148454263806343, -0.1284213811159134, 0.16971199214458466, -0.00032872738665901124, 0.048334941267967224, 0.11753719300031662, -0.010730160400271416, -0.10989692062139511, -0.03854287788271904, -0.0045426334254443645, 0.013203768990933895, 0.07270333915948868, -0.02245502732694149, 0.020983824506402016, 0.04794478416442871, -0.024391494691371918, 0.01572434790432453, -0.10326654464006424, 0.00457398034632206, 0.02284715510904789, -0.052388306707143784, 0.051814962178468704, -0.03655596822500229, 0.023576155304908752, 0.09189862757921219, 0.0716540589928627, 0.07284581661224365, -0.02538292296230793, -0.06356576085090637, -0.10699692368507385, 0.09052662551403046, -0.12412434816360474, -0.18669316172599792, -0.12091251462697983, -0.09360938519239426, -0.04491573944687843, -0.010801504366099834, 0.037450358271598816, -0.02766561135649681, -0.07972932606935501, -0.0918598473072052, 0.06698000431060791, 0.00833291094750166, -0.1226564571261406, -0.025799132883548737, 0.023710152134299278, -0.0643635243177414, -0.08344870805740356, 0.04514976218342781, 0.10922934859991074, -0.01746942661702633, -0.00936093833297491, 0.03645213320851326, 0.11635807901620865, 0.12927329540252686, 0.041877537965774536, -0.020071333274245262, -0.025319596752524376, 0.23530106246471405, -0.1335805505514145, 0.07777907699346542, 0.08495926111936569, -0.050238434225320816, 0.0754532441496849, 0.23616135120391846, 0.035677652806043625, -0.047172632068395615, 0.06821710616350174, 0.07079361379146576, -0.034428294748067856, -0.26390549540519714, -0.09817317128181458, -0.06278564780950546, 0.023588012903928757, 0.06903206557035446, 0.055035386234521866, -0.0170255359262228, 0.011772177182137966, -0.09114506840705872, 0.015462307259440422, 0.029454411938786507, 0.08736378699541092, 0.07966713607311249, 0.012802517041563988, 0.009020023979246616, -0.0338718518614769, -0.018047254532575607, 0.12458477169275284, -0.011617200449109077, 0.1256142407655716, -0.02417539246380329, 0.2402072697877884, 0.027695035561919212, 0.11084334552288055, -0.039956897497177124, 0.004367070272564888, -0.020320648327469826, 0.0814129114151001, 0.016649669036269188, -0.06346899271011353, 0.023029962554574013, 0.061984553933143616, 0.09716780483722687, -0.09123741835355759, 0.06757305562496185, -0.08042799681425095, 0.06877291202545166, 0.2821491062641144, 0.041851527988910675, -0.06319618225097656, -0.04697522148489952, 0.13220329582691193, -0.07015381008386612, -0.09494686871767044, 0.012468395754694939, 0.13753913342952728, -0.1576102375984192, 0.041888754814863205, -0.01685098186135292, 0.12271906435489655, -0.06362775713205338, -0.05643562227487564, 0.03618831932544708, 0.0572274886071682, -0.030962718650698662, 0.12860523164272308, -0.21812057495117188, 0.06774383783340454, 0.02408735267817974, 0.028290197253227234, -0.058867741376161575, 0.03410401567816734, 0.004748417064547539, -0.02857166901230812, 0.13904516398906708, 0.021191034466028214, -0.1247740238904953, 0.015435010194778442, -0.1024903804063797, -0.014170198701322079, 0.09674752503633499, -0.18350203335285187, 0.09110750257968903, -0.008150259964168072, -0.028570106253027916, -0.08485822379589081, -0.10812465846538544, -0.09144210815429688, -0.1690295785665512, 0.054344214498996735, -0.05486838519573212, 0.08158732950687408, -0.04559781029820442, -0.037941109389066696, -0.007425687741488218, 0.11283322423696518, -0.051465243101119995, -0.09531848877668381, -0.12253055721521378, 0.05133446678519249, 0.16128019988536835, -0.05841625854372978, 0.04811868444085121, -0.007044237572699785, 0.19352571666240692, 0.013544159010052681, -0.034153468906879425, 0.024059103801846504, -0.030709201470017433, -0.21614274382591248, -0.009810760617256165, 0.16434672474861145, 0.05327458679676056, 0.08341015875339508, -0.013870377093553543, 0.08558697253465652, 0.004380757920444012, -0.11612522602081299, 0.034370679408311844, 0.1097886934876442, 0.006958816200494766, 0.13776542246341705, -0.04032706469297409, -0.15216057002544403, -0.16630539298057556, -0.08302859216928482, 0.1993171125650406, 0.1816941797733307, -0.07199835777282715, 0.12975063920021057, 0.10538181662559509, -0.09249742329120636, -0.2307191789150238, -0.0037018670700490475, -0.01968083530664444, -0.005714832805097103, 0.06586865335702896, -0.235911026597023, -0.005909088533371687, 0.02863788977265358, -0.01338061410933733, 0.03776337206363678, -0.24480189383029938, -0.11402572691440582, 0.03695971891283989, 0.03174113109707832, -0.2801980674266815, -0.15113240480422974, -0.1105746254324913, -0.06642598658800125, -0.12864066660404205, 0.1371936798095703, -0.02828267775475979, 0.025424066931009293, -0.006211027503013611, 0.10516799241304398, 0.020669197663664818, -0.017228061333298683, 0.12427153438329697, -0.01917329616844654, 0.028734657913446426, -0.08498408645391464, -0.049210596829652786, 0.006977803073823452, -0.04813599959015846, 0.10499168187379837, 0.0017834905302152038, 0.03604554757475853, -0.07757624983787537, -0.014059804379940033, -0.07699889689683914, 0.011485771276056767, -0.07826253026723862, -0.05470609292387962, -0.12672200798988342, 0.06855590641498566, 0.0925627052783966, -0.03746103495359421, 0.06883012503385544, -0.020830580964684486, 0.0238794032484293, 0.0948505699634552, 0.10724601149559021, 0.13067249953746796, -0.05295703560113907, 0.0013808668591082096, 0.016953708603978157, -0.022520989179611206, -0.1271613985300064, 0.057498201727867126, 0.1336752325296402, 0.07849941402673721, 0.13747790455818176, -0.03893451765179634, -0.1532028764486313, -0.019857579842209816, 0.02192753367125988, -0.11008449643850327, -0.22632771730422974, -0.0029911245219409466, 0.1241818517446518, -0.16673214733600616, -0.1164846122264862, 0.0183231420814991, -0.002146138111129403, -0.08591264486312866, 0.03323504328727722, 0.09334979951381683, 0.00635913573205471, 0.09226176142692566, 0.05543980374932289, 0.04640179127454758, -0.0810721218585968, 0.10768046975135803, 0.14621110260486603, -0.08644456416368484, -0.014512871392071247, 0.1960095763206482, -0.0406637005507946, -0.034299541264772415, 0.11164414137601852, 0.05285399779677391, 0.017273753881454468, 0.0011890175519511104, 0.01986110955476761, -0.08934544026851654, 0.028813932090997696, 0.14867697656154633, 0.002030721167102456, 0.028250040486454964, 0.01607193797826767, -0.017421582713723183, -0.04397628828883171, 0.1647210568189621, 0.03202838823199272, 0.05263005197048187, -0.05792727693915367, 0.00660938723012805, -0.018243232741951942, 0.03721614181995392, -0.01945309340953827, -0.031683921813964844, -0.09154628217220306, 0.003942171111702919, -0.12317333370447159, 0.0031289635226130486, -0.1191139966249466, -0.01783675141632557, -0.015991123393177986, -0.06449958682060242, -0.006115679629147053, 0.013721202500164509, -0.07349608093500137, -0.06809963285923004, -0.09648025780916214, 0.10122205317020416, -0.18812361359596252, -0.017930496484041214, 0.11058451980352402, -0.04605787247419357, 0.10638636350631714, 0.01458027958869934, -0.012562253512442112, -0.019065039232373238, -0.13261778652668, -0.009611665271222591, -0.04293118044734001, 0.055578213185071945, 0.08913365006446838, -0.1535511463880539, -0.02971624583005905, -0.03359910845756531, -0.06198476254940033, 0.033116694539785385, 0.0657210424542427, -0.12040620297193527, 0.05179158225655556, -0.002079098019748926, -0.1038854569196701, -0.020233407616615295, 0.04205940663814545, 0.06550765782594681, 0.006233124062418938, 0.15261605381965637, -0.03595910221338272, 0.12402674555778503, -0.09434042125940323, -0.026452718302607536, -0.01701227016746998, 0.010708528570830822, 0.001092334627173841, 0.01741742715239525, 0.04423349350690842, -0.025340808555483818, 0.1693926453590393, 0.07896164059638977, -0.043365661054849625, 0.05368571728467941, 0.028167931362986565, 0.024178646504878998, 0.059284910559654236, -0.012579523958265781, -0.02192198485136032, -0.0546373575925827, 0.006451169028878212, -0.07337387651205063, -0.0490846149623394, -0.015919256955385208, 0.09397047758102417, 0.11379116028547287, 0.20545801520347595, -0.038196563720703125, 0.10637466609477997, -0.11501350998878479, -0.12174522131681442, 0.015351868234574795, 0.010642588138580322, 0.04380409047007561, -0.062433987855911255, 0.11772574484348297, 0.04512566700577736, -0.2011898159980774, 0.1446133852005005, -0.0871867835521698, -0.07859180122613907, -0.035413067787885666, -0.14587421715259552, -0.06722234934568405, -0.026815926656126976, -0.01637200452387333, -0.11221323162317276, 0.10566242039203644, 0.1023242175579071, -0.04099055752158165, -0.02027495577931404, 0.1406659036874771, -0.06652962416410446, -0.07777097821235657, 0.03878151252865791, 0.040115974843502045, 0.019891511648893356, 0.025743264704942703, 0.09491042047739029, -0.05034519359469414, 0.011898024939000607, 0.07751625776290894, 0.05924272909760475, -0.01682531274855137, 0.010298649780452251, -0.08349135518074036, -0.06956764310598373, 0.04586189240217209, -0.0321928896009922, -0.030160417780280113, 0.163370281457901, 0.0554833747446537, 0.030370885506272316, 0.023469075560569763, 0.26768699288368225, -0.07727399468421936, -0.03255248814821243, -0.15682849287986755, 0.12034297734498978, -0.07365789264440536, -0.019989820197224617, 0.046249549835920334, -0.14981108903884888, 0.002596268430352211, 0.09588175266981125, 0.13410867750644684, -0.014649981632828712, -0.00016674830112606287, -0.03425376117229462, 0.03801023215055466, -0.006744187790900469, 0.009549438022077084, 0.11068373173475266, 0.16369479894638062, -0.08189849555492401, 0.03697917237877846, -0.06647007167339325, -0.04717544466257095, -0.1150733083486557, 0.0852266475558281, 0.012006900273263454, -0.0004471824795473367, -0.04892851412296295, 0.18227103352546692, -0.10761378705501556, -0.16269439458847046, 0.014913787133991718, -0.11725136637687683, -0.1649196743965149, 0.014523017220199108, 0.034329190850257874, -0.005495624616742134, 0.029706597328186035, 0.058837536722421646, -0.000684146536514163, 0.11010543256998062, 0.03731396049261093, -0.03491546958684921, -0.005759112071245909, 0.13294464349746704, -0.072713203728199, 0.21414679288864136, 0.00019864269415847957, 0.03368009254336357, 0.09533175826072693, -0.034425411373376846, -0.09976519644260406, 0.03298432007431984, 0.13489264249801636, -0.03505398705601692, 0.0016484628431499004, 0.2276614010334015, -0.0278573427349329, 0.13322986662387848, 0.09537074714899063, 0.008231868036091328, 0.029169568791985512, 0.02967487834393978, 0.021981121972203255, -0.13935530185699463, 0.045434530824422836, -0.14081035554409027, 0.10582131147384644, 0.16097907721996307, -0.0706958994269371, 0.0021085187327116728, -0.01982846111059189, 0.013668714091181755, -0.04470455273985863, 0.21676966547966003, -0.012302214279770851, -0.14063450694084167, 0.0007986424607224762, 0.024819044396281242, 0.07101662456989288, -0.1427406519651413, -0.022481374442577362, 0.038541585206985474, -0.0037729840259999037, -0.04251347854733467, 0.11399663984775543, 0.06970609724521637, -0.006967318244278431, -0.04969380795955658, -0.20358799397945404, -0.002356122015044093, 0.1052945926785469, -0.11431003361940384, 0.00844493880867958 ]
5bc7de8ea1484dcd2cbd088d155413d3cafeb3ac
# Dataset Card for "huggingartists/asper-x" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.070417 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9151b2c7ff179037cc5f79221abd0182.388x388x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/asper-x"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Asper X</div> <a href="https://genius.com/artists/asper-x"> <div style="text-align: center; font-size: 14px;">@asper-x</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/asper-x). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/asper-x") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |18| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/asper-x") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/asper-x
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:24:15+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/asper-x" ========================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.070417 MB HuggingArtists Model Asper X [@asper-x](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
c48563fe1c247cddfea711568cfd09c160017609
# Dataset Card for "huggingartists/baklan" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.034685 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/7cfde2abc36913387855f84724ec55d0.640x640x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/baklan"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">BAKLAN</div> <a href="https://genius.com/artists/baklan"> <div style="text-align: center; font-size: 14px;">@baklan</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/baklan). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/baklan") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |3| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/baklan") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/baklan
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:24:22+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/baklan" ======================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.034685 MB HuggingArtists Model BAKLAN [@baklan](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
9489ff0463fd12a31d60e27506a5fdf710d3dfbd
# Dataset Card for "huggingartists/big-baby-tape" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.573981 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d3fc4853f74c35383ec68670bbd292eb.709x709x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/big-baby-tape"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Big Baby Tape</div> <a href="https://genius.com/artists/big-baby-tape"> <div style="text-align: center; font-size: 14px;">@big-baby-tape</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/big-baby-tape). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/big-baby-tape") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |255| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/big-baby-tape") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/big-baby-tape
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:24:28+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/big-baby-tape" =============================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.573981 MB HuggingArtists Model Big Baby Tape [@big-baby-tape](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
11815ef2fe7368d5221c47fd1a93661de34a2617
# Dataset Card for "huggingartists/big-russian-boss" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.52183 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d66eeeef006738708df1e52b84c34c14.403x403x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/big-russian-boss"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Big Russian Boss</div> <a href="https://genius.com/artists/big-russian-boss"> <div style="text-align: center; font-size: 14px;">@big-russian-boss</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/big-russian-boss). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/big-russian-boss") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |151| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/big-russian-boss") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/big-russian-boss
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:24:34+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/big-russian-boss" ================================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.52183 MB HuggingArtists Model Big Russian Boss [@big-russian-boss](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
d94f8fab0d82c9f7bc997982206ef7436a32b9ad
# Dataset Card for "huggingartists/bill-wurtz" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.262088 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/0d4b35ed37091d5f6fd59806810e14ca.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/bill-wurtz"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Bill Wurtz</div> <a href="https://genius.com/artists/bill-wurtz"> <div style="text-align: center; font-size: 14px;">@bill-wurtz</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/bill-wurtz). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bill-wurtz") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |495| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/bill-wurtz") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/bill-wurtz
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:24:40+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/bill-wurtz" ============================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.262088 MB HuggingArtists Model Bill Wurtz [@bill-wurtz](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
