repo_id
stringlengths
0
42
file_path
stringlengths
15
97
content
stringlengths
2
2.41M
__index_level_0__
int64
0
0
bitcoin
bitcoin/src/memusage.h
// Copyright (c) 2015-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_MEMUSAGE_H #define BITCOIN_MEMUSAGE_H #include <indirectmap.h> #include <prevector.h> #include <support/allocators/pool.h> #include <cassert> #include <cstdlib> #include <list> #include <map> #include <memory> #include <set> #include <vector> #include <unordered_map> #include <unordered_set> namespace memusage { /** Compute the total memory used by allocating alloc bytes. */ static size_t MallocUsage(size_t alloc); /** Dynamic memory usage for built-in types is zero. */ static inline size_t DynamicUsage(const int8_t& v) { return 0; } static inline size_t DynamicUsage(const uint8_t& v) { return 0; } static inline size_t DynamicUsage(const int16_t& v) { return 0; } static inline size_t DynamicUsage(const uint16_t& v) { return 0; } static inline size_t DynamicUsage(const int32_t& v) { return 0; } static inline size_t DynamicUsage(const uint32_t& v) { return 0; } static inline size_t DynamicUsage(const int64_t& v) { return 0; } static inline size_t DynamicUsage(const uint64_t& v) { return 0; } static inline size_t DynamicUsage(const float& v) { return 0; } static inline size_t DynamicUsage(const double& v) { return 0; } template<typename X> static inline size_t DynamicUsage(X * const &v) { return 0; } template<typename X> static inline size_t DynamicUsage(const X * const &v) { return 0; } /** Compute the memory used for dynamically allocated but owned data structures. * For generic data types, this is *not* recursive. DynamicUsage(vector<vector<int> >) * will compute the memory used for the vector<int>'s, but not for the ints inside. * This is for efficiency reasons, as these functions are intended to be fast. If * application data structures require more accurate inner accounting, they should * iterate themselves, or use more efficient caching + updating on modification. */ static inline size_t MallocUsage(size_t alloc) { // Measured on libc6 2.19 on Linux. if (alloc == 0) { return 0; } else if (sizeof(void*) == 8) { return ((alloc + 31) >> 4) << 4; } else if (sizeof(void*) == 4) { return ((alloc + 15) >> 3) << 3; } else { assert(0); } } // STL data structures template<typename X> struct stl_tree_node { private: int color; void* parent; void* left; void* right; X x; }; struct stl_shared_counter { /* Various platforms use different sized counters here. * Conservatively assume that they won't be larger than size_t. */ void* class_type; size_t use_count; size_t weak_count; }; template<typename X> static inline size_t DynamicUsage(const std::vector<X>& v) { return MallocUsage(v.capacity() * sizeof(X)); } template<unsigned int N, typename X, typename S, typename D> static inline size_t DynamicUsage(const prevector<N, X, S, D>& v) { return MallocUsage(v.allocated_memory()); } template<typename X, typename Y> static inline size_t DynamicUsage(const std::set<X, Y>& s) { return MallocUsage(sizeof(stl_tree_node<X>)) * s.size(); } template<typename X, typename Y> static inline size_t IncrementalDynamicUsage(const std::set<X, Y>& s) { return MallocUsage(sizeof(stl_tree_node<X>)); } template<typename X, typename Y, typename Z> static inline size_t DynamicUsage(const std::map<X, Y, Z>& m) { return MallocUsage(sizeof(stl_tree_node<std::pair<const X, Y> >)) * m.size(); } template<typename X, typename Y, typename Z> static inline size_t IncrementalDynamicUsage(const std::map<X, Y, Z>& m) { return MallocUsage(sizeof(stl_tree_node<std::pair<const X, Y> >)); } // indirectmap has underlying map with pointer as key template<typename X, typename Y> static inline size_t DynamicUsage(const indirectmap<X, Y>& m) { return MallocUsage(sizeof(stl_tree_node<std::pair<const X*, Y> >)) * m.size(); } template<typename X, typename Y> static inline size_t IncrementalDynamicUsage(const indirectmap<X, Y>& m) { return MallocUsage(sizeof(stl_tree_node<std::pair<const X*, Y> >)); } template<typename X> static inline size_t DynamicUsage(const std::unique_ptr<X>& p) { return p ? MallocUsage(sizeof(X)) : 0; } template<typename X> static inline size_t DynamicUsage(const std::shared_ptr<X>& p) { // A shared_ptr can either use a single continuous memory block for both // the counter and the storage (when using std::make_shared), or separate. // We can't observe the difference, however, so assume the worst. return p ? MallocUsage(sizeof(X)) + MallocUsage(sizeof(stl_shared_counter)) : 0; } template<typename X> struct list_node { private: void* ptr_next; void* ptr_prev; X x; }; template<typename X> static inline size_t DynamicUsage(const std::list<X>& l) { return MallocUsage(sizeof(list_node<X>)) * l.size(); } template<typename X> struct unordered_node : private X { private: void* ptr; }; template<typename X, typename Y> static inline size_t DynamicUsage(const std::unordered_set<X, Y>& s) { return MallocUsage(sizeof(unordered_node<X>)) * s.size() + MallocUsage(sizeof(void*) * s.bucket_count()); } template<typename X, typename Y, typename Z> static inline size_t DynamicUsage(const std::unordered_map<X, Y, Z>& m) { return MallocUsage(sizeof(unordered_node<std::pair<const X, Y> >)) * m.size() + MallocUsage(sizeof(void*) * m.bucket_count()); } template <class Key, class T, class Hash, class Pred, std::size_t MAX_BLOCK_SIZE_BYTES, std::size_t ALIGN_BYTES> static inline size_t DynamicUsage(const std::unordered_map<Key, T, Hash, Pred, PoolAllocator<std::pair<const Key, T>, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>>& m) { auto* pool_resource = m.get_allocator().resource(); // The allocated chunks are stored in a std::list. Size per node should // therefore be 3 pointers: next, previous, and a pointer to the chunk. size_t estimated_list_node_size = MallocUsage(sizeof(void*) * 3); size_t usage_resource = estimated_list_node_size * pool_resource->NumAllocatedChunks(); size_t usage_chunks = MallocUsage(pool_resource->ChunkSizeBytes()) * pool_resource->NumAllocatedChunks(); return usage_resource + usage_chunks + MallocUsage(sizeof(void*) * m.bucket_count()); } } // namespace memusage #endif // BITCOIN_MEMUSAGE_H
0
bitcoin
bitcoin/src/bitcoin-cli-res.rc
#include <windows.h> // needed for VERSIONINFO #include "clientversion.h" // holds the needed client version information #define VER_PRODUCTVERSION CLIENT_VERSION_MAJOR,CLIENT_VERSION_MINOR,CLIENT_VERSION_BUILD #define VER_FILEVERSION VER_PRODUCTVERSION VS_VERSION_INFO VERSIONINFO FILEVERSION VER_FILEVERSION PRODUCTVERSION VER_PRODUCTVERSION FILEOS VOS_NT_WINDOWS32 FILETYPE VFT_APP BEGIN BLOCK "StringFileInfo" BEGIN BLOCK "040904E4" // U.S. English - multilingual (hex) BEGIN VALUE "CompanyName", "Bitcoin" VALUE "FileDescription", "bitcoin-cli (JSON-RPC client for " PACKAGE_NAME ")" VALUE "FileVersion", PACKAGE_VERSION VALUE "InternalName", "bitcoin-cli" VALUE "LegalCopyright", COPYRIGHT_STR VALUE "LegalTrademarks1", "Distributed under the MIT software license, see the accompanying file COPYING or http://www.opensource.org/licenses/mit-license.php." VALUE "OriginalFilename", "bitcoin-cli.exe" VALUE "ProductName", "bitcoin-cli" VALUE "ProductVersion", PACKAGE_VERSION END END BLOCK "VarFileInfo" BEGIN VALUE "Translation", 0x0, 1252 // language neutral - multilingual (decimal) END END
0
bitcoin
bitcoin/src/merkleblock.h
// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_MERKLEBLOCK_H #define BITCOIN_MERKLEBLOCK_H #include <common/bloom.h> #include <primitives/block.h> #include <serialize.h> #include <uint256.h> #include <set> #include <vector> // Helper functions for serialization. std::vector<unsigned char> BitsToBytes(const std::vector<bool>& bits); std::vector<bool> BytesToBits(const std::vector<unsigned char>& bytes); /** Data structure that represents a partial merkle tree. * * It represents a subset of the txid's of a known block, in a way that * allows recovery of the list of txid's and the merkle root, in an * authenticated way. * * The encoding works as follows: we traverse the tree in depth-first order, * storing a bit for each traversed node, signifying whether the node is the * parent of at least one matched leaf txid (or a matched txid itself). In * case we are at the leaf level, or this bit is 0, its merkle node hash is * stored, and its children are not explored further. Otherwise, no hash is * stored, but we recurse into both (or the only) child branch. During * decoding, the same depth-first traversal is performed, consuming bits and * hashes as they written during encoding. * * The serialization is fixed and provides a hard guarantee about the * encoded size: * * SIZE <= 10 + ceil(32.25*N) * * Where N represents the number of leaf nodes of the partial tree. N itself * is bounded by: * * N <= total_transactions * N <= 1 + matched_transactions*tree_height * * The serialization format: * - uint32 total_transactions (4 bytes) * - varint number of hashes (1-3 bytes) * - uint256[] hashes in depth-first order (<= 32*N bytes) * - varint number of bytes of flag bits (1-3 bytes) * - byte[] flag bits, packed per 8 in a byte, least significant bit first (<= 2*N-1 bits) * The size constraints follow from this. */ class CPartialMerkleTree { protected: /** the total number of transactions in the block */ unsigned int nTransactions; /** node-is-parent-of-matched-txid bits */ std::vector<bool> vBits; /** txids and internal hashes */ std::vector<uint256> vHash; /** flag set when encountering invalid data */ bool fBad; /** helper function to efficiently calculate the number of nodes at given height in the merkle tree */ unsigned int CalcTreeWidth(int height) const { return (nTransactions+(1 << height)-1) >> height; } /** calculate the hash of a node in the merkle tree (at leaf level: the txid's themselves) */ uint256 CalcHash(int height, unsigned int pos, const std::vector<uint256> &vTxid); /** recursive function that traverses tree nodes, storing the data as bits and hashes */ void TraverseAndBuild(int height, unsigned int pos, const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch); /** * recursive function that traverses tree nodes, consuming the bits and hashes produced by TraverseAndBuild. * it returns the hash of the respective node and its respective index. */ uint256 TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex); public: SERIALIZE_METHODS(CPartialMerkleTree, obj) { READWRITE(obj.nTransactions, obj.vHash); std::vector<unsigned char> bytes; SER_WRITE(obj, bytes = BitsToBytes(obj.vBits)); READWRITE(bytes); SER_READ(obj, obj.vBits = BytesToBits(bytes)); SER_READ(obj, obj.fBad = false); } /** Construct a partial merkle tree from a list of transaction ids, and a mask that selects a subset of them */ CPartialMerkleTree(const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch); CPartialMerkleTree(); /** * extract the matching txid's represented by this partial merkle tree * and their respective indices within the partial tree. * returns the merkle root, or 0 in case of failure */ uint256 ExtractMatches(std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex); /** Get number of transactions the merkle proof is indicating for cross-reference with * local blockchain knowledge. */ unsigned int GetNumTransactions() const { return nTransactions; }; }; /** * Used to relay blocks as header + vector<merkle branch> * to filtered nodes. * * NOTE: The class assumes that the given CBlock has *at least* 1 transaction. If the CBlock has 0 txs, it will hit an assertion. */ class CMerkleBlock { public: /** Public only for unit testing */ CBlockHeader header; CPartialMerkleTree txn; /** * Public only for unit testing and relay testing (not relayed). * * Used only when a bloom filter is specified to allow * testing the transactions which matched the bloom filter. */ std::vector<std::pair<unsigned int, uint256> > vMatchedTxn; /** * Create from a CBlock, filtering transactions according to filter * Note that this will call IsRelevantAndUpdate on the filter for each transaction, * thus the filter will likely be modified. */ CMerkleBlock(const CBlock& block, CBloomFilter& filter) : CMerkleBlock(block, &filter, nullptr) { } // Create from a CBlock, matching the txids in the set CMerkleBlock(const CBlock& block, const std::set<Txid>& txids) : CMerkleBlock{block, nullptr, &txids} {} CMerkleBlock() {} SERIALIZE_METHODS(CMerkleBlock, obj) { READWRITE(obj.header, obj.txn); } private: // Combined constructor to consolidate code CMerkleBlock(const CBlock& block, CBloomFilter* filter, const std::set<Txid>* txids); }; #endif // BITCOIN_MERKLEBLOCK_H
0
bitcoin/src
bitcoin/src/init/bitcoin-wallet.cpp
// Copyright (c) 2021-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <interfaces/init.h> #include <memory> namespace interfaces { std::unique_ptr<Init> MakeWalletInit(int argc, char* argv[], int& exit_status) { return std::make_unique<Init>(); } } // namespace interfaces
0
bitcoin/src
bitcoin/src/init/bitcoind.cpp
// Copyright (c) 2021-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <init.h> #include <interfaces/chain.h> #include <interfaces/echo.h> #include <interfaces/init.h> #include <interfaces/node.h> #include <interfaces/wallet.h> #include <node/context.h> #include <util/check.h> #include <memory> using node::NodeContext; namespace init { namespace { class BitcoindInit : public interfaces::Init { public: BitcoindInit(NodeContext& node) : m_node(node) { InitContext(m_node); m_node.init = this; } std::unique_ptr<interfaces::Node> makeNode() override { return interfaces::MakeNode(m_node); } std::unique_ptr<interfaces::Chain> makeChain() override { return interfaces::MakeChain(m_node); } std::unique_ptr<interfaces::WalletLoader> makeWalletLoader(interfaces::Chain& chain) override { return MakeWalletLoader(chain, *Assert(m_node.args)); } std::unique_ptr<interfaces::Echo> makeEcho() override { return interfaces::MakeEcho(); } NodeContext& m_node; }; } // namespace } // namespace init namespace interfaces { std::unique_ptr<Init> MakeNodeInit(NodeContext& node, int argc, char* argv[], int& exit_status) { return std::make_unique<init::BitcoindInit>(node); } } // namespace interfaces
0
bitcoin/src
bitcoin/src/init/common.cpp
// Copyright (c) 2021-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include <config/bitcoin-config.h> #endif #include <clientversion.h> #include <common/args.h> #include <logging.h> #include <node/interface_ui.h> #include <tinyformat.h> #include <util/fs.h> #include <util/fs_helpers.h> #include <util/result.h> #include <util/string.h> #include <util/time.h> #include <util/translation.h> #include <algorithm> #include <string> #include <vector> namespace init { void AddLoggingArgs(ArgsManager& argsman) { argsman.AddArg("-debuglogfile=<file>", strprintf("Specify location of debug log file (default: %s). Relative paths will be prefixed by a net-specific datadir location. Pass -nodebuglogfile to disable writing the log to a file.", DEFAULT_DEBUGLOGFILE), ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS); argsman.AddArg("-debug=<category>", "Output debug and trace logging (default: -nodebug, supplying <category> is optional). " "If <category> is not supplied or if <category> = 1, output all debug and trace logging. <category> can be: " + LogInstance().LogCategoriesString() + ". This option can be specified multiple times to output multiple categories.", ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST); argsman.AddArg("-debugexclude=<category>", "Exclude debug and trace logging for a category. Can be used in conjunction with -debug=1 to output debug and trace logging for all categories except the specified category. This option can be specified multiple times to exclude multiple categories.", ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST); argsman.AddArg("-logips", strprintf("Include IP addresses in debug output (default: %u)", DEFAULT_LOGIPS), ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST); argsman.AddArg("-loglevel=<level>|<category>:<level>", strprintf("Set the global or per-category severity level for logging categories enabled with the -debug configuration