c8d45a98413fc28913c29721a44052d0d937ef96
# Dataset Card for "huggingartists/billie-eilish" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.734139 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1aa6c04aad3652556046bb3aabe96498.900x900x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/billie-eilish"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Billie Eilish</div> <a href="https://genius.com/artists/billie-eilish"> <div style="text-align: center; font-size: 14px;">@billie-eilish</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/billie-eilish). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/billie-eilish") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |298| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/billie-eilish") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/billie-eilish
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:24:46+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/billie-eilish" =============================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.734139 MB HuggingArtists Model Billie Eilish [@billie-eilish](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 47 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.013914619572460651, 0.28591373562812805, -0.005060648545622826, 0.08367841690778732, 0.10712352395057678, -0.004416224081069231, 0.10258012264966965, 0.10038145631551743, -0.014376970008015633, 0.1803581267595291, -0.026323102414608, 0.08147774636745453, 0.10512193292379379, 0.10908423364162445, 0.006217150017619133, -0.2622038722038269, -0.008330135606229305, -0.11258503049612045, 0.015385456383228302, 0.08546699583530426, 0.11700425297021866, -0.07605063915252686, 0.06404223293066025, -0.07858122885227203, -0.038442693650722504, 0.04214240238070488, -0.0669354721903801, -0.03682253509759903, 0.02877460978925228, 0.042809661477804184, 0.02908368408679962, -0.0007097263587638736, 0.047616515308618546, -0.286223441362381, 0.011775211431086063, 0.06281538307666779, 0.017140565440058708, 0.03796713426709175, 0.09273633360862732, -0.07995326071977615, 0.07118507474660873, -0.11710904538631439, 0.07283369451761246, 0.035505492240190506, -0.09028968214988708, -0.08075229823589325, -0.15913143754005432, 0.03439744934439659, 0.15539026260375977, 0.08029472827911377, -0.03524215891957283, 0.038990192115306854, -0.06621471792459488, 0.04160933941602707, 0.19776947796344757, -0.14141146838665009, -0.06575373560190201, 0.046632904559373856, -0.0009715995984151959, 0.10326006263494492, -0.11622261255979538, 0.03454980254173279, 0.0003053778491448611, 0.031021954491734505, 0.058150436729192734, -0.027303926646709442, -0.08766186237335205, 0.041207537055015564, -0.15329784154891968, -0.08238294720649719, 0.1133502870798111, -0.019596019759774208, -0.025172032415866852, -0.1460258513689041, -0.009799492545425892, 0.012913200072944164, -0.02026335336267948, 0.005346686579287052, 0.02039371430873871, -0.007605564780533314, 0.0012143823551014066, -0.1064935103058815, -0.05408698692917824, -0.03814329952001572, 0.022493241354823112, 0.08789648860692978, 0.03488171100616455, -0.013313430361449718, 0.05373772978782654, 0.0913248211145401, 0.014734169468283653, -0.1064276397228241, -0.002432184061035514, -0.03353055566549301, -0.07231196761131287, -0.02887876331806183, 0.0493854396045208, -0.04776472598314285, 0.062410689890384674, 0.1663452684879303, -0.02183423563838005, 0.008177993819117546, -0.0777459666132927, -0.014637312851846218, 0.07240843772888184, 0.10696843266487122, -0.06906316429376602, -0.04739132523536682, 0.019671326503157616, 0.014414350502192974, 0.01425251830369234, -0.025044314563274384, -0.04915029928088188, 0.047086652368307114, -0.002383278915658593, 0.14036212861537933, 0.11148421466350555, -0.04414576292037964, -0.07055597752332687, -0.0332430824637413, 0.07973501086235046, -0.1567080318927765, 0.06808985024690628, 0.02589581534266472, -0.038424938917160034, -0.08577524870634079, -0.07179911434650421, 0.018291179090738297, -0.09305728226900101, 0.09318316727876663, -0.03536573424935341, -0.01982000656425953, -0.09188081324100494, -0.06789957731962204, 0.03762153163552284, -0.035872772336006165, -0.05056946352124214, -0.001869230531156063, -0.11588121950626373, -0.07546965777873993, 0.02930769883096218, -0.1104811578989029, -0.08688344061374664, -0.01859656535089016, -0.026342658326029778, -0.0183928981423378, -0.006150456611067057, -0.020071806386113167, -0.05552898347377777, 0.04565480723977089, -0.04117101430892944, 0.02253466099500656, 0.0915255919098854, 0.07928367704153061, -0.10169215500354767, 0.0865284651517868, -0.1353057324886322, 0.10437662154436111, -0.13507747650146484, 0.03128323704004288, -0.10323640704154968, -0.04191167280077934, 0.06159349903464317, -0.034726906567811966, 0.00668701808899641, 0.11806855350732803, -0.23074321448802948, -0.02590094320476055, 0.08575354516506195, -0.06982637941837311, -0.060784514993429184, 0.11278332769870758, -0.04394638165831566, -0.008129274472594261, 0.057960253208875656, 0.12130680680274963, 0.09729654341936111, 0.02231062948703766, -0.05449189990758896, -0.05357876047492027, 0.03463694080710411, 0.19656215608119965, 0.09842625260353088, -0.06747540831565857, 0.09413674473762512, 0.0005493781645782292, -0.0066053252667188644, -0.0577242374420166, 0.002551515819504857, -0.08353251218795776, 0.006860355380922556, -0.0347110778093338, -0.010549228638410568, 0.022295625880360603, -0.05960462614893913, -0.047022219747304916, -0.038678884506225586, 0.02556135319173336, 0.03418932482600212, -0.01594417169690132, 0.00669514387845993, -0.035014282912015915, 0.027549251914024353, 0.02759643830358982, 0.007136376574635506, -0.1665947437286377, -0.07843567430973053, 0.08091063797473907, -0.08179216086864471, 0.12694469094276428, -0.08431648463010788, -0.022032365202903748, 0.0008075088262557983, -0.018827129155397415, 0.0028094882145524025, 0.014113030396401882, 0.0005999623681418598, -0.01766238734126091, -0.15158133208751678, -0.010635224170982838, -0.031209394335746765, 0.06850481778383255, -0.08684232085943222, 0.01657947152853012, 0.1000104546546936, 0.1798057109117508, 0.038978517055511475, -0.053647562861442566, 0.07724488526582718, 0.03213623911142349, -0.015896618366241455, -0.06897704303264618, -0.022672466933727264, -0.05131125450134277, 0.05563701316714287, 0.01794167049229145, -0.08859163522720337, -0.10743282735347748, 0.04925943911075592, 0.11686856299638748, -0.039857055991888046, 0.0006751000182703137, -0.049890175461769104, -0.03359635919332504, -0.12253773212432861, -0.034765664488077164, 0.09747260808944702, 0.05213579908013344, 0.008290091529488564, -0.06681123375892639, -0.071953184902668, -0.055010490119457245, -0.02745371125638485, -0.07269418984651566, 0.11240214109420776, -0.02148454263806343, -0.1284213811159134, 0.16971199214458466, -0.00032872738665901124, 0.048334941267967224, 0.11753719300031662, -0.010730160400271416, -0.10989692062139511, -0.03854287788271904, -0.0045426334254443645, 0.013203768990933895, 0.07270333915948868, -0.02245502732694149, 0.020983824506402016, 0.04794478416442871, -0.024391494691371918, 0.01572434790432453, -0.10326654464006424, 0.00457398034632206, 0.02284715510904789, -0.052388306707143784, 0.051814962178468704, -0.03655596822500229, 0.023576155304908752, 0.09189862757921219, 0.0716540589928627, 0.07284581661224365, -0.02538292296230793, -0.06356576085090637, -0.10699692368507385, 0.09052662551403046, -0.12412434816360474, -0.18669316172599792, -0.12091251462697983, -0.09360938519239426, -0.04491573944687843, -0.010801504366099834, 0.037450358271598816, -0.02766561135649681, -0.07972932606935501, -0.0918598473072052, 0.06698000431060791, 0.00833291094750166, -0.1226564571261406, -0.025799132883548737, 0.023710152134299278, -0.0643635243177414, -0.08344870805740356, 0.04514976218342781, 0.10922934859991074, -0.01746942661702633, -0.00936093833297491, 0.03645213320851326, 0.11635807901620865, 0.12927329540252686, 0.041877537965774536, -0.020071333274245262, -0.025319596752524376, 0.23530106246471405, -0.1335805505514145, 0.07777907699346542, 0.08495926111936569, -0.050238434225320816, 0.0754532441496849, 0.23616135120391846, 0.035677652806043625, -0.047172632068395615, 0.06821710616350174, 0.07079361379146576, -0.034428294748067856, -0.26390549540519714, -0.09817317128181458, -0.06278564780950546, 0.023588012903928757, 0.06903206557035446, 0.055035386234521866, -0.0170255359262228, 0.011772177182137966, -0.09114506840705872, 0.015462307259440422, 0.029454411938786507, 0.08736378699541092, 0.07966713607311249, 0.012802517041563988, 0.009020023979246616, -0.0338718518614769, -0.018047254532575607, 0.12458477169275284, -0.011617200449109077, 0.1256142407655716, -0.02417539246380329, 0.2402072697877884, 0.027695035561919212, 0.11084334552288055, -0.039956897497177124, 0.004367070272564888, -0.020320648327469826, 0.0814129114151001, 0.016649669036269188, -0.06346899271011353, 0.023029962554574013, 0.061984553933143616, 0.09716780483722687, -0.09123741835355759, 0.06757305562496185, -0.08042799681425095, 0.06877291202545166, 0.2821491062641144, 0.041851527988910675, -0.06319618225097656, -0.04697522148489952, 0.13220329582691193, -0.07015381008386612, -0.09494686871767044, 0.012468395754694939, 0.13753913342952728, -0.1576102375984192, 0.041888754814863205, -0.01685098186135292, 0.12271906435489655, -0.06362775713205338, -0.05643562227487564, 0.03618831932544708, 0.0572274886071682, -0.030962718650698662, 0.12860523164272308, -0.21812057495117188, 0.06774383783340454, 0.02408735267817974, 0.028290197253227234, -0.058867741376161575, 0.03410401567816734, 0.004748417064547539, -0.02857166901230812, 0.13904516398906708, 0.021191034466028214, -0.1247740238904953, 0.015435010194778442, -0.1024903804063797, -0.014170198701322079, 0.09674752503633499, -0.18350203335285187, 0.09110750257968903, -0.008150259964168072, -0.028570106253027916, -0.08485822379589081, -0.10812465846538544, -0.09144210815429688, -0.1690295785665512, 0.054344214498996735, -0.05486838519573212, 0.08158732950687408, -0.04559781029820442, -0.037941109389066696, -0.007425687741488218, 0.11283322423696518, -0.051465243101119995, -0.09531848877668381, -0.12253055721521378, 0.05133446678519249, 0.16128019988536835, -0.05841625854372978, 0.04811868444085121, -0.007044237572699785, 0.19352571666240692, 0.013544159010052681, -0.034153468906879425, 0.024059103801846504, -0.030709201470017433, -0.21614274382591248, -0.009810760617256165, 0.16434672474861145, 0.05327458679676056, 0.08341015875339508, -0.013870377093553543, 0.08558697253465652, 0.004380757920444012, -0.11612522602081299, 0.034370679408311844, 0.1097886934876442, 0.006958816200494766, 0.13776542246341705, -0.04032706469297409, -0.15216057002544403, -0.16630539298057556, -0.08302859216928482, 0.1993171125650406, 0.1816941797733307, -0.07199835777282715, 0.12975063920021057, 0.10538181662559509, -0.09249742329120636, -0.2307191789150238, -0.0037018670700490475, -0.01968083530664444, -0.005714832805097103, 0.06586865335702896, -0.235911026597023, -0.005909088533371687, 0.02863788977265358, -0.01338061410933733, 0.03776337206363678, -0.24480189383029938, -0.11402572691440582, 0.03695971891283989, 0.03174113109707832, -0.2801980674266815, -0.15113240480422974, -0.1105746254324913, -0.06642598658800125, -0.12864066660404205, 0.1371936798095703, -0.02828267775475979, 0.025424066931009293, -0.006211027503013611, 0.10516799241304398, 0.020669197663664818, -0.017228061333298683, 0.12427153438329697, -0.01917329616844654, 0.028734657913446426, -0.08498408645391464, -0.049210596829652786, 0.006977803073823452, -0.04813599959015846, 0.10499168187379837, 0.0017834905302152038, 0.03604554757475853, -0.07757624983787537, -0.014059804379940033, -0.07699889689683914, 0.011485771276056767, -0.07826253026723862, -0.05470609292387962, -0.12672200798988342, 0.06855590641498566, 0.0925627052783966, -0.03746103495359421, 0.06883012503385544, -0.020830580964684486, 0.0238794032484293, 0.0948505699634552, 0.10724601149559021, 0.13067249953746796, -0.05295703560113907, 0.0013808668591082096, 0.016953708603978157, -0.022520989179611206, -0.1271613985300064, 0.057498201727867126, 0.1336752325296402, 0.07849941402673721, 0.13747790455818176, -0.03893451765179634, -0.1532028764486313, -0.019857579842209816, 0.02192753367125988, -0.11008449643850327, -0.22632771730422974, -0.0029911245219409466, 0.1241818517446518, -0.16673214733600616, -0.1164846122264862, 0.0183231420814991, -0.002146138111129403, -0.08591264486312866, 0.03323504328727722, 0.09334979951381683, 0.00635913573205471, 0.09226176142692566, 0.05543980374932289, 0.04640179127454758, -0.0810721218585968, 0.10768046975135803, 0.14621110260486603, -0.08644456416368484, -0.014512871392071247, 0.1960095763206482, -0.0406637005507946, -0.034299541264772415, 0.11164414137601852, 0.05285399779677391, 0.017273753881454468, 0.0011890175519511104, 0.01986110955476761, -0.08934544026851654, 0.028813932090997696, 0.14867697656154633, 0.002030721167102456, 0.028250040486454964, 0.01607193797826767, -0.017421582713723183, -0.04397628828883171, 0.1647210568189621, 0.03202838823199272, 0.05263005197048187, -0.05792727693915367, 0.00660938723012805, -0.018243232741951942, 0.03721614181995392, -0.01945309340953827, -0.031683921813964844, -0.09154628217220306, 0.003942171111702919, -0.12317333370447159, 0.0031289635226130486, -0.1191139966249466, -0.01783675141632557, -0.015991123393177986, -0.06449958682060242, -0.006115679629147053, 0.013721202500164509, -0.07349608093500137, -0.06809963285923004, -0.09648025780916214, 0.10122205317020416, -0.18812361359596252, -0.017930496484041214, 0.11058451980352402, -0.04605787247419357, 0.10638636350631714, 0.01458027958869934, -0.012562253512442112, -0.019065039232373238, -0.13261778652668, -0.009611665271222591, -0.04293118044734001, 0.055578213185071945, 0.08913365006446838, -0.1535511463880539, -0.02971624583005905, -0.03359910845756531, -0.06198476254940033, 0.033116694539785385, 0.0657210424542427, -0.12040620297193527, 0.05179158225655556, -0.002079098019748926, -0.1038854569196701, -0.020233407616615295, 0.04205940663814545, 0.06550765782594681, 0.006233124062418938, 0.15261605381965637, -0.03595910221338272, 0.12402674555778503, -0.09434042125940323, -0.026452718302607536, -0.01701227016746998, 0.010708528570830822, 0.001092334627173841, 0.01741742715239525, 0.04423349350690842, -0.025340808555483818, 0.1693926453590393, 0.07896164059638977, -0.043365661054849625, 0.05368571728467941, 0.028167931362986565, 0.024178646504878998, 0.059284910559654236, -0.012579523958265781, -0.02192198485136032, -0.0546373575925827, 0.006451169028878212, -0.07337387651205063, -0.0490846149623394, -0.015919256955385208, 0.09397047758102417, 0.11379116028547287, 0.20545801520347595, -0.038196563720703125, 0.10637466609477997, -0.11501350998878479, -0.12174522131681442, 0.015351868234574795, 0.010642588138580322, 0.04380409047007561, -0.062433987855911255, 0.11772574484348297, 0.04512566700577736, -0.2011898159980774, 0.1446133852005005, -0.0871867835521698, -0.07859180122613907, -0.035413067787885666, -0.14587421715259552, -0.06722234934568405, -0.026815926656126976, -0.01637200452387333, -0.11221323162317276, 0.10566242039203644, 0.1023242175579071, -0.04099055752158165, -0.02027495577931404, 0.1406659036874771, -0.06652962416410446, -0.07777097821235657, 0.03878151252865791, 0.040115974843502045, 0.019891511648893356, 0.025743264704942703, 0.09491042047739029, -0.05034519359469414, 0.011898024939000607, 0.07751625776290894, 0.05924272909760475, -0.01682531274855137, 0.010298649780452251, -0.08349135518074036, -0.06956764310598373, 0.04586189240217209, -0.0321928896009922, -0.030160417780280113, 0.163370281457901, 0.0554833747446537, 0.030370885506272316, 0.023469075560569763, 0.26768699288368225, -0.07727399468421936, -0.03255248814821243, -0.15682849287986755, 0.12034297734498978, -0.07365789264440536, -0.019989820197224617, 0.046249549835920334, -0.14981108903884888, 0.002596268430352211, 0.09588175266981125, 0.13410867750644684, -0.014649981632828712, -0.00016674830112606287, -0.03425376117229462, 0.03801023215055466, -0.006744187790900469, 0.009549438022077084, 0.11068373173475266, 0.16369479894638062, -0.08189849555492401, 0.03697917237877846, -0.06647007167339325, -0.04717544466257095, -0.1150733083486557, 0.0852266475558281, 0.012006900273263454, -0.0004471824795473367, -0.04892851412296295, 0.18227103352546692, -0.10761378705501556, -0.16269439458847046, 0.014913787133991718, -0.11725136637687683, -0.1649196743965149, 0.014523017220199108, 0.034329190850257874, -0.005495624616742134, 0.029706597328186035, 0.058837536722421646, -0.000684146536514163, 0.11010543256998062, 0.03731396049261093, -0.03491546958684921, -0.005759112071245909, 0.13294464349746704, -0.072713203728199, 0.21414679288864136, 0.00019864269415847957, 0.03368009254336357, 0.09533175826072693, -0.034425411373376846, -0.09976519644260406, 0.03298432007431984, 0.13489264249801636, -0.03505398705601692, 0.0016484628431499004, 0.2276614010334015, -0.0278573427349329, 0.13322986662387848, 0.09537074714899063, 0.008231868036091328, 0.029169568791985512, 0.02967487834393978, 0.021981121972203255, -0.13935530185699463, 0.045434530824422836, -0.14081035554409027, 0.10582131147384644, 0.16097907721996307, -0.0706958994269371, 0.0021085187327116728, -0.01982846111059189, 0.013668714091181755, -0.04470455273985863, 0.21676966547966003, -0.012302214279770851, -0.14063450694084167, 0.0007986424607224762, 0.024819044396281242, 0.07101662456989288, -0.1427406519651413, -0.022481374442577362, 0.038541585206985474, -0.0037729840259999037, -0.04251347854733467, 0.11399663984775543, 0.06970609724521637, -0.006967318244278431, -0.04969380795955658, -0.20358799397945404, -0.002356122015044093, 0.1052945926785469, -0.11431003361940384, 0.00844493880867958 ]