option or the logging RPC: %s (default=%s); warning and error levels are always logged. If <category>:<level> is supplied, the setting will override the global one and may be specified multiple times to set multiple category-specific levels. <category> can be: %s.", LogInstance().LogLevelsString(), LogInstance().LogLevelToStr(BCLog::DEFAULT_LOG_LEVEL), LogInstance().LogCategoriesString()), ArgsManager::DISALLOW_NEGATION | ArgsManager::DISALLOW_ELISION | ArgsManager::DEBUG_ONLY, OptionsCategory::DEBUG_TEST); argsman.AddArg("-logtimestamps", strprintf("Prepend debug output with timestamp (default: %u)", DEFAULT_LOGTIMESTAMPS), ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST); #ifdef HAVE_THREAD_LOCAL argsman.AddArg("-logthreadnames", strprintf("Prepend debug output with name of the originating thread (only available on platforms supporting thread_local) (default: %u)", DEFAULT_LOGTHREADNAMES), ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST); #else argsman.AddHiddenArgs({"-logthreadnames"}); #endif argsman.AddArg("-logsourcelocations", strprintf("Prepend debug output with name of the originating source location (source file, line number and function name) (default: %u)", DEFAULT_LOGSOURCELOCATIONS), ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST); argsman.AddArg("-logtimemicros", strprintf("Add microsecond precision to debug timestamps (default: %u)", DEFAULT_LOGTIMEMICROS), ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY, OptionsCategory::DEBUG_TEST); argsman.AddArg("-printtoconsole", "Send trace/debug info to console (default: 1 when no -daemon. To disable logging to file, set -nodebuglogfile)", ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST); argsman.AddArg("-shrinkdebugfile", "Shrink debug.log file on client startup (default: 1 when no -debug)", ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST); } void SetLoggingOptions(const ArgsManager& args) { LogInstance().m_print_to_file = !args.IsArgNegated("-debuglogfile"); LogInstance().m_file_path = AbsPathForConfigVal(args, args.GetPathArg("-debuglogfile", DEFAULT_DEBUGLOGFILE)); LogInstance().m_print_to_console = args.GetBoolArg("-printtoconsole", !args.GetBoolArg("-daemon", false)); LogInstance().m_log_timestamps = args.GetBoolArg("-logtimestamps", DEFAULT_LOGTIMESTAMPS); LogInstance().m_log_time_micros = args.GetBoolArg("-logtimemicros", DEFAULT_LOGTIMEMICROS); #ifdef HAVE_THREAD_LOCAL LogInstance().m_log_threadnames = args.GetBoolArg("-logthreadnames", DEFAULT_LOGTHREADNAMES); #endif LogInstance().m_log_sourcelocations = args.GetBoolArg("-logsourcelocations", DEFAULT_LOGSOURCELOCATIONS); fLogIPs = args.GetBoolArg("-logips", DEFAULT_LOGIPS); } util::Result<void> SetLoggingLevel(const ArgsManager& args) { if (args.IsArgSet("-loglevel")) { for (const std::string& level_str : args.GetArgs("-loglevel")) { if (level_str.find_first_of(':', 3) == std::string::npos) { // user passed a global log level, i.e. -loglevel=<level> if (!LogInstance().SetLogLevel(level_str)) { return util::Error{strprintf(_("Unsupported global logging level %s=%s. Valid values: %s."), "-loglevel", level_str, LogInstance().LogLevelsString())}; } } else { // user passed a category-specific log level, i.e. -loglevel=<category>:<level> const auto& toks = SplitString(level_str, ':'); if (!(toks.size() == 2 && LogInstance().SetCategoryLogLevel(toks[0], toks[1]))) { return util::Error{strprintf(_("Unsupported category-specific logging level %1$s=%2$s. Expected %1$s=<category>:<loglevel>. Valid categories: %3$s. Valid loglevels: %4$s."), "-loglevel", level_str, LogInstance().LogCategoriesString(), LogInstance().LogLevelsString())}; } } } } return {}; } util::Result<void> SetLoggingCategories(const ArgsManager& args) { if (args.IsArgSet("-debug")) { // Special-case: if -debug=0/-nodebug is set, turn off debugging messages const std::vector<std::string> categories = args.GetArgs("-debug"); if (std::none_of(categories.begin(), categories.end(), [](std::string cat){return cat == "0" || cat == "none";})) { for (const auto& cat : categories) { if (!LogInstance().EnableCategory(cat)) { return util::Error{strprintf(_("Unsupported logging category %s=%s."), "-debug", cat)}; } } } } // Now remove the logging categories which were explicitly excluded for (const std::string& cat : args.GetArgs("-debugexclude")) { if (!LogInstance().DisableCategory(cat)) { return util::Error{strprintf(_("Unsupported logging category %s=%s."), "-debugexclude", cat)}; } } return {}; } bool StartLogging(const ArgsManager& args) { if (LogInstance().m_print_to_file) { if (args.GetBoolArg("-shrinkdebugfile", LogInstance().DefaultShrinkDebugFile())) { // Do this first since it both loads a bunch of debug.log into memory, // and because this needs to happen before any other debug.log printing LogInstance().ShrinkDebugFile(); } } if (!LogInstance().StartLogging()) { return InitError(strprintf(Untranslated("Could not open debug log file %s"), fs::PathToString(LogInstance().m_file_path))); } if (!LogInstance().m_log_timestamps) LogPrintf("Startup time: %s\n", FormatISO8601DateTime(GetTime())); LogPrintf("Default data directory %s\n", fs::PathToString(GetDefaultDataDir())); LogPrintf("Using data directory %s\n", fs::PathToString(gArgs.GetDataDirNet())); // Only log conf file usage message if conf file actually exists. fs::path config_file_path = args.GetConfigFilePath(); if (fs::exists(config_file_path)) { LogPrintf("Config file: %s\n", fs::PathToString(config_file_path)); } else if (args.IsArgSet("-conf")) { // Warn if no conf file exists at path provided by user InitWarning(strprintf(_("The specified config file %s does not exist"), fs::PathToString(config_file_path))); } else { // Not categorizing as "Warning" because it's the default behavior LogPrintf("Config file: %s (not found, skipping)\n", fs::PathToString(config_file_path)); } // Log the config arguments to debug.log args.LogArgs(); return true; } void LogPackageVersion() { std::string version_string = FormatFullVersion(); #ifdef DEBUG version_string += " (debug build)"; #else version_string += " (release build)"; #endif LogPrintf(PACKAGE_NAME " version %s\n", version_string); } } // namespace init
0
bitcoin/src
bitcoin/src/init/bitcoin-gui.cpp
// Copyright (c) 2021-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <init.h> #include <interfaces/chain.h> #include <interfaces/echo.h> #include <interfaces/init.h> #include <interfaces/ipc.h> #include <interfaces/node.h> #include <interfaces/wallet.h> #include <node/context.h> #include <util/check.h> #include <memory> namespace init { namespace { const char* EXE_NAME = "bitcoin-gui"; class BitcoinGuiInit : public interfaces::Init { public: BitcoinGuiInit(const char* arg0) : m_ipc(interfaces::MakeIpc(EXE_NAME, arg0, *this)) { InitContext(m_node); m_node.init = this; } std::unique_ptr<interfaces::Node> makeNode() override { return interfaces::MakeNode(m_node); } std::unique_ptr<interfaces::Chain> makeChain() override { return interfaces::MakeChain(m_node); } std::unique_ptr<interfaces::WalletLoader> makeWalletLoader(interfaces::Chain& chain) override { return MakeWalletLoader(chain, *Assert(m_node.args)); } std::unique_ptr<interfaces::Echo> makeEcho() override { return interfaces::MakeEcho(); } interfaces::Ipc* ipc() override { return m_ipc.get(); } node::NodeContext m_node; std::unique_ptr<interfaces::Ipc> m_ipc; }; } // namespace } // namespace init namespace interfaces { std::unique_ptr<Init> MakeGuiInit(int argc, char* argv[]) { return std::make_unique<init::BitcoinGuiInit>(argc > 0 ? argv[0] : ""); } } // namespace interfaces
0
bitcoin/src
bitcoin/src/init/bitcoin-node.cpp