85cb3fe489cda29705cc7fadefff33a2e9d895f2
# Dataset Card for "huggingartists/billy-talent" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.222716 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/66f0650a5d8acadaed4292d6e3df6b9b.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/billy-talent"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Billy Talent</div> <a href="https://genius.com/artists/billy-talent"> <div style="text-align: center; font-size: 14px;">@billy-talent</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/billy-talent). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/billy-talent") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |122| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/billy-talent") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/billy-talent
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:24:52+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/billy-talent" ============================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.222716 MB HuggingArtists Model Billy Talent [@billy-talent](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
caf83211a39f950f0ad7b933881af388593b3db0
# Dataset Card for "huggingartists/bladee" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.428949 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1abf6ff09c7c4209c458e5937b088aba.640x640x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/bladee"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Bladee</div> <a href="https://genius.com/artists/bladee"> <div style="text-align: center; font-size: 14px;">@bladee</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/bladee). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bladee") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |318| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/bladee") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/bladee
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:25:00+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/bladee" ======================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.428949 MB HuggingArtists Model Bladee [@bladee](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
8757c844391c3190af540f29b732c931affb08fa
# Dataset Card for "huggingartists/bob-dylan" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 2.91167 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/22306423b6ad8777d1ed5b33ad8b0d0b.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/bob-dylan"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Bob Dylan</div> <a href="https://genius.com/artists/bob-dylan"> <div style="text-align: center; font-size: 14px;">@bob-dylan</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/bob-dylan). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bob-dylan") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |2241| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/bob-dylan") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/bob-dylan
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:25:08+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/bob-dylan" =========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 2.91167 MB HuggingArtists Model Bob Dylan [@bob-dylan](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
ca533918efb9670858df63ad95860558ce075b47
# Dataset Card for "huggingartists/bones" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 1.235927 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/564dc935d7c601860b155b359d8ddf9d.1000x1000x1.png&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/bones"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">BONES</div> <a href="https://genius.com/artists/bones"> <div style="text-align: center; font-size: 14px;">@bones</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/bones). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bones") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |1156| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/bones") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/bones
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:25:14+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/bones" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 1.235927 MB HuggingArtists Model BONES [@bones](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
7078b7b438ce882a3ed74a21a7adf6e33c11209a
# Dataset Card for "huggingartists/booker" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.782002 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/fb0d7cebfd97c76d99f1015b6ddc0e55.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/booker"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Booker</div> <a href="https://genius.com/artists/booker"> <div style="text-align: center; font-size: 14px;">@booker</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/booker). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/booker") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |196| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/booker") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/booker
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:25:20+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/booker" ======================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.782002 MB HuggingArtists Model Booker [@booker](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
4a607c4fbefba124bcef052b96e8a70aae777802
# Dataset Card for "huggingartists/boris-grebenshikov" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.727596 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/491c2f003f52c9837809b86faef7b764.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/boris-grebenshikov"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Борис Гребенщиков (Boris Grebenshikov)</div> <a href="https://genius.com/artists/boris-grebenshikov"> <div style="text-align: center; font-size: 14px;">@boris-grebenshikov</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/boris-grebenshikov). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/boris-grebenshikov") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |461| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/boris-grebenshikov") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/boris-grebenshikov
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:25:26+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/boris-grebenshikov" ==================================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.727596 MB HuggingArtists Model Борис Гребенщиков (Boris Grebenshikov) [@boris-grebenshikov](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
d40cc98b082f4cf108833107f15533f43a7f13f3
# Dataset Card for "huggingartists/braii" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.042356 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d8719c6068c83cf3eeea5d32b4a57d97.750x750x1.png&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/braii"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Braii</div> <a href="https://genius.com/artists/braii"> <div style="text-align: center; font-size: 14px;">@braii</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/braii). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/braii") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |15| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/braii") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/braii
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:25:32+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/braii" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.042356 MB HuggingArtists Model Braii [@braii](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
43d58ad8ea973b0006cfb8b3313e12b0e8e7d696
# Dataset Card for "huggingartists/bring-me-the-horizon" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.269517 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/64c7d35c8d427522574cbf7773084ee3.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/bring-me-the-horizon"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Bring Me The Horizon</div> <a href="https://genius.com/artists/bring-me-the-horizon"> <div style="text-align: center; font-size: 14px;">@bring-me-the-horizon</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/bring-me-the-horizon). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bring-me-the-horizon") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |173| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/bring-me-the-horizon") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/bring-me-the-horizon
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:25:38+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/bring-me-the-horizon" ====================================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.269517 MB HuggingArtists Model Bring Me The Horizon [@bring-me-the-horizon](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
cafb1e5859b186492973a8e94bb6b18d27daf569
# Dataset Card for "huggingartists/bruce-springsteen" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 1.320493 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/6dfe4b89b895b331f09c6b136a0705e5.807x807x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/bruce-springsteen"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Bruce Springsteen</div> <a href="https://genius.com/artists/bruce-springsteen"> <div style="text-align: center; font-size: 14px;">@bruce-springsteen</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/bruce-springsteen). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bruce-springsteen") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |960| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/bruce-springsteen") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/bruce-springsteen
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:25:44+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/bruce-springsteen" =================================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 1.320493 MB HuggingArtists Model Bruce Springsteen [@bruce-springsteen](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
3c4e8d5f5dd6bb95fd834d9d7d8c2f794b991c45
# Dataset Card for "huggingartists/bryan-adams" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.542578 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2cb27a7f3f50142f45cd18fae968738c.750x750x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/bryan-adams"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Bryan Adams</div> <a href="https://genius.com/artists/bryan-adams"> <div style="text-align: center; font-size: 14px;">@bryan-adams</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/bryan-adams). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bryan-adams") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |456| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/bryan-adams") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/bryan-adams
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:25:51+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/bryan-adams" ============================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.542578 MB HuggingArtists Model Bryan Adams [@bryan-adams](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
4ac9ec51b1451d96f5f45473d8d29bde9bbb1beb
# Dataset Card for "huggingartists/burzum" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.089297 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/62edc981d303447265d23a3862abce43.589x589x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/burzum"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Burzum</div> <a href="https://genius.com/artists/burzum"> <div style="text-align: center; font-size: 14px;">@burzum</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/burzum). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/burzum") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |96| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/burzum") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/burzum
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:25:58+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/burzum" ======================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.089297 MB HuggingArtists Model Burzum [@burzum](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
5b1c7c03dc3636e4c634c29cef4ffbe530158ede
# Dataset Card for "huggingartists/bushido-zho" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.195456 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/6e5b165de8561df37790229c26b25692.959x959x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/bushido-zho"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">BUSHIDO ZHO</div> <a href="https://genius.com/artists/bushido-zho"> <div style="text-align: center; font-size: 14px;">@bushido-zho</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/bushido-zho). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bushido-zho") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |91| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/bushido-zho") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/bushido-zho
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:26:05+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/bushido-zho" ============================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.195456 MB HuggingArtists Model BUSHIDO ZHO [@bushido-zho](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
6c0e6f0fd2678de60c2ce476cbca6c9b91da4ad0
# Dataset Card for "huggingartists/cardi-b" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.485384 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5a60c41c5543b9286bc6d645603c8df8.568x568x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/cardi-b"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Cardi B</div> <a href="https://genius.com/artists/cardi-b"> <div style="text-align: center; font-size: 14px;">@cardi-b</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/cardi-b). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/cardi-b") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |223| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/cardi-b") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/cardi-b
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:26:12+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/cardi-b" ========================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.485384 MB HuggingArtists Model Cardi B [@cardi-b](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
bc60f5f393a7042897af3f1d480496e76aafc3b7
# Dataset Card for "huggingartists/chester-bennington" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.519451 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/3853f38429e3cd0278c2b5b6307b9e92.752x752x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/chester-bennington"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Chester Bennington</div> <a href="https://genius.com/artists/chester-bennington"> <div style="text-align: center; font-size: 14px;">@chester-bennington</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/chester-bennington). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/chester-bennington") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |391| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/chester-bennington") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/chester-bennington
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:26:18+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/chester-bennington" ==================================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.519451 MB HuggingArtists Model Chester Bennington [@chester-bennington](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
b8acd994448319a7af91419e79dff99edd249287
# Dataset Card for "huggingartists/chief-keef" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 2.64925 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b1b5a054c30c329a209daef471c5fff2.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/chief-keef"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Chief Keef</div> <a href="https://genius.com/artists/chief-keef"> <div style="text-align: center; font-size: 14px;">@chief-keef</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/chief-keef). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/chief-keef") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |1441| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/chief-keef") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/chief-keef
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:26:33+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/chief-keef" ============================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 2.64925 MB HuggingArtists Model Chief Keef [@chief-keef](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
f3721a07d433cd61781ea7bedfa6ddf62de94b10
# Dataset Card for "huggingartists/cocomelon" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.084755 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a6115c556163f271124bacf8a07db45d.499x499x1.png&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/cocomelon"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Cocomelon</div> <a href="https://genius.com/artists/cocomelon"> <div style="text-align: center; font-size: 14px;">@cocomelon</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/cocomelon). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/cocomelon") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |53| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/cocomelon") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/cocomelon
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:26:39+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/cocomelon" =========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.084755 MB HuggingArtists Model Cocomelon [@cocomelon](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
fbeb48188b66d8abc1317b0580d71a1db9436a53
# Dataset Card for "huggingartists/coin" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.090433 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/51dfcc02520ba079e46bee158ffab75a.400x400x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/coin"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">COIN</div> <a href="https://genius.com/artists/coin"> <div style="text-align: center; font-size: 14px;">@coin</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/coin). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/coin") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |83| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/coin") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/coin
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:26:45+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/coin" ====================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.090433 MB HuggingArtists Model COIN [@coin](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
a071ac93bdb27f7e766b322ca8472d0c45451e3c
# Dataset Card for "huggingartists/coldplay" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.451347 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e4f988f1ee26618c5dd41b59b8ff2b43.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/coldplay"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Coldplay</div> <a href="https://genius.com/artists/coldplay"> <div style="text-align: center; font-size: 14px;">@coldplay</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/coldplay). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/coldplay") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |432| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/coldplay") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/coldplay
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:26:52+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/coldplay" ========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.451347 MB HuggingArtists Model Coldplay [@coldplay](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
de10d282c047829c34b8870b3084e82235d3ab17
# Dataset Card for "huggingartists/dababy" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 1.003363 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b68b0e6ba289b80529dc0194cdb7d00d.639x640x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/dababy"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">DaBaby</div> <a href="https://genius.com/artists/dababy"> <div style="text-align: center; font-size: 14px;">@dababy</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/dababy). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dababy") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |410| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/dababy") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/dababy
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:27:00+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/dababy" ======================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 1.003363 MB HuggingArtists Model DaBaby [@dababy](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
2388a76878bb2af1c6d9567b0449600f54db210a
# Dataset Card for "huggingartists/david-bowie" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 1.590408 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2eea1354199a1914d947041259d25dc4.678x678x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/david-bowie"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">David Bowie</div> <a href="https://genius.com/artists/david-bowie"> <div style="text-align: center; font-size: 14px;">@david-bowie</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/david-bowie). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/david-bowie") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |1302| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/david-bowie") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/david-bowie
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:27:08+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/david-bowie" ============================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 1.590408 MB HuggingArtists Model David Bowie [@david-bowie](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
8a7c1d7d5eda3802ada3d60210f5efdb1ded00c1
# Dataset Card for "huggingartists/ddt" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.057123 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.rapgenius.com/avatars/medium/f258b58a22ea31bb81b73395c47e5ba4&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/ddt"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">DDT</div> <a href="https://genius.com/artists/ddt"> <div style="text-align: center; font-size: 14px;">@ddt</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/ddt). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ddt") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |20| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/ddt") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/ddt
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:27:16+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/ddt" ===================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.057123 MB HuggingArtists Model DDT [@ddt](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
19fa06c4b4e1fbcecd4865ab0e219a7f2862b9ac
# Dataset Card for "huggingartists/death-grips" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.297416 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/de4ca387303c4b46007ca1072c2e57d0.600x600x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/death-grips"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Death Grips</div> <a href="https://genius.com/artists/death-grips"> <div style="text-align: center; font-size: 14px;">@death-grips</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/death-grips). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/death-grips") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |153| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/death-grips") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/death-grips
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:27:22+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/death-grips" ============================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.297416 MB HuggingArtists Model Death Grips [@death-grips](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
368616e8319df3a057230ae19424825e2e7bd8b1
# Dataset Card for "huggingartists/deep-purple" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.365903 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/91b25ad26e90b71d04d42ccec0a46347.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/deep-purple"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Purple</div> <a href="https://genius.com/artists/deep-purple"> <div style="text-align: center; font-size: 14px;">@deep-purple</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/deep-purple). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/deep-purple") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |407| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/deep-purple") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/deep-purple
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:27:29+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/deep-purple" ============================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.365903 MB HuggingArtists Model Deep Purple [@deep-purple](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
edcbfc4f57ee139b2eb1acb277f5e1af722b2997
# Dataset Card for "huggingartists/denderty" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.096003 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/cc5ab151c2e490b6795919a7838ffdc4.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/denderty"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">DenDerty</div> <a href="https://genius.com/artists/denderty"> <div style="text-align: center; font-size: 14px;">@denderty</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/denderty). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/denderty") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |75| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/denderty") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/denderty
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:27:35+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/denderty" ========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.096003 MB HuggingArtists Model DenDerty [@denderty](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
4f184e8c2b53be2f9b6abe671cd75d863754cbec
# Dataset Card for "huggingartists/dermot-kennedy" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.150085 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c315a70b46158903a9878b1d70901405.800x800x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/dermot-kennedy"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Dermot Kennedy</div> <a href="https://genius.com/artists/dermot-kennedy"> <div style="text-align: center; font-size: 14px;">@dermot-kennedy</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/dermot-kennedy). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dermot-kennedy") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |77| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/dermot-kennedy") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/dermot-kennedy
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:27:42+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/dermot-kennedy" ================================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.150085 MB HuggingArtists Model Dermot Kennedy [@dermot-kennedy](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
af230abf71e3498922353adf4748dd0800b879ce
# Dataset Card for "huggingartists/dj-artem-artemov" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.105061 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/7499a229de60cdfb23ce61f5924c401d.416x416x1.png&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/dj-artem-artemov"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">DJ Artem Artemov</div> <a href="https://genius.com/artists/dj-artem-artemov"> <div style="text-align: center; font-size: 14px;">@dj-artem-artemov</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/dj-artem-artemov). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dj-artem-artemov") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |56| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/dj-artem-artemov") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/dj-artem-artemov
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:27:49+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/dj-artem-artemov" ================================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.105061 MB HuggingArtists Model DJ Artem Artemov [@dj-artem-artemov](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
ed8ca58dadd21916cd900452f0d5a8cdc0ae83ff
# Dataset Card for "huggingartists/doja-cat" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.558864 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/49b33cfa0bdb3ed97058a10960f2af8d.640x640x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/doja-cat"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Doja Cat</div> <a href="https://genius.com/artists/doja-cat"> <div style="text-align: center; font-size: 14px;">@doja-cat</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/doja-cat). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/doja-cat") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |321| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/doja-cat") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/doja-cat
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:27:55+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/doja-cat" ========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.558864 MB HuggingArtists Model Doja Cat [@doja-cat](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
95cc010ee40cf433885766e690452828f85a0390