// Copyright (c) 2021-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <init.h> #include <interfaces/chain.h> #include <interfaces/echo.h> #include <interfaces/init.h> #include <interfaces/ipc.h> #include <interfaces/node.h> #include <interfaces/wallet.h> #include <node/context.h> #include <util/check.h> #include <memory> namespace init { namespace { const char* EXE_NAME = "bitcoin-node"; class BitcoinNodeInit : public interfaces::Init { public: BitcoinNodeInit(node::NodeContext& node, const char* arg0) : m_node(node), m_ipc(interfaces::MakeIpc(EXE_NAME, arg0, *this)) { InitContext(m_node); m_node.init = this; } std::unique_ptr<interfaces::Node> makeNode() override { return interfaces::MakeNode(m_node); } std::unique_ptr<interfaces::Chain> makeChain() override { return interfaces::MakeChain(m_node); } std::unique_ptr<interfaces::WalletLoader> makeWalletLoader(interfaces::Chain& chain) override { return MakeWalletLoader(chain, *Assert(m_node.args)); } std::unique_ptr<interfaces::Echo> makeEcho() override { return interfaces::MakeEcho(); } interfaces::Ipc* ipc() override { return m_ipc.get(); } node::NodeContext& m_node; std::unique_ptr<interfaces::Ipc> m_ipc; }; } // namespace } // namespace init namespace interfaces { std::unique_ptr<Init> MakeNodeInit(node::NodeContext& node, int argc, char* argv[], int& exit_status) { auto init = std::make_unique<init::BitcoinNodeInit>(node, argc > 0 ? argv[0] : ""); // Check if bitcoin-node is being invoked as an IPC server. If so, then // bypass normal execution and just respond to requests over the IPC // channel and return null. if (init->m_ipc->startSpawnedProcess(argc, argv, exit_status)) { return nullptr; } return init; } } // namespace interfaces
0
bitcoin/src
bitcoin/src/init/common.h
// Copyright (c) 2021-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. //! @file //! @brief Common init functions shared by bitcoin-node, bitcoin-wallet, etc. #ifndef BITCOIN_INIT_COMMON_H #define BITCOIN_INIT_COMMON_H #include <util/result.h> class ArgsManager; namespace init { void AddLoggingArgs(ArgsManager& args); void SetLoggingOptions(const ArgsManager& args); [[nodiscard]] util::Result<void> SetLoggingCategories(const ArgsManager& args); [[nodiscard]] util::Result<void> SetLoggingLevel(const ArgsManager& args); bool StartLogging(const ArgsManager& args); void LogPackageVersion(); } // namespace init #endif // BITCOIN_INIT_COMMON_H
0
bitcoin/src
bitcoin/src/init/bitcoin-qt.cpp
// Copyright (c) 2021-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <init.h> #include <interfaces/chain.h> #include <interfaces/echo.h> #include <interfaces/init.h> #include <interfaces/node.h> #include <interfaces/wallet.h> #include <node/context.h> #include <util/check.h> #include <memory> namespace init { namespace { class BitcoinQtInit : public interfaces::Init { public: BitcoinQtInit() { InitContext(m_node); m_node.init = this; } std::unique_ptr<interfaces::Node> makeNode() override { return interfaces::MakeNode(m_node); } std::unique_ptr<interfaces::Chain> makeChain() override { return interfaces::MakeChain(m_node); } std::unique_ptr<interfaces::WalletLoader> makeWalletLoader(interfaces::Chain& chain) override { return MakeWalletLoader(chain, *Assert(m_node.args)); } std::unique_ptr<interfaces::Echo> makeEcho() override { return interfaces::MakeEcho(); } node::NodeContext m_node; }; } // namespace } // namespace init namespace interfaces { std::unique_ptr<Init> MakeGuiInit(int argc, char* argv[]) { return std::make_unique<init::BitcoinQtInit>(); } } // namespace interfaces
0
bitcoin/src
bitcoin/src/consensus/amount.h
// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CONSENSUS_AMOUNT_H #define BITCOIN_CONSENSUS_AMOUNT_H #include <cstdint> /** Amount in satoshis (Can be negative) */ typedef int64_t CAmount; /** The amount of satoshis in one BTC. */ static constexpr CAmount COIN = 100000000; /** No amount larger than this (in satoshi) is valid. * * Note that this constant is *not* the total money supply, which in Bitcoin * currently happens to be less than 21,000,000 BTC for various reasons, but * rather a sanity check. As this sanity check is used by consensus-critical * validation code, the exact value of the MAX_MONEY constant is consensus * critical; in unusual circumstances like a(nother) overflow bug that allowed * for the creation of coins out of thin air modification could lead to a fork. * */ static constexpr CAmount MAX_MONEY = 21000000 * COIN; inline bool MoneyRange(const CAmount& nValue) { return (nValue >= 0 && nValue <= MAX_MONEY); } #endif // BITCOIN_CONSENSUS_AMOUNT_H
0
bitcoin/src
bitcoin/src/consensus/tx_verify.cpp
// Copyright (c) 2017-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <consensus/tx_verify.h> #include <chain.h> #include <coins.h> #include <consensus/amount.h> #include <consensus/consensus.h> #include <consensus/validation.h> #include <primitives/transaction.h> #include <script/interpreter.h> #include <util/check.h> #include <util/moneystr.h> bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime) { if (tx.nLockTime == 0) return true; if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime)) return true; // Even if tx.nLockTime isn't satisfied by nBlockHeight/nBlockTime, a // transaction is still considered final if all inputs' nSequence == // SEQUENCE_FINAL (0xffffffff), in which case nLockTime is ignored. // // Because of this behavior OP_CHECKLOCKTIMEVERIFY/CheckLockTime() will // also check that the spending input's nSequence != SEQUENCE_FINAL, // ensuring that an unsatisfied nLockTime value will actually cause // IsFinalTx() to return false here: for (const auto& txin : tx.vin) { if (!(txin.nSequence == CTxIn::SEQUENCE_FINAL)) return false; } return true; } std::pair<int, int64_t> CalculateSequenceLocks(const CTransaction &tx, int flags, std::vector<int>& prevHeights, const CBlockIndex& block) { assert(prevHeights.size() == tx.vin.size()); // Will be set to the equivalent height- and time-based nLockTime // values that would be necessary to satisfy all relative lock- // time constraints given our view of block chain history. // The semantics of nLockTime are the last invalid height/time, so // use -1 to have the effect of any height or time being valid. int nMinHeight = -1; int64_t nMinTime = -1; // tx.nVersion is signed integer so requires cast to unsigned otherwise // we would be doing a signed comparison and half the range of nVersion // wouldn't support BIP 68. bool fEnforceBIP68 = static_cast<uint32_t>(tx.nVersion) >= 2 && flags & LOCKTIME_VERIFY_SEQUENCE; // Do not enforce sequence numbers as a relative lock time // unless we have been instructed to if (!fEnforceBIP68) { return std::make_pair(nMinHeight, nMinTime); } for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) { const CTxIn& txin = tx.vin[txinIndex]; // Sequence numbers with the most significant bit set are not // treated as relative lock-times, nor are they given any // consensus-enforced meaning at this point. if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG) { // The height of this input is not relevant for sequence locks prevHeights[txinIndex] = 0; continue; } int nCoinHeight = prevHeights[txinIndex]; if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) { const int64_t nCoinTime{Assert(block.GetAncestor(std::max(nCoinHeight - 1, 0)))->GetMedianTimePast()}; // NOTE: Subtract 1 to maintain nLockTime semantics // BIP 68 relative lock times have the semantics of calculating // the first block or time at which the transaction would be // valid. When calculating the effective block time or height // for the entire transaction, we switch to using the // semantics of nLockTime which is the last invalid block // time or height. Thus we subtract 1 from the calculated // time or height. // Time-based relative lock-times are measured from the // smallest allowed timestamp of the block containing the // txout being spent, which is the median time past of the // block prior. nMinTime = std::max(nMinTime, nCoinTime + (int64_t)((txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) << CTxIn::SEQUENCE_LOCKTIME_GRANULARITY) - 1); } else { nMinHeight = std::max(nMinHeight, nCoinHeight + (int)(txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) - 1); } } return std::make_pair(nMinHeight, nMinTime); } bool EvaluateSequenceLocks(const CBlockIndex& block, std::pair<int, int64_t> lockPair) { assert(block.pprev); int64_t nBlockTime = block.pprev->GetMedianTimePast(); if (lockPair.first >= block.nHeight || lockPair.second >= nBlockTime) return false; return true; } bool SequenceLocks(const CTransaction &tx, int flags, std::vector<int>& prevHeights, const CBlockIndex& block) { return EvaluateSequenceLocks(block, CalculateSequenceLocks(tx, flags, prevHeights, block)); } unsigned int GetLegacySigOpCount(const CTransaction& tx) { unsigned int nSigOps = 0; for (const auto& txin : tx.vin) { nSigOps += txin.scriptSig.GetSigOpCount(false); } for (const auto& txout : tx.vout) { nSigOps += txout.scriptPubKey.GetSigOpCount(false); } return nSigOps; } unsigned int GetP2SHSigOpCount(const CTransaction& tx, const CCoinsViewCache& inputs) { if (tx.IsCoinBase()) return 0; unsigned int nSigOps = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) { const Coin& coin = inputs.AccessCoin(tx.vin[i].prevout); assert(!coin.IsSpent()); const CTxOut &prevout = coin.out; if (prevout.scriptPubKey.IsPayToScriptHash()) nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig); } return nSigOps; } int64_t GetTransactionSigOpCost(const CTransaction& tx, const CCoinsViewCache& inputs, uint32_t flags) { int64_t nSigOps = GetLegacySigOpCount(tx) * WITNESS_SCALE_FACTOR; if (tx.IsCoinBase()) return nSigOps; if (flags & SCRIPT_VERIFY_P2SH) { nSigOps += GetP2SHSigOpCount(tx, inputs) * WITNESS_SCALE_FACTOR; } for (unsigned int i = 0; i < tx.vin.size(); i++) { const Coin& coin = inputs.AccessCoin(tx.vin[i].prevout); assert(!coin.IsSpent()); const CTxOut &prevout = coin.out; nSigOps += CountWitnessSigOps(tx.vin[i].scriptSig, prevout.scriptPubKey, &tx.vin[i].scriptWitness, flags); } return nSigOps; } bool Consensus::CheckTxInputs(const CTransaction& tx, TxValidationState& state, const CCoinsViewCache& inputs, int nSpendHeight, CAmount& txfee) { // are the actual inputs available? if (!inputs.HaveInputs(tx)) { return state.Invalid(TxValidationResult::TX_MISSING_INPUTS, "bad-txns-inputs-missingorspent", strprintf("%s: inputs missing/spent", __func__)); } CAmount nValueIn = 0; for (unsigned int i = 0; i < tx.vin.size(); ++i) { const COutPoint &prevout = tx.vin[i].prevout; const Coin& coin = inputs.AccessCoin(prevout); assert(!coin.IsSpent()); // If prev is coinbase, check that it's matured if (coin.IsCoinBase() && nSpendHeight - coin.nHeight < COINBASE_MATURITY) { return state.Invalid(TxValidationResult::TX_PREMATURE_SPEND, "bad-txns-premature-spend-of-coinbase", strprintf("tried to spend coinbase at depth %d", nSpendHeight - coin.nHeight)); } // Check for negative or overflow input values nValueIn += coin.out.nValue; if (!MoneyRange(coin.out.nValue) || !MoneyRange(nValueIn)) { return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-inputvalues-outofrange"); } } const CAmount value_out = tx.GetValueOut(); if (nValueIn < value_out) { return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-in-belowout", strprintf("value in (%s) < value out (%s)", FormatMoney(nValueIn), FormatMoney(value_out))); } // Tally transaction fees const CAmount txfee_aux = nValueIn - value_out; if (!MoneyRange(txfee_aux)) { return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-fee-outofrange"); } txfee = txfee_aux; return true; }
0
bitcoin/src
bitcoin/src/consensus/tx_check.cpp
// Copyright (c) 2017-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <consensus/tx_check.h> #include <consensus/amount.h> #include <primitives/transaction.h> #include <consensus/validation.h> bool CheckTransaction(const CTransaction& tx, TxValidationState& state) { // Basic checks that don't depend on any context if (tx.vin.empty()) return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-vin-empty"); if (tx.vout.empty()) return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-vout-empty"); // Size limits (this doesn't take the witness into account, as that hasn't been checked for malleability) if (::GetSerializeSize(TX_NO_WITNESS(tx)) * WITNESS_SCALE_FACTOR > MAX_BLOCK_WEIGHT) { return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-oversize"); } // Check for negative or overflow output values (see CVE-2010-5139) CAmount nValueOut = 0; for (const auto& txout : tx.vout) { if (txout.nValue < 0) return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-vout-negative"); if (txout.nValue > MAX_MONEY) return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-vout-toolarge"); nValueOut += txout.nValue; if (!MoneyRange(nValueOut)) return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-txouttotal-toolarge"); } // Check for duplicate inputs (see CVE-2018-17144) // While Consensus::CheckTxInputs does check if all inputs of a tx are available, and UpdateCoins marks all inputs // of a tx as spent, it does not check if the tx has duplicate inputs. // Failure to run this check will result in either a crash or an inflation bug, depending on the implementation of // the underlying coins database. std::set<COutPoint> vInOutPoints; for (const auto& txin : tx.vin) { if (!vInOutPoints.insert(txin.prevout).second) return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-inputs-duplicate"); } if (tx.IsCoinBase()) { if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100) return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-cb-length"); } else { for (const auto& txin : tx.vin) if (txin.prevout.IsNull()) return state.Invalid(TxValidationResult::TX_CONSENSUS, "bad-txns-prevout-null"); } return true; }
0
bitcoin/src
bitcoin/src/consensus/params.h
// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CONSENSUS_PARAMS_H #define BITCOIN_CONSENSUS_PARAMS_H #include <uint256.h> #include <chrono> #include <limits> #include <map> #include <vector> namespace Consensus { /** * A buried deployment is one where the height of the activation has been hardcoded into * the client implementation long after the consensus change has activated. See BIP 90. */ enum BuriedDeployment : int16_t { // buried deployments get negative values to avoid overlap with DeploymentPos DEPLOYMENT_HEIGHTINCB = std::numeric_limits<int16_t>::min(), DEPLOYMENT_CLTV, DEPLOYMENT_DERSIG, DEPLOYMENT_CSV, DEPLOYMENT_SEGWIT, }; constexpr bool ValidDeployment(BuriedDeployment dep) { return dep <= DEPLOYMENT_SEGWIT; } enum DeploymentPos : uint16_t { DEPLOYMENT_TESTDUMMY, DEPLOYMENT_TAPROOT, // Deployment of Schnorr/Taproot (BIPs 340-342) // NOTE: Also add new deployments to VersionBitsDeploymentInfo in deploymentinfo.cpp MAX_VERSION_BITS_DEPLOYMENTS }; constexpr bool ValidDeployment(DeploymentPos dep) { return dep < MAX_VERSION_BITS_DEPLOYMENTS; } /** * Struct for each individual consensus rule change using BIP9. */ struct BIP9Deployment { /** Bit position to select the particular bit in nVersion. */ int bit{28}; /** Start MedianTime for version bits miner confirmation. Can be a date in the past */ int64_t nStartTime{NEVER_ACTIVE}; /** Timeout/expiry MedianTime for the deployment attempt. */ int64_t nTimeout{NEVER_ACTIVE}; /** If lock in occurs, delay activation until at least this block * height. Note that activation will only occur on a retarget * boundary. */ int min_activation_height{0}; /** Constant for nTimeout very far in the future. */ static constexpr int64_t NO_TIMEOUT = std::numeric_limits<int64_t>::max(); /** Special value for nStartTime indicating that the deployment is always active. * This is useful for testing, as it means tests don't need to deal with the activation * process (which takes at least 3 BIP9 intervals). Only tests that specifically test the * behaviour during activation cannot use this. */ static constexpr int64_t ALWAYS_ACTIVE = -1; /** Special value for nStartTime indicating that the deployment is never active. * This is useful for integrating the code changes for a new feature * prior to deploying it on some or all networks. */ static constexpr int64_t NEVER_ACTIVE = -2; }; /** * Parameters that influence chain consensus. */ struct Params { uint256 hashGenesisBlock; int nSubsidyHalvingInterval; /** * Hashes of blocks that * - are known to be consensus valid, and * - buried in the chain, and * - fail if the default script verify flags are applied. */ std::map<uint256, uint32_t> script_flag_exceptions; /** Block height and hash at which BIP34 becomes active */ int BIP34Height; uint256 BIP34Hash; /** Block height at which BIP65 becomes active */ int BIP65Height; /** Block height at which BIP66 becomes active */ int BIP66Height; /** Block height at which CSV (BIP68, BIP112 and BIP113) becomes active */ int CSVHeight; /** Block height at which Segwit (BIP141, BIP143 and BIP147) becomes active. * Note that segwit v0 script rules are enforced on all blocks except the * BIP 16 exception blocks. */ int SegwitHeight; /** Don't warn about unknown BIP 9 activations below this height. * This prevents us from warning about the CSV and segwit activations. */ int MinBIP9WarningHeight; /** * Minimum blocks including miner confirmation of the total of 2016 blocks in a retargeting period, * (nPowTargetTimespan / nPowTargetSpacing) which is also used for BIP9 deployments. * Examples: 1916 for 95%, 1512 for testchains. */ uint32_t nRuleChangeActivationThreshold; uint32_t nMinerConfirmationWindow; BIP9Deployment vDeployments[MAX_VERSION_BITS_DEPLOYMENTS]; /** Proof of work parameters */ uint256 powLimit; bool fPowAllowMinDifficultyBlocks; bool fPowNoRetargeting; int64_t nPowTargetSpacing; int64_t nPowTargetTimespan; std::chrono::seconds PowTargetSpacing() const { return std::chrono::seconds{nPowTargetSpacing}; } int64_t DifficultyAdjustmentInterval() const { return nPowTargetTimespan / nPowTargetSpacing; } /** The best chain should have at least this much work */ uint256 nMinimumChainWork; /** By default assume that the signatures in ancestors of this block are valid */ uint256 defaultAssumeValid; /** * If true, witness commitments contain a payload equal to a Bitcoin Script solution * to the signet challenge. See BIP325. */ bool signet_blocks{false}; std::vector<uint8_t> signet_challenge; int DeploymentHeight(BuriedDeployment dep) const { switch (dep) { case DEPLOYMENT_HEIGHTINCB: return BIP34Height; case DEPLOYMENT_CLTV: return BIP65Height; case DEPLOYMENT_DERSIG: return BIP66Height; case DEPLOYMENT_CSV: return CSVHeight; case DEPLOYMENT_SEGWIT: return SegwitHeight; } // no default case, so the compiler can warn about missing cases return std::numeric_limits<int>::max(); } }; } // namespace Consensus #endif // BITCOIN_CONSENSUS_PARAMS_H
0
bitcoin/src
bitcoin/src/consensus/merkle.h
// Copyright (c) 2015-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CONSENSUS_MERKLE_H #define BITCOIN_CONSENSUS_MERKLE_H #include <vector> #include <primitives/block.h> #include <uint256.h> uint256 ComputeMerkleRoot(std::vector<uint256> hashes, bool* mutated = nullptr); /* * Compute the Merkle root of the transactions in a block. * *mutated is set to true if a duplicated subtree was found. */ uint256 BlockMerkleRoot(const CBlock& block, bool* mutated = nullptr); /* * Compute the Merkle root of the witness transactions in a block. * *mutated is set to true if a duplicated subtree was found. */ uint256 BlockWitnessMerkleRoot(const CBlock& block, bool* mutated = nullptr); #endif // BITCOIN_CONSENSUS_MERKLE_H
0
bitcoin/src
bitcoin/src/consensus/merkle.cpp
// Copyright (c) 2015-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <consensus/merkle.h> #include <hash.h> /* WARNING! If you're reading this because you're learning about crypto and/or designing a new system that will use merkle trees, keep in mind that the following merkle tree algorithm has a serious flaw related to duplicate txids, resulting in a vulnerability (CVE-2012-2459). The reason is that if the number of hashes in the list at a given level is odd, the last one is duplicated before computing the next level (which is unusual in Merkle trees). This results in certain sequences of transactions leading to the same merkle root. For example, these two trees: A A / \ / \ B C B C / \ | / \ / \ D E F D E F F / \ / \ / \ / \ / \ / \ / \ 1 2 3 4 5 6 1 2 3 4 5 6 5 6 for transaction lists [1,2,3,4,5,6] and [1,2,3,4,5,6,5,6] (where 5 and 6 are repeated) result in the same root hash A (because the hash of both of (F) and (F,F) is C). The vulnerability results from being able to send a block with such a transaction list, with the same merkle root, and the same block hash as the original without duplication, resulting in failed validation. If the receiving node proceeds to mark that block as permanently invalid however, it will fail to accept further unmodified (and thus potentially valid) versions of the same block. We defend against this by detecting the case where we would hash two identical hashes at the end of the list together, and treating that identically to the block having an invalid merkle root. Assuming no double-SHA256 collisions, this will detect all known ways of changing the transactions without affecting the merkle root. */ uint256 ComputeMerkleRoot(std::vector<uint256> hashes, bool* mutated) { bool mutation = false; while (hashes.size() > 1) { if (mutated) { for (size_t pos = 0; pos + 1 < hashes.size(); pos += 2) { if (hashes[pos] == hashes[pos + 1]) mutation = true; } } if (hashes.size() & 1) { hashes.push_back(hashes.back()); } SHA256D64(hashes[0].begin(), hashes[0].begin(), hashes.size() / 2); hashes.resize(hashes.size() / 2); } if (mutated) *mutated = mutation; if (hashes.size() == 0) return uint256(); return hashes[0]; } uint256 BlockMerkleRoot(const CBlock& block, bool* mutated) { std::vector<uint256> leaves; leaves.resize(block.vtx.size()); for (size_t s = 0; s < block.vtx.size(); s++) { leaves[s] = block.vtx[s]->GetHash(); } return ComputeMerkleRoot(std::move(leaves), mutated); } uint256 BlockWitnessMerkleRoot(const CBlock& block, bool* mutated) { std::vector<uint256> leaves; leaves.resize(block.vtx.size()); leaves[0].SetNull(); // The witness hash of the coinbase is 0. for (size_t s = 1; s < block.vtx.size(); s++) { leaves[s] = block.vtx[s]->GetWitnessHash(); } return ComputeMerkleRoot(std::move(leaves), mutated); }
0
bitcoin/src
bitcoin/src/consensus/consensus.h
// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CONSENSUS_CONSENSUS_H #define BITCOIN_CONSENSUS_CONSENSUS_H #include <cstdlib> #include <stdint.h> /** The maximum allowed size for a serialized block, in bytes (only for buffer size limits) */ static const unsigned int MAX_BLOCK_SERIALIZED_SIZE = 4000000; /** The maximum allowed weight for a block, see BIP 141 (network rule) */ static const unsigned int MAX_BLOCK_WEIGHT = 4000000; /** The maximum allowed number of signature check operations in a block (network rule) */ static const int64_t MAX_BLOCK_SIGOPS_COST = 80000; /** Coinbase transaction outputs can only be spent after this number of new blocks (network rule) */ static const int COINBASE_MATURITY = 100; static const int WITNESS_SCALE_FACTOR = 4; static const size_t MIN_TRANSACTION_WEIGHT = WITNESS_SCALE_FACTOR * 60; // 60 is the lower bound for the size of a valid serialized CTransaction static const size_t MIN_SERIALIZABLE_TRANSACTION_WEIGHT = WITNESS_SCALE_FACTOR * 10; // 10 is the lower bound for the size of a serialized CTransaction /** Flags for nSequence and nLockTime locks */ /** Interpret sequence numbers as relative lock-time constraints. */ static constexpr unsigned int LOCKTIME_VERIFY_SEQUENCE = (1 << 0); #endif // BITCOIN_CONSENSUS_CONSENSUS_H
0
bitcoin/src
bitcoin/src/consensus/tx_verify.h