# Dataset Card for "huggingartists/drake" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 6.063474 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/631b206379b60df5e1da90e84d35fdbe.1000x1000x1.png&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/drake"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Drake</div> <a href="https://genius.com/artists/drake"> <div style="text-align: center; font-size: 14px;">@drake</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/drake). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/drake") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |1298| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/drake") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2022 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/drake
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:28:02+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/drake" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 6.063474 MB HuggingArtists Model Drake [@drake](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
1038b74c25d3f17e33948a8d3810d7ce1e698ba4
# Dataset Card for "huggingartists/dua-lipa" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.691563 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/dd37b530cf20f2ce699f91e02a476a8a.847x847x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/dua-lipa"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Dua Lipa</div> <a href="https://genius.com/artists/dua-lipa"> <div style="text-align: center; font-size: 14px;">@dua-lipa</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/dua-lipa). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dua-lipa") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |454| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/dua-lipa") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/dua-lipa
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:28:09+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/dua-lipa" ========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.691563 MB HuggingArtists Model Dua Lipa [@dua-lipa](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
f4ed8e748b543bd8b54397684bb34cbcedce757f
# Dataset Card for "huggingartists/duran-duran" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.414706 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/95697394e4f58c9aa507e408f51008db.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/duran-duran"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Duran Duran</div> <a href="https://genius.com/artists/duran-duran"> <div style="text-align: center; font-size: 14px;">@duran-duran</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/duran-duran). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/duran-duran") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |360| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/duran-duran") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/duran-duran
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:28:15+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/duran-duran" ============================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.414706 MB HuggingArtists Model Duran Duran [@duran-duran](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
9cf1a6f75e8e3935f420c377f5a4eeaad578fb33
# Dataset Card for "huggingartists/dzhizus" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.455898 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a96a6042b4c0a4c0bdae647768c5e42b.668x668x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/dzhizus"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Джизус (Dzhizus)</div> <a href="https://genius.com/artists/dzhizus"> <div style="text-align: center; font-size: 14px;">@dzhizus</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/dzhizus). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/dzhizus") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |280| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/dzhizus") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/dzhizus
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:28:21+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/dzhizus" ========================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.455898 MB HuggingArtists Model Джизус (Dzhizus) [@dzhizus](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
461ad97bf84c5905bdba5e7b73b9c24a9bd70186
# Dataset Card for "huggingartists/ed-sheeran" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 3.432643 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b501daeff73d1b17610f47a5668f690a.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/ed-sheeran"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Ed Sheeran</div> <a href="https://genius.com/artists/ed-sheeran"> <div style="text-align: center; font-size: 14px;">@ed-sheeran</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/ed-sheeran). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ed-sheeran") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |923| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/ed-sheeran") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2022 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/ed-sheeran
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:28:28+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/ed-sheeran" ============================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 3.432643 MB HuggingArtists Model Ed Sheeran [@ed-sheeran](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
4428d4828ea9c383896a6b3524032d2450e14fe0
# Dataset Card for "huggingartists/egor-kreed" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.321207 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f52808edb2078f52ddab162623f0c6e3.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/egor-kreed"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">ЕГОР КРИД (EGOR KREED)</div> <a href="https://genius.com/artists/egor-kreed"> <div style="text-align: center; font-size: 14px;">@egor-kreed</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/egor-kreed). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/egor-kreed") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |103| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/egor-kreed") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/egor-kreed
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:28:35+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/egor-kreed" ============================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.321207 MB HuggingArtists Model ЕГОР КРИД (EGOR KREED) [@egor-kreed](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
14cb63f8bccb6aec362060cd0cfb10b949df4bb6
# Dataset Card for "huggingartists/egor-letov" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.673046 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/faa3dae99bf1fe365927608fd55c745a.330x330x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/egor-letov"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Егор Летов (Egor Letov)</div> <a href="https://genius.com/artists/egor-letov"> <div style="text-align: center; font-size: 14px;">@egor-letov</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/egor-letov). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/egor-letov") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |543| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/egor-letov") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/egor-letov
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:28:41+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/egor-letov" ============================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.673046 MB HuggingArtists Model Егор Летов (Egor Letov) [@egor-letov](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
4b913d32bf72ea85857d18893cfe2f7db9e86bce
# Dataset Card for "huggingartists/elton-john" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 1.422945 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/ec76d346c4c8b057169194c1781021fd.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/elton-john"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Elton John</div> <a href="https://genius.com/artists/elton-john"> <div style="text-align: center; font-size: 14px;">@elton-john</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/elton-john). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/elton-john") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |1311| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/elton-john") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/elton-john
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:29:00+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/elton-john" ============================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 1.422945 MB HuggingArtists Model Elton John [@elton-john](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
c412801f148b1ac39f4964eb6a97fa6ddcd1dd28
# Dataset Card for "huggingartists/eminem" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 8.291956 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c7367126e7e6ebc13fcea9d4efca0204.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/eminem"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Eminem</div> <a href="https://genius.com/artists/eminem"> <div style="text-align: center; font-size: 14px;">@eminem</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/eminem). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/eminem") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |1285| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/eminem") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2022 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/eminem
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:29:07+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/eminem" ======================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 8.291956 MB HuggingArtists Model Eminem [@eminem](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
948f8077b7fd1b7cf64f22b65968fb5508272f8d
# Dataset Card for "huggingartists/enigma" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.268668 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4b5472082f220eb9c2ca6b22f4d12f45.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/enigma"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Enigma</div> <a href="https://genius.com/artists/enigma"> <div style="text-align: center; font-size: 14px;">@enigma</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/enigma). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/enigma") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |277| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/enigma") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/enigma
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:29:13+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/enigma" ======================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.268668 MB HuggingArtists Model Enigma [@enigma](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
7feddd26179765eef7837cd77b3fed87c7072323
# Dataset Card for "huggingartists/enya" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.132575 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f43534295450e1b0a276620dffdc3740.379x379x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/enya"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Enya</div> <a href="https://genius.com/artists/enya"> <div style="text-align: center; font-size: 14px;">@enya</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/enya). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/enya") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |172| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/enya") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/enya
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:29:19+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/enya" ====================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.132575 MB HuggingArtists Model Enya [@enya](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
fa5c7cf58b0ef8dc6d03f758030c656eb96066f6
# Dataset Card for "huggingartists/epic-rap-battles-of-history" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.252059 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/86da58e97d308e9127100e7954dc1d74.900x900x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/epic-rap-battles-of-history"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Epic Rap Battles of History</div> <a href="https://genius.com/artists/epic-rap-battles-of-history"> <div style="text-align: center; font-size: 14px;">@epic-rap-battles-of-history</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/epic-rap-battles-of-history). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/epic-rap-battles-of-history") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |98| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/epic-rap-battles-of-history") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/epic-rap-battles-of-history
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:29:25+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/epic-rap-battles-of-history" ============================================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.252059 MB HuggingArtists Model Epic Rap Battles of History [@epic-rap-battles-of-history](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
8f658917dbf4c4cef4d09ca6f09809cc5969ebb0
# Dataset Card for "huggingartists/face" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.563916 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1dcb4e1dc4242207c27fe5cd0d4090e8.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/face"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">FACE</div> <a href="https://genius.com/artists/face"> <div style="text-align: center; font-size: 14px;">@face</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/face). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/face") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |213| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/face") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/face
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:29:31+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/face" ====================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.563916 MB HuggingArtists Model FACE [@face](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
f1f613ffe73a0f952d5cd312e9d4ecd9221eb01a
# Dataset Card for "huggingartists/fascinoma" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.028316 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://assets.genius.com/images/default_avatar_300.png?1627659427&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/fascinoma"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Fascinoma</div> <a href="https://genius.com/artists/fascinoma"> <div style="text-align: center; font-size: 14px;">@fascinoma</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/fascinoma). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/fascinoma") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |1| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/fascinoma") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/fascinoma
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:29:38+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/fascinoma" =========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.028316 MB HuggingArtists Model Fascinoma [@fascinoma](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 47 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.013914619572460651, 0.28591373562812805, -0.005060648545622826, 0.08367841690778732, 0.10712352395057678, -0.004416224081069231, 0.10258012264966965, 0.10038145631551743, -0.014376970008015633, 0.1803581267595291, -0.026323102414608, 0.08147774636745453, 0.10512193292379379, 0.10908423364162445, 0.006217150017619133, -0.2622038722038269, -0.008330135606229305, -0.11258503049612045, 0.015385456383228302, 0.08546699583530426, 0.11700425297021866, -0.07605063915252686, 0.06404223293066025, -0.07858122885227203, -0.038442693650722504, 0.04214240238070488, -0.0669354721903801, -0.03682253509759903, 0.02877460978925228, 0.042809661477804184, 0.02908368408679962, -0.0007097263587638736, 0.047616515308618546, -0.286223441362381, 0.011775211431086063, 0.06281538307666779, 0.017140565440058708, 0.03796713426709175, 0.09273633360862732, -0.07995326071977615, 0.07118507474660873, -0.11710904538631439, 0.07283369451761246, 0.035505492240190506, -0.09028968214988708, -0.08075229823589325, -0.15913143754005432, 0.03439744934439659, 0.15539026260375977, 0.08029472827911377, -0.03524215891957283, 0.038990192115306854, -0.06621471792459488, 0.04160933941602707, 0.19776947796344757, -0.14141146838665009, -0.06575373560190201, 0.046632904559373856, -0.0009715995984151959, 0.10326006263494492, -0.11622261255979538, 0.03454980254173279, 0.0003053778491448611, 0.031021954491734505, 0.058150436729192734, -0.027303926646709442, -0.08766186237335205, 0.041207537055015564, -0.15329784154891968, -0.08238294720649719, 0.1133502870798111, -0.019596019759774208, -0.025172032415866852, -0.1460258513689041, -0.009799492545425892, 0.012913200072944164, -0.02026335336267948, 0.005346686579287052, 0.02039371430873871, -0.007605564780533314, 0.0012143823551014066, -0.1064935103058815, -0.05408698692917824, -0.03814329952001572, 0.022493241354823112, 0.08789648860692978, 0.03488171100616455, -0.013313430361449718, 0.05373772978782654, 0.0913248211145401, 0.014734169468283653, -0.1064276397228241, -0.002432184061035514, -0.03353055566549301, -0.07231196761131287, -0.02887876331806183, 0.0493854396045208, -0.04776472598314285, 0.062410689890384674, 0.1663452684879303, -0.02183423563838005, 0.008177993819117546, -0.0777459666132927, -0.014637312851846218, 0.07240843772888184, 0.10696843266487122, -0.06906316429376602, -0.04739132523536682, 0.019671326503157616, 0.014414350502192974, 0.01425251830369234, -0.025044314563274384, -0.04915029928088188, 0.047086652368307114, -0.002383278915658593, 0.14036212861537933, 0.11148421466350555, -0.04414576292037964, -0.07055597752332687, -0.0332430824637413, 0.07973501086235046, -0.1567080318927765, 0.06808985024690628, 0.02589581534266472, -0.038424938917160034, -0.08577524870634079, -0.07179911434650421, 0.018291179090738297, -0.09305728226900101, 0.09318316727876663, -0.03536573424935341, -0.01982000656425953, -0.09188081324100494, -0.06789957731962204, 0.03762153163552284, -0.035872772336006165, -0.05056946352124214, -0.001869230531156063, -0.11588121950626373, -0.07546965777873993, 0.02930769883096218, -0.1104811578989029, -0.08688344061374664, -0.01859656535089016, -0.026342658326029778, -0.0183928981423378, -0.006150456611067057, -0.020071806386113167, -0.05552898347377777, 0.04565480723977089, -0.04117101430892944, 0.02253466099500656, 0.0915255919098854, 0.07928367704153061, -0.10169215500354767, 0.0865284651517868, -0.1353057324886322, 0.10437662154436111, -0.13507747650146484, 0.03128323704004288, -0.10323640704154968, -0.04191167280077934, 0.06159349903464317, -0.034726906567811966, 0.00668701808899641, 0.11806855350732803, -0.23074321448802948, -0.02590094320476055, 0.08575354516506195, -0.06982637941837311, -0.060784514993429184, 0.11278332769870758, -0.04394638165831566, -0.008129274472594261, 0.057960253208875656, 0.12130680680274963, 0.09729654341936111, 0.02231062948703766, -0.05449189990758896, -0.05357876047492027, 0.03463694080710411, 0.19656215608119965, 0.09842625260353088, -0.06747540831565857, 0.09413674473762512, 0.0005493781645782292, -0.0066053252667188644, -0.0577242374420166, 0.002551515819504857, -0.08353251218795776, 0.006860355380922556, -0.0347110778093338, -0.010549228638410568, 0.022295625880360603, -0.05960462614893913, -0.047022219747304916, -0.038678884506225586, 0.02556135319173336, 0.03418932482600212, -0.01594417169690132, 0.00669514387845993, -0.035014282912015915, 0.027549251914024353, 0.02759643830358982, 0.007136376574635506, -0.1665947437286377, -0.07843567430973053, 0.08091063797473907, -0.08179216086864471, 0.12694469094276428, -0.08431648463010788, -0.022032365202903748, 0.0008075088262557983, -0.018827129155397415, 0.0028094882145524025, 0.014113030396401882, 0.0005999623681418598, -0.01766238734126091, -0.15158133208751678, -0.010635224170982838, -0.031209394335746765, 0.06850481778383255, -0.08684232085943222, 0.01657947152853012, 0.1000104546546936, 0.1798057109117508, 0.038978517055511475, -0.053647562861442566, 0.07724488526582718, 0.03213623911142349, -0.015896618366241455, -0.06897704303264618, -0.022672466933727264, -0.05131125450134277, 0.05563701316714287, 0.01794167049229145, -0.08859163522720337, -0.10743282735347748, 0.04925943911075592, 0.11686856299638748, -0.039857055991888046, 0.0006751000182703137, -0.049890175461769104, -0.03359635919332504, -0.12253773212432861, -0.034765664488077164, 0.09747260808944702, 0.05213579908013344, 0.008290091529488564, -0.06681123375892639, -0.071953184902668, -0.055010490119457245, -0.02745371125638485, -0.07269418984651566, 0.11240214109420776, -0.02148454263806343, -0.1284213811159134, 0.16971199214458466, -0.00032872738665901124, 0.048334941267967224, 0.11753719300031662, -0.010730160400271416, -0.10989692062139511, -0.03854287788271904, -0.0045426334254443645, 0.013203768990933895, 0.07270333915948868, -0.02245502732694149, 0.020983824506402016, 0.04794478416442871, -0.024391494691371918, 0.01572434790432453, -0.10326654464006424, 0.00457398034632206, 0.02284715510904789, -0.052388306707143784, 0.051814962178468704, -0.03655596822500229, 0.023576155304908752, 0.09189862757921219, 0.0716540589928627, 0.07284581661224365, -0.02538292296230793, -0.06356576085090637, -0.10699692368507385, 0.09052662551403046, -0.12412434816360474, -0.18669316172599792, -0.12091251462697983, -0.09360938519239426, -0.04491573944687843, -0.010801504366099834, 0.037450358271598816, -0.02766561135649681, -0.07972932606935501, -0.0918598473072052, 0.06698000431060791, 0.00833291094750166, -0.1226564571261406, -0.025799132883548737, 0.023710152134299278, -0.0643635243177414, -0.08344870805740356, 0.04514976218342781, 0.10922934859991074, -0.01746942661702633, -0.00936093833297491, 0.03645213320851326, 0.11635807901620865, 0.12927329540252686, 0.041877537965774536, -0.020071333274245262, -0.025319596752524376, 0.23530106246471405, -0.1335805505514145, 0.07777907699346542, 0.08495926111936569, -0.050238434225320816, 0.0754532441496849, 0.23616135120391846, 0.035677652806043625, -0.047172632068395615, 0.06821710616350174, 0.07079361379146576, -0.034428294748067856, -0.26390549540519714, -0.09817317128181458, -0.06278564780950546, 0.023588012903928757, 0.06903206557035446, 0.055035386234521866, -0.0170255359262228, 0.011772177182137966, -0.09114506840705872, 0.015462307259440422, 0.029454411938786507, 0.08736378699541092, 0.07966713607311249, 0.012802517041563988, 0.009020023979246616, -0.0338718518614769, -0.018047254532575607, 0.12458477169275284, -0.011617200449109077, 0.1256142407655716, -0.02417539246380329, 0.2402072697877884, 0.027695035561919212, 0.11084334552288055, -0.039956897497177124, 0.004367070272564888, -0.020320648327469826, 0.0814129114151001, 0.016649669036269188, -0.06346899271011353, 0.023029962554574013, 0.061984553933143616, 0.09716780483722687, -0.09123741835355759, 0.06757305562496185, -0.08042799681425095, 0.06877291202545166, 0.2821491062641144, 0.041851527988910675, -0.06319618225097656, -0.04697522148489952, 0.13220329582691193, -0.07015381008386612, -0.09494686871767044, 0.012468395754694939, 0.13753913342952728, -0.1576102375984192, 0.041888754814863205, -0.01685098186135292, 0.12271906435489655, -0.06362775713205338, -0.05643562227487564, 0.03618831932544708, 0.0572274886071682, -0.030962718650698662, 0.12860523164272308, -0.21812057495117188, 0.06774383783340454, 0.02408735267817974, 0.028290197253227234, -0.058867741376161575, 0.03410401567816734, 0.004748417064547539, -0.02857166901230812, 0.13904516398906708, 0.021191034466028214, -0.1247740238904953, 0.015435010194778442, -0.1024903804063797, -0.014170198701322079, 0.09674752503633499, -0.18350203335285187, 0.09110750257968903, -0.008150259964168072, -0.028570106253027916, -0.08485822379589081, -0.10812465846538544, -0.09144210815429688, -0.1690295785665512, 0.054344214498996735, -0.05486838519573212, 0.08158732950687408, -0.04559781029820442, -0.037941109389066696, -0.007425687741488218, 0.11283322423696518, -0.051465243101119995, -0.09531848877668381, -0.12253055721521378, 0.05133446678519249, 0.16128019988536835, -0.05841625854372978, 0.04811868444085121, -0.007044237572699785, 0.19352571666240692, 0.013544159010052681, -0.034153468906879425, 0.024059103801846504, -0.030709201470017433, -0.21614274382591248, -0.009810760617256165, 0.16434672474861145, 0.05327458679676056, 0.08341015875339508, -0.013870377093553543, 0.08558697253465652, 0.004380757920444012, -0.11612522602081299, 0.034370679408311844, 0.1097886934876442, 0.006958816200494766, 0.13776542246341705, -0.04032706469297409, -0.15216057002544403, -0.16630539298057556, -0.08302859216928482, 0.1993171125650406, 0.1816941797733307, -0.07199835777282715, 0.12975063920021057, 0.10538181662559509, -0.09249742329120636, -0.2307191789150238, -0.0037018670700490475, -0.01968083530664444, -0.005714832805097103, 0.06586865335702896, -0.235911026597023, -0.005909088533371687, 0.02863788977265358, -0.01338061410933733, 0.03776337206363678, -0.24480189383029938, -0.11402572691440582, 0.03695971891283989, 0.03174113109707832, -0.2801980674266815, -0.15113240480422974, -0.1105746254324913, -0.06642598658800125, -0.12864066660404205, 0.1371936798095703, -0.02828267775475979, 0.025424066931009293, -0.006211027503013611, 0.10516799241304398, 0.020669197663664818, -0.017228061333298683, 0.12427153438329697, -0.01917329616844654, 0.028734657913446426, -0.08498408645391464, -0.049210596829652786, 0.006977803073823452, -0.04813599959015846, 0.10499168187379837, 0.0017834905302152038, 0.03604554757475853, -0.07757624983787537, -0.014059804379940033, -0.07699889689683914, 0.011485771276056767, -0.07826253026723862, -0.05470609292387962, -0.12672200798988342, 0.06855590641498566, 0.0925627052783966, -0.03746103495359421, 0.06883012503385544, -0.020830580964684486, 0.0238794032484293, 0.0948505699634552, 0.10724601149559021, 0.13067249953746796, -0.05295703560113907, 0.0013808668591082096, 0.016953708603978157, -0.022520989179611206, -0.1271613985300064, 0.057498201727867126, 0.1336752325296402, 0.07849941402673721, 0.13747790455818176, -0.03893451765179634, -0.1532028764486313, -0.019857579842209816, 0.02192753367125988, -0.11008449643850327, -0.22632771730422974, -0.0029911245219409466, 0.1241818517446518, -0.16673214733600616, -0.1164846122264862, 0.0183231420814991, -0.002146138111129403, -0.08591264486312866, 0.03323504328727722, 0.09334979951381683, 0.00635913573205471, 0.09226176142692566, 0.05543980374932289, 0.04640179127454758, -0.0810721218585968, 0.10768046975135803, 0.14621110260486603, -0.08644456416368484, -0.014512871392071247, 0.1960095763206482, -0.0406637005507946, -0.034299541264772415, 0.11164414137601852, 0.05285399779677391, 0.017273753881454468, 0.0011890175519511104, 0.01986110955476761, -0.08934544026851654, 0.028813932090997696, 0.14867697656154633, 0.002030721167102456, 0.028250040486454964, 0.01607193797826767, -0.017421582713723183, -0.04397628828883171, 0.1647210568189621, 0.03202838823199272, 0.05263005197048187, -0.05792727693915367, 0.00660938723012805, -0.018243232741951942, 0.03721614181995392, -0.01945309340953827, -0.031683921813964844, -0.09154628217220306, 0.003942171111702919, -0.12317333370447159, 0.0031289635226130486, -0.1191139966249466, -0.01783675141632557, -0.015991123393177986, -0.06449958682060242, -0.006115679629147053, 0.013721202500164509, -0.07349608093500137, -0.06809963285923004, -0.09648025780916214, 0.10122205317020416, -0.18812361359596252, -0.017930496484041214, 0.11058451980352402, -0.04605787247419357, 0.10638636350631714, 0.01458027958869934, -0.012562253512442112, -0.019065039232373238, -0.13261778652668, -0.009611665271222591, -0.04293118044734001, 0.055578213185071945, 0.08913365006446838, -0.1535511463880539, -0.02971624583005905, -0.03359910845756531, -0.06198476254940033, 0.033116694539785385, 0.0657210424542427, -0.12040620297193527, 0.05179158225655556, -0.002079098019748926, -0.1038854569196701, -0.020233407616615295, 0.04205940663814545, 0.06550765782594681, 0.006233124062418938, 0.15261605381965637, -0.03595910221338272, 0.12402674555778503, -0.09434042125940323, -0.026452718302607536, -0.01701227016746998, 0.010708528570830822, 0.001092334627173841, 0.01741742715239525, 0.04423349350690842, -0.025340808555483818, 0.1693926453590393, 0.07896164059638977, -0.043365661054849625, 0.05368571728467941, 0.028167931362986565, 0.024178646504878998, 0.059284910559654236, -0.012579523958265781, -0.02192198485136032, -0.0546373575925827, 0.006451169028878212, -0.07337387651205063, -0.0490846149623394, -0.015919256955385208, 0.09397047758102417, 0.11379116028547287, 0.20545801520347595, -0.038196563720703125, 0.10637466609477997, -0.11501350998878479, -0.12174522131681442, 0.015351868234574795, 0.010642588138580322, 0.04380409047007561, -0.062433987855911255, 0.11772574484348297, 0.04512566700577736, -0.2011898159980774, 0.1446133852005005, -0.0871867835521698, -0.07859180122613907, -0.035413067787885666, -0.14587421715259552, -0.06722234934568405, -0.026815926656126976, -0.01637200452387333, -0.11221323162317276, 0.10566242039203644, 0.1023242175579071, -0.04099055752158165, -0.02027495577931404, 0.1406659036874771, -0.06652962416410446, -0.07777097821235657, 0.03878151252865791, 0.040115974843502045, 0.019891511648893356, 0.025743264704942703, 0.09491042047739029, -0.05034519359469414, 0.011898024939000607, 0.07751625776290894, 0.05924272909760475, -0.01682531274855137, 0.010298649780452251, -0.08349135518074036, -0.06956764310598373, 0.04586189240217209, -0.0321928896009922, -0.030160417780280113, 0.163370281457901, 0.0554833747446537, 0.030370885506272316, 0.023469075560569763, 0.26768699288368225, -0.07727399468421936, -0.03255248814821243, -0.15682849287986755, 0.12034297734498978, -0.07365789264440536, -0.019989820197224617, 0.046249549835920334, -0.14981108903884888, 0.002596268430352211, 0.09588175266981125, 0.13410867750644684, -0.014649981632828712, -0.00016674830112606287, -0.03425376117229462, 0.03801023215055466, -0.006744187790900469, 0.009549438022077084, 0.11068373173475266, 0.16369479894638062, -0.08189849555492401, 0.03697917237877846, -0.06647007167339325, -0.04717544466257095, -0.1150733083486557, 0.0852266475558281, 0.012006900273263454, -0.0004471824795473367, -0.04892851412296295, 0.18227103352546692, -0.10761378705501556, -0.16269439458847046, 0.014913787133991718, -0.11725136637687683, -0.1649196743965149, 0.014523017220199108, 0.034329190850257874, -0.005495624616742134, 0.029706597328186035, 0.058837536722421646, -0.000684146536514163, 0.11010543256998062, 0.03731396049261093, -0.03491546958684921, -0.005759112071245909, 0.13294464349746704, -0.072713203728199, 0.21414679288864136, 0.00019864269415847957, 0.03368009254336357, 0.09533175826072693, -0.034425411373376846, -0.09976519644260406, 0.03298432007431984, 0.13489264249801636, -0.03505398705601692, 0.0016484628431499004, 0.2276614010334015, -0.0278573427349329, 0.13322986662387848, 0.09537074714899063, 0.008231868036091328, 0.029169568791985512, 0.02967487834393978, 0.021981121972203255, -0.13935530185699463, 0.045434530824422836, -0.14081035554409027, 0.10582131147384644, 0.16097907721996307, -0.0706958994269371, 0.0021085187327116728, -0.01982846111059189, 0.013668714091181755, -0.04470455273985863, 0.21676966547966003, -0.012302214279770851, -0.14063450694084167, 0.0007986424607224762, 0.024819044396281242, 0.07101662456989288, -0.1427406519651413, -0.022481374442577362, 0.038541585206985474, -0.0037729840259999037, -0.04251347854733467, 0.11399663984775543, 0.06970609724521637, -0.006967318244278431, -0.04969380795955658, -0.20358799397945404, -0.002356122015044093, 0.1052945926785469, -0.11431003361940384, 0.00844493880867958 ]
784faf478cf5e99dba5e7bfbc18dec0d0c4d0d12
# Dataset Card for "huggingartists/fear-factory" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.178617 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5c2952ca198d8eda91b478829b867fd6.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/fear-factory"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Fear Factory</div> <a href="https://genius.com/artists/fear-factory"> <div style="text-align: center; font-size: 14px;">@fear-factory</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/fear-factory). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/fear-factory") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |197| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/fear-factory") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/fear-factory
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:29:44+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/fear-factory" ============================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.178617 MB HuggingArtists Model Fear Factory [@fear-factory](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
ab8a5f8d392ca1aab9e29927675123ba50b9e3e8
# Dataset Card for "huggingartists/florence-the-machine" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.269066 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/99d09eb55276442d715ac14f06173a4e.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/florence-the-machine"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Florence + The Machine</div> <a href="https://genius.com/artists/florence-the-machine"> <div style="text-align: center; font-size: 14px;">@florence-the-machine</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/florence-the-machine). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/florence-the-machine") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |173| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/florence-the-machine") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/florence-the-machine
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:29:50+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/florence-the-machine" ====================================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.269066 MB HuggingArtists Model Florence + The Machine [@florence-the-machine](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
97d07ad9175d4daa916e8add96913903d10fba5e
# Dataset Card for "huggingartists/freddie-dredd" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.261399 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f198be5e1dfd71285efa66c8b223ae6d.400x400x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/freddie-dredd"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Freddie Dredd</div> <a href="https://genius.com/artists/freddie-dredd"> <div style="text-align: center; font-size: 14px;">@freddie-dredd</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/freddie-dredd). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/freddie-dredd") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |212| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/freddie-dredd") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/freddie-dredd
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:29:57+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/freddie-dredd" =============================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.261399 MB HuggingArtists Model Freddie Dredd [@freddie-dredd](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
737b242473c663caca1880f00a52a5271d810760
# Dataset Card for "huggingartists/freelancer" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.027774 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9ce0f771e9455a22aeb5801a611ceead.409x409x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/freelancer"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Freelancer</div> <a href="https://genius.com/artists/freelancer"> <div style="text-align: center; font-size: 14px;">@freelancer</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/freelancer). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/freelancer") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |0| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/freelancer") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/freelancer
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:30:06+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/freelancer" ============================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.027774 MB HuggingArtists Model Freelancer [@freelancer](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
dccf886e77f089369c864764386ae0645057369e
# Dataset Card for "huggingartists/galenskaparna-and-after-shave" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.252487 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://assets.genius.com/images/default_avatar_300.png?1629820244&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/galenskaparna-and-after-shave"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Galenskaparna & After Shave</div> <a href="https://genius.com/artists/galenskaparna-and-after-shave"> <div style="text-align: center; font-size: 14px;">@galenskaparna-and-after-shave</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/galenskaparna-and-after-shave). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/galenskaparna-and-after-shave") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |157| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/galenskaparna-and-after-shave") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/galenskaparna-and-after-shave
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:30:13+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/galenskaparna-and-after-shave" =============================================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.252487 MB HuggingArtists Model Galenskaparna & After Shave [@galenskaparna-and-after-shave](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
9d1e9b868871b9ffdff865abcc0ee513150e10f0
# Dataset Card for "huggingartists/ghost" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.184957 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/3192bff259bbe651686374ba3b8553bd.828x828x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/ghost"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Ghost</div> <a href="https://genius.com/artists/ghost"> <div style="text-align: center; font-size: 14px;">@ghost</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/ghost). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ghost") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |142| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/ghost") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/ghost
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:30:19+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/ghost" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.184957 MB HuggingArtists Model Ghost [@ghost](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
0e13df45d17bf4a966c73853451478b65442ea2c
# Dataset Card for "huggingartists/ghostemane" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.448728 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c4407bb331c50916c1dfdc7f875f73a9.1000x1000x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/ghostemane"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Ghostemane</div> <a href="https://genius.com/artists/ghostemane"> <div style="text-align: center; font-size: 14px;">@ghostemane</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/ghostemane). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ghostemane") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |327| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/ghostemane") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/ghostemane
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:30:25+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/ghostemane" ============================================ Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.448728 MB HuggingArtists Model Ghostemane [@ghostemane](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
a7f0eb9fb7a39afd50bc32d15b22f32134e017aa
# Dataset Card for "huggingartists/ghostmane" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.027776 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://assets.genius.com/images/default_avatar_300.png?1631290285&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/ghostmane"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Ghostmane</div> <a href="https://genius.com/artists/ghostmane"> <div style="text-align: center; font-size: 14px;">@ghostmane</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/ghostmane). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/ghostmane") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |2| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/ghostmane") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/ghostmane
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:30:32+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/ghostmane" =========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.027776 MB HuggingArtists Model Ghostmane [@ghostmane](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
222f8df76be50008f7169696f1445ac39b54f86c
# Dataset Card for "huggingartists/gizmo" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.361766 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9dd7d13194aa588b336b78bcf05530f0.638x638x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/gizmo"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">​gizmo</div> <a href="https://genius.com/artists/gizmo"> <div style="text-align: center; font-size: 14px;">@gizmo</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/gizmo). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/gizmo") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |248| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/gizmo") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/gizmo
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:30:39+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/gizmo" ======================================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.361766 MB HuggingArtists Model ​gizmo [@gizmo](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
178ff1a66f39fb878562b9b81e36028258447507
# Dataset Card for "huggingartists/gorillaz" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.402589 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c9182b5ecce1ab6d22ba0eaddb635424.400x400x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/gorillaz"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Gorillaz</div> <a href="https://genius.com/artists/gorillaz"> <div style="text-align: center; font-size: 14px;">@gorillaz</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/gorillaz). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/gorillaz") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |338| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/gorillaz") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/gorillaz
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:30:45+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/gorillaz" ========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.402589 MB HuggingArtists Model Gorillaz [@gorillaz](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]
8b25e2944ec902ef6299af4c0559a5fcae94352f
# Dataset Card for "huggingartists/green-day" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [About](#about) ## Dataset Description - **Homepage:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Repository:** [https://github.com/AlekseyKorshuk/huggingartists](https://github.com/AlekseyKorshuk/huggingartists) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of the generated dataset:** 0.505273 MB <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/d7d8da365bad13b7bd5cc89117b697eb.640x640x1.jpg&#39;)"> </div> </div> <a href="https://huggingface.co/huggingartists/green-day"> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> </a> <div style="text-align: center; font-size: 16px; font-weight: 800">Green Day</div> <a href="https://genius.com/artists/green-day"> <div style="text-align: center; font-size: 14px;">@green-day</div> </a> </div> ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available [here](https://huggingface.co/huggingartists/green-day). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages en ## How to use How to load this dataset directly with the datasets library: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/green-day") ``` ## Dataset Structure An example of 'train' looks as follows. ``` This example was too long and was cropped: { "text": "Look, I was gonna go easy on you\nNot to hurt your feelings\nBut I'm only going to get this one chance\nSomething's wrong, I can feel it..." } ``` ### Data Fields The data fields are the same among all splits. - `text`: a `string` feature. ### Data Splits | train |validation|test| |------:|---------:|---:| |427| -| -| 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: ```python from datasets import load_dataset, Dataset, DatasetDict import numpy as np datasets = load_dataset("huggingartists/green-day") train_percentage = 0.9 validation_percentage = 0.07 test_percentage = 0.03 train, validation, test = np.split(datasets['train']['text'], [int(len(datasets['train']['text'])*train_percentage), int(len(datasets['train']['text'])*(train_percentage + validation_percentage))]) datasets = DatasetDict( { 'train': Dataset.from_dict({'text': list(train)}), 'validation': Dataset.from_dict({'text': list(validation)}), 'test': Dataset.from_dict({'text': list(test)}) } ) ``` ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{huggingartists, author={Aleksey Korshuk} year=2021 } ``` ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/green-day
[ "language:en", "huggingartists", "lyrics", "region:us" ]
2022-03-02T23:29:22+00:00
{"language": ["en"], "tags": ["huggingartists", "lyrics"]}
2022-10-25T08:30:51+00:00
[]
[ "en" ]
TAGS #language-English #huggingartists #lyrics #region-us
Dataset Card for "huggingartists/green-day" =========================================== Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * How to use * Dataset Structure + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information * About Dataset Description ------------------- * Homepage: URL * Repository: URL * Paper: * Point of Contact: * Size of the generated dataset: 0.505273 MB HuggingArtists Model Green Day [@green-day](URL <div style=) ### Dataset Summary The Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists. Model is available here. ### Supported Tasks and Leaderboards ### Languages en How to use ---------- How to load this dataset directly with the datasets library: Dataset Structure ----------------- An example of 'train' looks as follows. ### Data Fields The data fields are the same among all splits. * 'text': a 'string' feature. ### Data Splits 'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code: Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information About ----- *Built by Aleksey Korshuk* ![Follow](URL ![Follow](URL ![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. ![GitHub stars](URL
[ "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ "TAGS\n#language-English #huggingartists #lyrics #region-us \n", "### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.", "### Supported Tasks and Leaderboards", "### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.", "### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 19, 35, 10, 44, 28, 41, 7, 4, 10, 10, 5, 5, 9, 18, 7, 8, 14, 6, 84 ]
[ "passage: TAGS\n#language-English #huggingartists #lyrics #region-us \n### Dataset Summary\n\n\nThe Lyrics dataset parsed from Genius. This dataset is designed to generate lyrics with HuggingArtists.\nModel is available here.### Supported Tasks and Leaderboards### Languages\n\n\nen\n\n\nHow to use\n----------\n\n\nHow to load this dataset directly with the datasets library:\n\n\nDataset Structure\n-----------------\n\n\nAn example of 'train' looks as follows.### Data Fields\n\n\nThe data fields are the same among all splits.\n\n\n* 'text': a 'string' feature.### Data Splits\n\n\n\n'Train' can be easily divided into 'train' & 'validation' & 'test' with few lines of code:\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases### Other Known Limitations\n\n\nAdditional Information\n----------------------### Dataset Curators### Licensing Information\n\n\nAbout\n-----\n\n\n*Built by Aleksey Korshuk*\n\n\n![Follow](URL\n\n\n![Follow](URL\n\n\n![Follow](https://t.me/joinchat/_CQ04KjcJ-4yZTky)\n\n\nFor more details, visit the project repository.\n\n\n![GitHub stars](URL" ]
[ 0.004620436113327742, 0.2892557978630066, -0.005631004460155964, 0.07862316071987152, 0.10428077727556229, -0.00037418821011669934, 0.1004980280995369, 0.10978759080171585, -0.003213141579180956, 0.18807165324687958, -0.024142123758792877, 0.08690869063138962, 0.09917891770601273, 0.12483636289834976, -0.006064916029572487, -0.2515598237514496, -0.004651752300560474, -0.11298918724060059, 0.015280261635780334, 0.08517248928546906, 0.11806357651948929, -0.0794578343629837, 0.058029334992170334, -0.07779256999492645, -0.02681862749159336, 0.02366870641708374, -0.06469209492206573, -0.04316919296979904, 0.024989251047372818, 0.044200602918863297, 0.027464816346764565, 0.009205330163240433, 0.046693239361047745, -0.2877454161643982, 0.01519627682864666, 0.06607730686664581, 0.017354004085063934, 0.045187126845121384, 0.10459593683481216, -0.07576917856931686, 0.06509722024202347, -0.12194228917360306, 0.06915938854217529, 0.030256586149334908, -0.09472233057022095, -0.0863574743270874, -0.16509924829006195, 0.04025010019540787, 0.16093289852142334, 0.07361868023872375, -0.030976813286542892, 0.039389319717884064, -0.059920452535152435, 0.0437697134912014, 0.2105833888053894, -0.13565725088119507, -0.06782513856887817, 0.04124169424176216, -0.006700830068439245, 0.09417673200368881, -0.10700169205665588, 0.02571411058306694, -0.0067054508253932, 0.025095604360103607, 0.06211482733488083, -0.028622856363654137, -0.08577370643615723, 0.04285642132163048, -0.14821738004684448, -0.0808921605348587, 0.10918261110782623, -0.014818522147834301, -0.025450048968195915, -0.1408872902393341, -0.0072036427445709705, 0.011585579253733158, -0.029877789318561554, 0.016810385510325432, 0.017583152279257774, -0.012670410796999931, -0.0021724712569266558, -0.09276751428842545, -0.04927997291088104, -0.03530797362327576, 0.026649784296751022, 0.08743295073509216, 0.03143493831157684, -0.01175662875175476, 0.059567976742982864, 0.09131808578968048, 0.018482675775885582, -0.11332537233829498, -0.009402948431670666, -0.03401912748813629, -0.07990510016679764, -0.03658200800418854, 0.05032472684979439, -0.04936728626489639, 0.07508902251720428, 0.16974425315856934, -0.01785874180495739, 0.012772804126143456, -0.070065937936306, -0.01773182488977909, 0.07057144492864609, 0.11075279116630554, -0.07376135885715485, -0.0628126710653305, 0.02377036213874817, 0.020252065733075142, 0.016168704256415367, -0.02065102942287922, -0.037070516496896744, 0.04407137632369995, -0.0015859946142882109, 0.13657847046852112, 0.11865998059511185, -0.04177479445934296, -0.07165241241455078, -0.03638983517885208, 0.08458369970321655, -0.15203112363815308, 0.0685565173625946, 0.03934979438781738, -0.040651559829711914, -0.07288333028554916, -0.06742829084396362, 0.011611753143370152, -0.09470649808645248, 0.09382248669862747, -0.026972608640789986, -0.009889146313071251, -0.08531653136014938, -0.07351116091012955, 0.046926915645599365, -0.03371579200029373, -0.05976591631770134, -0.005188284907490015, -0.09761966019868851, -0.07497940957546234, 0.037575870752334595, -0.10685785859823227, -0.08408290892839432, -0.020291760563850403, -0.03209644928574562, -0.01508178748190403, -0.0026661576703190804, -0.025076251477003098, -0.055537909269332886, 0.04395562410354614, -0.05350048467516899, 0.030151695013046265, 0.09312234818935394, 0.07431742548942566, -0.08784260600805283, 0.08709999173879623, -0.14794079959392548, 0.10282339155673981, -0.12962432205677032, 0.030603349208831787, -0.11234812438488007, -0.04470213130116463, 0.0849393978714943, -0.044424716383218765, 0.013095153495669365, 0.1098291426897049, -0.22577005624771118, -0.022021649405360222, 0.09439273923635483, -0.06170588731765747, -0.06452691555023193, 0.11584785580635071, -0.04596785828471184, -0.020931117236614227, 0.06008143723011017, 0.11706960201263428, 0.10411395132541656, 0.015829360112547874, -0.053382936865091324, -0.06014265492558479, 0.04279925301671028, 0.19061528146266937, 0.10522244870662689, -0.06890440732240677, 0.10310056805610657, -0.005116576328873634, -0.013636368326842785, -0.0535031333565712, -0.0007182316039688885, -0.08298015594482422, 0.012946260161697865, -0.03747405484318733, -0.020095856860280037, 0.014399528503417969, -0.05961108207702637, -0.05097086727619171, -0.039315663278102875, 0.0167329590767622, 0.03972281515598297, -0.02187380939722061, 0.004679589532315731, -0.038025546818971634, 0.030958538874983788, 0.02279501035809517, 0.009633243083953857, -0.15771058201789856, -0.07423123717308044, 0.08383817970752716, -0.09214331209659576, 0.1129322499036789, -0.09313388913869858, -0.018286235630512238, 0.010320260189473629, -0.014221248216927052, 0.0039055824745446444, 0.0237894244492054, 0.0009425683529116213, -0.017074713483452797, -0.1534075289964676, -0.019869154319167137, -0.03355051949620247, 0.07638975977897644, -0.08247049152851105, 0.011554897762835026, 0.09905141592025757, 0.17558227479457855, 0.03882637619972229, -0.052875448018312454, 0.0838421881198883, 0.02741876430809498, -0.015161240473389626, -0.07367940247058868, -0.027523528784513474, -0.04575565457344055, 0.05491418018937111, 0.015162492170929909, -0.08688966929912567, -0.11041371524333954, 0.0473809689283371, 0.10591542720794678, -0.03789222985506058, 0.009269152767956257, -0.046880092471838, -0.02809084951877594, -0.12080968916416168, -0.02535499818623066, 0.0817933902144432, 0.06032111123204231, 0.014153115451335907, -0.06512851268053055, -0.07053074985742569, -0.04934929683804512, -0.025209249928593636, -0.0570608526468277, 0.11460650712251663, -0.020162571221590042, -0.12693803012371063, 0.15717598795890808, 0.0012101562460884452, 0.044363368302583694, 0.10949624329805374, -0.01385529339313507, -0.10194344073534012, -0.04961727187037468, 0.006349773611873388, 0.016327250748872757, 0.0725523829460144, -0.01241898164153099, 0.021484261378645897, 0.05667334422469139, -0.026388946920633316, 0.006946897599846125, -0.10274573415517807, 0.006664350628852844, 0.021610435098409653, -0.05759274214506149, 0.05463394522666931, -0.041847411543130875, 0.030726967379450798, 0.09125851094722748, 0.07683651149272919, 0.058796241879463196, -0.029746737331151962, -0.06358425319194794, -0.10601786524057388, 0.0933954045176506, -0.12254127115011215, -0.17599527537822723, -0.10962782055139542, -0.09725061058998108, -0.03506004810333252, -0.011199530214071274, 0.037589091807603836, -0.017862211912870407, -0.08175960928201675, -0.09385297447443008, 0.05803593993186951, 0.018902476876974106, -0.12232886254787445, -0.010215247981250286, 0.03306393325328827, -0.06575115770101547, -0.07234534621238708, 0.03831283375620842, 0.10495781898498535, -0.019589459523558617, -0.002867655595764518, 0.03771485760807991, 0.11152945458889008, 0.12336640805006027, 0.03872514143586159, -0.013868669979274273, -0.02667267434298992, 0.2235051691532135, -0.13151326775550842, 0.08313194662332535, 0.08490311354398727, -0.04559523984789848, 0.07590707391500473, 0.23343206942081451, 0.036455485969781876, -0.03953012451529503, 0.05900081619620323, 0.05511728301644325, -0.03259643167257309, -0.2582298815250397, -0.09727570414543152, -0.06467906385660172, 0.029206398874521255, 0.07351447641849518, 0.04634108766913414, -0.02139282040297985, 0.012293259613215923, -0.09275302290916443, 0.012359434738755226, 0.030698437243700027, 0.09049006551504135, 0.07901395112276077, 0.023262066766619682, 0.014412847347557545, -0.03892135992646217, -0.012166770175099373, 0.1255974918603897, -0.009865795262157917, 0.12807464599609375, -0.01925491727888584, 0.25383299589157104, 0.02200969308614731, 0.11094246804714203, -0.040484510362148285, 0.005021501798182726, -0.014465644024312496, 0.09237677603960037, 0.014141233637928963, -0.07179517298936844, 0.021893469616770744, 0.05634700134396553, 0.08957244455814362, -0.09470943361520767, 0.06393186748027802, -0.07232208549976349, 0.07867429405450821, 0.291647344827652, 0.04645370692014694, -0.06978557258844376, -0.04786096140742302, 0.12083388864994049, -0.07161397486925125, -0.07894369214773178, 0.003731882432475686, 0.13648104667663574, -0.15862955152988434, 0.04667200520634651, -0.015236550942063332, 0.12073837220668793, -0.07843669503927231, -0.05419020354747772, 0.05309198796749115, 0.06309963762760162, -0.028104765340685844, 0.11794611066579819, -0.21087661385536194, 0.06845512241125107, 0.02046549692749977, 0.031313441693782806, -0.05875119939446449, 0.030298147350549698, 0.005164173897355795, -0.04263012483716011, 0.12525764107704163, 0.0189314316958189, -0.12466441094875336, 0.0026876796036958694, -0.10491486638784409, -0.006191202439367771, 0.09489791095256805, -0.1791345477104187, 0.0985308438539505, -0.0022297108080238104, -0.03980607911944389, -0.08855068683624268, -0.10448698699474335, -0.07710240036249161, -0.1653093546628952, 0.05697726458311081, -0.05733031779527664, 0.08267379552125931, -0.050089672207832336, -0.03163101151585579, -0.01853199489414692, 0.10304496437311172, -0.06658639758825302, -0.1012774407863617, -0.12257319688796997, 0.04547364264726639, 0.16155539453029633, -0.06491149216890335, 0.05139175057411194, -0.014811327680945396, 0.18001233041286469, 0.01245984248816967, -0.039475299417972565, 0.026354899629950523, -0.039869822561740875, -0.2230234444141388, -0.012954025529325008, 0.16511303186416626, 0.041210636496543884, 0.0784449502825737, -0.010064490139484406, 0.08461236953735352, -0.003653324209153652, -0.11880099028348923, 0.02275530807673931, 0.10091006755828857, 0.003947397693991661, 0.13336917757987976, -0.029929446056485176, -0.16177265346050262, -0.16009239852428436, -0.07544754445552826, 0.18925811350345612, 0.1860164999961853, -0.07810419797897339, 0.1311156302690506, 0.09581667184829712, -0.08104844391345978, -0.2154475301504135, -0.012842913158237934, -0.018289053812623024, -0.013399717397987843, 0.04858874902129173, -0.23971621692180634, -0.0024882645811885595, 0.03844701871275902, -0.011929505504667759, 0.03641083091497421, -0.24152810871601105, -0.10418511927127838, 0.018853267654776573, 0.026989154517650604, -0.29612472653388977, -0.15701499581336975, -0.111935555934906, -0.06511855125427246, -0.147958904504776, 0.15024961531162262, -0.031661927700042725, 0.02701631747186184, -0.007280899211764336, 0.0981803759932518, 0.025056758895516396, -0.021696787327528, 0.12620262801647186, -0.023848189041018486, 0.0210548248142004, -0.07734522968530655, -0.05053514242172241, 0.0059863789938390255, -0.05067449063062668, 0.1014757826924324, -0.0038427875842899084, 0.0368603952229023, -0.0730174109339714, -0.010647064074873924, -0.07672657817602158, -0.0033191945403814316, -0.07585365325212479, -0.050499849021434784, -0.12271539121866226, 0.06825727969408035, 0.10474765300750732, -0.026746448129415512, 0.08551158756017685, -0.00406856182962656, 0.0224575474858284, 0.10320200026035309, 0.09655922651290894, 0.12796789407730103, -0.04868865758180618, -0.00306524895131588, 0.017947902902960777, -0.027655139565467834, -0.1393594592809677, 0.05915641412138939, 0.12984606623649597, 0.08005713671445847, 0.1346631497144699, -0.04050103947520256, -0.15095999836921692, -0.01717570796608925, 0.023938998579978943, -0.11764565110206604, -0.2142682522535324, 0.010737968608736992, 0.1290084719657898, -0.16193337738513947, -0.11077301949262619, 0.03181979060173035, -0.0022979946807026863, -0.0817447304725647, 0.027449551969766617, 0.09501514583826065, 0.008863325230777264, 0.10225595533847809, 0.05304819718003273, 0.046879470348358154, -0.08241299539804459, 0.09936707466840744, 0.1508244425058365, -0.06954933702945709, -0.018485628068447113, 0.1993146389722824, -0.04997064918279648, -0.03352440148591995, 0.10496071726083755, 0.04980707913637161, 0.013603790663182735, 0.0020559246186167, 0.013774965889751911, -0.08073315769433975, 0.03657767176628113, 0.1479642391204834, 0.0040002609603106976, 0.024740632623434067, 0.02720467559993267, -0.01968461647629738, -0.03720582649111748, 0.16348427534103394, 0.03068358451128006, 0.05279245972633362, -0.04716069996356964, 0.013205586932599545, -0.029532266780734062, 0.033917386084795, -0.012705417349934578, -0.03328448906540871, -0.09425118565559387, 0.0038444213569164276, -0.13618677854537964, 0.014641488902270794, -0.12766286730766296, -0.019798101857304573, -0.012761769816279411, -0.05254141613841057, -0.003708683652803302, 0.015164566226303577, -0.07408171892166138, -0.07297790795564651, -0.09954998642206192, 0.10617349296808243, -0.18833069503307343, -0.018632028251886368, 0.10558216273784637, -0.053413692861795425, 0.1136791855096817, 0.014270326122641563, -0.009237478487193584, -0.02515636943280697, -0.1363375186920166, -0.02208031341433525, -0.0461554154753685, 0.059054065495729446, 0.09083200246095657, -0.15856757760047913, -0.02231305092573166, -0.03625866398215294, -0.06433513760566711, 0.031252916902303696, 0.07077538222074509, -0.12047423422336578, 0.055848587304353714, -0.0018857838585972786, -0.09464026242494583, -0.021942047402262688, 0.045425355434417725, 0.06114755943417549, 0.005336715839803219, 0.14484351873397827, -0.03152058646082878, 0.12216731160879135, -0.1017850860953331, -0.03197818249464035, -0.017495185136795044, 0.0029130238108336926, -0.016031136736273766, 0.026021882891654968, 0.051185011863708496, -0.025355428457260132, 0.14414599537849426, 0.07210946083068848, -0.04103907197713852, 0.04690071940422058, 0.019671233370900154, 0.02221611514687538, 0.06426512449979782, -0.014184587635099888, -0.01763085462152958, -0.05957960709929466, 0.005191189702600241, -0.07805582135915756, -0.04238225519657135, -0.024754006415605545, 0.08331731706857681, 0.13181568682193756, 0.2118571549654007, -0.04073581472039223, 0.10493745654821396, -0.11805599182844162, -0.11313091963529587, 0.021108318120241165, 0.012051314115524292, 0.05649701878428459, -0.05882968753576279, 0.11473452299833298, 0.029784133657813072, -0.20326562225818634, 0.13868221640586853, -0.08540019392967224, -0.06829144060611725, -0.0258020106703043, -0.1345219761133194, -0.07124063372612, -0.026377689093351364, -0.021512316539883614, -0.1119009330868721, 0.10853542387485504, 0.10533131659030914, -0.032175689935684204, -0.019300345331430435, 0.12246470153331757, -0.046333204954862595, -0.07471401244401932, 0.048755474388599396, 0.03846905007958412, 0.016993405297398567, 0.03429945185780525, 0.08446972817182541, -0.04820861667394638, 0.003625201527029276, 0.08275608718395233, 0.06356629729270935, -0.015213037841022015, 0.009623545221984386, -0.0808270052075386, -0.08247747272253036, 0.05111991986632347, -0.03909091278910637, -0.02975556254386902, 0.16569454967975616, 0.051423441618680954, 0.032877203077077866, 0.029755890369415283, 0.25798502564430237, -0.06799261271953583, -0.035944316536188126, -0.1591365933418274, 0.1142568439245224, -0.07582743465900421, -0.018099315464496613, 0.05037839710712433, -0.1440010666847229, -0.007504739798605442, 0.08516586571931839, 0.1288672685623169, -0.02385924756526947, 0.00008059219544520602, -0.02771029993891716, 0.033509135246276855, -0.004961296450346708, 0.00859150942414999, 0.10466736555099487, 0.1581139862537384, -0.0714687630534172, 0.044661443680524826, -0.05732490122318268, -0.05377737805247307, -0.11974607408046722, 0.06934673339128494, 0.00751492427662015, 0.005062107462435961, -0.042357973754405975, 0.18351104855537415, -0.10232553631067276, -0.1650589108467102, 0.019356505945324898, -0.12310288846492767, -0.16871502995491028, 0.01908215321600437, 0.035530440509319305, -0.001534575130790472, 0.032834745943546295, 0.05827474594116211, -0.011262733489274979, 0.10964611172676086, 0.03503917530179024, -0.029708802700042725, -0.0029939848463982344, 0.131362184882164, -0.09182856231927872, 0.20907214283943176, -0.000021349627786548808, 0.04048584774136543, 0.10229822248220444, -0.030339227989315987, -0.10786513239145279, 0.03690744936466217, 0.14141377806663513, -0.047670409083366394, 0.008434691466391087, 0.2195577472448349, -0.03399980440735817, 0.1366882175207138, 0.09792666137218475, 0.013287338428199291, 0.023054273799061775, 0.03961955010890961, 0.02504653111100197, -0.14200736582279205, 0.03832064941525459, -0.12993067502975464, 0.09738955646753311, 0.15685123205184937, -0.0742788091301918, 0.008221516385674477, -0.018580671399831772, 0.01792065240442753, -0.039005063474178314, 0.20861460268497467, -0.018351810052990913, -0.14303439855575562, 0.00761905312538147, 0.016430534422397614, 0.08378241956233978, -0.1236301064491272, -0.02090563252568245, 0.03414733335375786, -0.0016747241606935859, -0.038673192262649536, 0.11607946455478668, 0.07500739395618439, -0.009832301177084446, -0.04681449010968208, -0.18562448024749756, -0.0030506106559187174, 0.10727012157440186, -0.11148149520158768, 0.0007201138650998473 ]