// Copyright (c) 2017-2021 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CONSENSUS_TX_VERIFY_H #define BITCOIN_CONSENSUS_TX_VERIFY_H #include <consensus/amount.h> #include <stdint.h> #include <vector> class CBlockIndex; class CCoinsViewCache; class CTransaction; class TxValidationState; /** Transaction validation functions */ namespace Consensus { /** * Check whether all inputs of this transaction are valid (no double spends and amounts) * This does not modify the UTXO set. This does not check scripts and sigs. * @param[out] txfee Set to the transaction fee if successful. * Preconditions: tx.IsCoinBase() is false. */ [[nodiscard]] bool CheckTxInputs(const CTransaction& tx, TxValidationState& state, const CCoinsViewCache& inputs, int nSpendHeight, CAmount& txfee); } // namespace Consensus /** Auxiliary functions for transaction validation (ideally should not be exposed) */ /** * Count ECDSA signature operations the old-fashioned (pre-0.6) way * @return number of sigops this transaction's outputs will produce when spent * @see CTransaction::FetchInputs */ unsigned int GetLegacySigOpCount(const CTransaction& tx); /** * Count ECDSA signature operations in pay-to-script-hash inputs. * * @param[in] mapInputs Map of previous transactions that have outputs we're spending * @return maximum number of sigops required to validate this transaction's inputs * @see CTransaction::FetchInputs */ unsigned int GetP2SHSigOpCount(const CTransaction& tx, const CCoinsViewCache& mapInputs); /** * Compute total signature operation cost of a transaction. * @param[in] tx Transaction for which we are computing the cost * @param[in] inputs Map of previous transactions that have outputs we're spending * @param[in] flags Script verification flags * @return Total signature operation cost of tx */ int64_t GetTransactionSigOpCost(const CTransaction& tx, const CCoinsViewCache& inputs, uint32_t flags); /** * Check if transaction is final and can be included in a block with the * specified height and time. Consensus critical. */ bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime); /** * Calculates the block height and previous block's median time past at * which the transaction will be considered final in the context of BIP 68. * For each input that is not sequence locked, the corresponding entries in * prevHeights are set to 0 as they do not affect the calculation. */ std::pair<int, int64_t> CalculateSequenceLocks(const CTransaction &tx, int flags, std::vector<int>& prevHeights, const CBlockIndex& block); bool EvaluateSequenceLocks(const CBlockIndex& block, std::pair<int, int64_t> lockPair); /** * Check if transaction is final per BIP 68 sequence numbers and can be included in a block. * Consensus critical. Takes as input a list of heights at which tx's inputs (in order) confirmed. */ bool SequenceLocks(const CTransaction &tx, int flags, std::vector<int>& prevHeights, const CBlockIndex& block); #endif // BITCOIN_CONSENSUS_TX_VERIFY_H
0
bitcoin/src
bitcoin/src/consensus/validation.h
// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CONSENSUS_VALIDATION_H #define BITCOIN_CONSENSUS_VALIDATION_H #include <string> #include <consensus/consensus.h> #include <primitives/transaction.h> #include <primitives/block.h> /** Index marker for when no witness commitment is present in a coinbase transaction. */ static constexpr int NO_WITNESS_COMMITMENT{-1}; /** Minimum size of a witness commitment structure. Defined in BIP 141. **/ static constexpr size_t MINIMUM_WITNESS_COMMITMENT{38}; /** A "reason" why a transaction was invalid, suitable for determining whether the * provider of the transaction should be banned/ignored/disconnected/etc. */ enum class TxValidationResult { TX_RESULT_UNSET = 0, //!< initial value. Tx has not yet been rejected TX_CONSENSUS, //!< invalid by consensus rules /** * Invalid by a change to consensus rules more recent than SegWit. * Currently unused as there are no such consensus rule changes, and any download * sources realistically need to support SegWit in order to provide useful data, * so differentiating between always-invalid and invalid-by-pre-SegWit-soft-fork * is uninteresting. */ TX_RECENT_CONSENSUS_CHANGE, TX_INPUTS_NOT_STANDARD, //!< inputs (covered by txid) failed policy rules TX_NOT_STANDARD, //!< otherwise didn't meet our local policy rules TX_MISSING_INPUTS, //!< transaction was missing some of its inputs TX_PREMATURE_SPEND, //!< transaction spends a coinbase too early, or violates locktime/sequence locks /** * Transaction might have a witness prior to SegWit * activation, or witness may have been malleated (which includes * non-standard witnesses). */ TX_WITNESS_MUTATED, /** * Transaction is missing a witness. */ TX_WITNESS_STRIPPED, /** * Tx already in mempool or conflicts with a tx in the chain * (if it conflicts with another tx in mempool, we use MEMPOOL_POLICY as it failed to reach the RBF threshold) * Currently this is only used if the transaction already exists in the mempool or on chain. */ TX_CONFLICT, TX_MEMPOOL_POLICY, //!< violated mempool's fee/size/descendant/RBF/etc limits TX_NO_MEMPOOL, //!< this node does not have a mempool so can't validate the transaction TX_RECONSIDERABLE, //!< fails some policy, but might be acceptable if submitted in a (different) package TX_UNKNOWN, //!< transaction was not validated because package failed }; /** A "reason" why a block was invalid, suitable for determining whether the * provider of the block should be banned/ignored/disconnected/etc. * These are much more granular than the rejection codes, which may be more * useful for some other use-cases. */ enum class BlockValidationResult { BLOCK_RESULT_UNSET = 0, //!< initial value. Block has not yet been rejected BLOCK_CONSENSUS, //!< invalid by consensus rules (excluding any below reasons) /** * Invalid by a change to consensus rules more recent than SegWit. * Currently unused as there are no such consensus rule changes, and any download * sources realistically need to support SegWit in order to provide useful data, * so differentiating between always-invalid and invalid-by-pre-SegWit-soft-fork * is uninteresting. */ BLOCK_RECENT_CONSENSUS_CHANGE, BLOCK_CACHED_INVALID, //!< this block was cached as being invalid and we didn't store the reason why BLOCK_INVALID_HEADER, //!< invalid proof of work or time too old BLOCK_MUTATED, //!< the block's data didn't match the data committed to by the PoW BLOCK_MISSING_PREV, //!< We don't have the previous block the checked one is built on BLOCK_INVALID_PREV, //!< A block this one builds on is invalid BLOCK_TIME_FUTURE, //!< block timestamp was > 2 hours in the future (or our clock is bad) BLOCK_CHECKPOINT, //!< the block failed to meet one of our checkpoints BLOCK_HEADER_LOW_WORK //!< the block header may be on a too-little-work chain }; /** Template for capturing information about block/transaction validation. This is instantiated * by TxValidationState and BlockValidationState for validation information on transactions * and blocks respectively. */ template <typename Result> class ValidationState { private: enum class ModeState { M_VALID, //!< everything ok M_INVALID, //!< network rule violation (DoS value may be set) M_ERROR, //!< run-time error } m_mode{ModeState::M_VALID}; Result m_result{}; std::string m_reject_reason; std::string m_debug_message; public: bool Invalid(Result result, const std::string& reject_reason = "", const std::string& debug_message = "") { m_result = result; m_reject_reason = reject_reason; m_debug_message = debug_message; if (m_mode != ModeState::M_ERROR) m_mode = ModeState::M_INVALID; return false; } bool Error(const std::string& reject_reason) { if (m_mode == ModeState::M_VALID) m_reject_reason = reject_reason; m_mode = ModeState::M_ERROR; return false; } bool IsValid() const { return m_mode == ModeState::M_VALID; } bool IsInvalid() const { return m_mode == ModeState::M_INVALID; } bool IsError() const { return m_mode == ModeState::M_ERROR; } Result GetResult() const { return m_result; } std::string GetRejectReason() const { return m_reject_reason; } std::string GetDebugMessage() const { return m_debug_message; } std::string ToString() const { if (IsValid()) { return "Valid"; } if (!m_debug_message.empty()) { return m_reject_reason + ", " + m_debug_message; } return m_reject_reason; } }; class TxValidationState : public ValidationState<TxValidationResult> {}; class BlockValidationState : public ValidationState<BlockValidationResult> {}; // These implement the weight = (stripped_size * 4) + witness_size formula, // using only serialization with and without witness data. As witness_size // is equal to total_size - stripped_size, this formula is identical to: // weight = (stripped_size * 3) + total_size. static inline int32_t GetTransactionWeight(const CTransaction& tx) { return ::GetSerializeSize(TX_NO_WITNESS(tx)) * (WITNESS_SCALE_FACTOR - 1) + ::GetSerializeSize(TX_WITH_WITNESS(tx)); } static inline int64_t GetBlockWeight(const CBlock& block) { return ::GetSerializeSize(TX_NO_WITNESS(block)) * (WITNESS_SCALE_FACTOR - 1) + ::GetSerializeSize(TX_WITH_WITNESS(block)); } static inline int64_t GetTransactionInputWeight(const CTxIn& txin) { // scriptWitness size is added here because witnesses and txins are split up in segwit serialization. return ::GetSerializeSize(TX_NO_WITNESS(txin)) * (WITNESS_SCALE_FACTOR - 1) + ::GetSerializeSize(TX_WITH_WITNESS(txin)) + ::GetSerializeSize(txin.scriptWitness.stack); } /** Compute at which vout of the block's coinbase transaction the witness commitment occurs, or -1 if not found */ inline int GetWitnessCommitmentIndex(const CBlock& block) { int commitpos = NO_WITNESS_COMMITMENT; if (!block.vtx.empty()) { for (size_t o = 0; o < block.vtx[0]->vout.size(); o++) { const CTxOut& vout = block.vtx[0]->vout[o]; if (vout.scriptPubKey.size() >= MINIMUM_WITNESS_COMMITMENT && vout.scriptPubKey[0] == OP_RETURN && vout.scriptPubKey[1] == 0x24 && vout.scriptPubKey[2] == 0xaa && vout.scriptPubKey[3] == 0x21 && vout.scriptPubKey[4] == 0xa9 && vout.scriptPubKey[5] == 0xed) { commitpos = o; } } } return commitpos; } #endif // BITCOIN_CONSENSUS_VALIDATION_H
0
bitcoin/src
bitcoin/src/consensus/tx_check.h
// Copyright (c) 2017-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CONSENSUS_TX_CHECK_H #define BITCOIN_CONSENSUS_TX_CHECK_H /** * Context-independent transaction checking code that can be called outside the * bitcoin server and doesn't depend on chain or mempool state. Transaction * verification code that does call server functions or depend on server state * belongs in tx_verify.h/cpp instead. */ class CTransaction; class TxValidationState; bool CheckTransaction(const CTransaction& tx, TxValidationState& state); #endif // BITCOIN_CONSENSUS_TX_CHECK_H
0
bitcoin/src
bitcoin/src/leveldb/CMakeLists.txt
# Copyright 2017 The LevelDB Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. See the AUTHORS file for names of contributors. cmake_minimum_required(VERSION 3.9) # Keep the version below in sync with the one in db.h project(leveldb VERSION 1.22.0 LANGUAGES C CXX) # This project can use C11, but will gracefully decay down to C89. set(CMAKE_C_STANDARD 11) set(CMAKE_C_STANDARD_REQUIRED OFF) set(CMAKE_C_EXTENSIONS OFF) # This project requires C++11. set(CMAKE_CXX_STANDARD 11) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_CXX_EXTENSIONS OFF) if (WIN32) set(LEVELDB_PLATFORM_NAME LEVELDB_PLATFORM_WINDOWS) # TODO(cmumford): Make UNICODE configurable for Windows. add_definitions(-D_UNICODE -DUNICODE) else (WIN32) set(LEVELDB_PLATFORM_NAME LEVELDB_PLATFORM_POSIX) endif (WIN32) option(LEVELDB_BUILD_TESTS "Build LevelDB's unit tests" ON) option(LEVELDB_BUILD_BENCHMARKS "Build LevelDB's benchmarks" ON) option(LEVELDB_INSTALL "Install LevelDB's header and library" ON) include(TestBigEndian) test_big_endian(LEVELDB_IS_BIG_ENDIAN) include(CheckIncludeFile) check_include_file("unistd.h" HAVE_UNISTD_H) include(CheckLibraryExists) check_library_exists(crc32c crc32c_value "" HAVE_CRC32C) check_library_exists(snappy snappy_compress "" HAVE_SNAPPY) check_library_exists(tcmalloc malloc "" HAVE_TCMALLOC) include(CheckCXXSymbolExists) # Using check_cxx_symbol_exists() instead of check_c_symbol_exists() because # we're including the header from C++, and feature detection should use the same # compiler language that the project will use later. Principles aside, some # versions of do not expose fdatasync() in <unistd.h> in standard C mode # (-std=c11), but do expose the function in standard C++ mode (-std=c++11). check_cxx_symbol_exists(fdatasync "unistd.h" HAVE_FDATASYNC) check_cxx_symbol_exists(F_FULLFSYNC "fcntl.h" HAVE_FULLFSYNC) check_cxx_symbol_exists(O_CLOEXEC "fcntl.h" HAVE_O_CLOEXEC) if(CMAKE_CXX_COMPILER_ID STREQUAL "MSVC") # Disable C++ exceptions. string(REGEX REPLACE "/EH[a-z]+" "" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /EHs-c-") add_definitions(-D_HAS_EXCEPTIONS=0) # Disable RTTI. string(REGEX REPLACE "/GR" "" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /GR-") else(CMAKE_CXX_COMPILER_ID STREQUAL "MSVC") # Enable strict prototype warnings for C code in clang and gcc. if(NOT CMAKE_C_FLAGS MATCHES "-Wstrict-prototypes") set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wstrict-prototypes") endif(NOT CMAKE_C_FLAGS MATCHES "-Wstrict-prototypes") # Disable C++ exceptions. string(REGEX REPLACE "-fexceptions" "" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fno-exceptions") # Disable RTTI. string(REGEX REPLACE "-frtti" "" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fno-rtti") endif(CMAKE_CXX_COMPILER_ID STREQUAL "MSVC") # Test whether -Wthread-safety is available. See # https://clang.llvm.org/docs/ThreadSafetyAnalysis.html include(CheckCXXCompilerFlag) check_cxx_compiler_flag(-Wthread-safety HAVE_CLANG_THREAD_SAFETY) include(CheckCXXSourceCompiles) # Test whether C++17 __has_include is available. check_cxx_source_compiles(" #if defined(__has_include) && __has_include(<string>) #include <string> #endif int main() { std::string str; return 0; } " HAVE_CXX17_HAS_INCLUDE) set(LEVELDB_PUBLIC_INCLUDE_DIR "include/leveldb") set(LEVELDB_PORT_CONFIG_DIR "include/port") configure_file( "port/port_config.h.in" "${PROJECT_BINARY_DIR}/${LEVELDB_PORT_CONFIG_DIR}/port_config.h" ) include_directories( "${PROJECT_BINARY_DIR}/include" "." ) if(BUILD_SHARED_LIBS) # Only export LEVELDB_EXPORT symbols from the shared library. add_compile_options(-fvisibility=hidden) endif(BUILD_SHARED_LIBS) # Must be included before CMAKE_INSTALL_INCLUDEDIR is used. include(GNUInstallDirs) add_library(leveldb "") target_sources(leveldb PRIVATE "${PROJECT_BINARY_DIR}/${LEVELDB_PORT_CONFIG_DIR}/port_config.h" "db/builder.cc" "db/builder.h" "db/c.cc" "db/db_impl.cc" "db/db_impl.h" "db/db_iter.cc" "db/db_iter.h" "db/dbformat.cc" "db/dbformat.h" "db/dumpfile.cc" "db/filename.cc" "db/filename.h" "db/log_format.h" "db/log_reader.cc" "db/log_reader.h" "db/log_writer.cc" "db/log_writer.h" "db/memtable.cc" "db/memtable.h" "db/repair.cc" "db/skiplist.h" "db/snapshot.h" "db/table_cache.cc" "db/table_cache.h" "db/version_edit.cc" "db/version_edit.h" "db/version_set.cc" "db/version_set.h" "db/write_batch_internal.h" "db/write_batch.cc" "port/port_stdcxx.h" "port/port.h" "port/thread_annotations.h" "table/block_builder.cc" "table/block_builder.h" "table/block.cc" "table/block.h" "table/filter_block.cc" "table/filter_block.h" "table/format.cc" "table/format.h" "table/iterator_wrapper.h" "table/iterator.cc" "table/merger.cc" "table/merger.h" "table/table_builder.cc" "table/table.cc" "table/two_level_iterator.cc" "table/two_level_iterator.h" "util/arena.cc" "util/arena.h" "util/bloom.cc" "util/cache.cc" "util/coding.cc" "util/coding.h" "util/comparator.cc" "util/crc32c.cc" "util/crc32c.h" "util/env.cc" "util/filter_policy.cc" "util/hash.cc" "util/hash.h" "util/logging.cc" "util/logging.h" "util/mutexlock.h" "util/no_destructor.h" "util/options.cc" "util/random.h" "util/status.cc" # Only CMake 3.3+ supports PUBLIC sources in targets exported by "install". $<$<VERSION_GREATER:CMAKE_VERSION,3.2>:PUBLIC> "${LEVELDB_PUBLIC_INCLUDE_DIR}/c.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/cache.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/comparator.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/db.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/dumpfile.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/env.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/export.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/filter_policy.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/iterator.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/options.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/slice.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/status.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/table_builder.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/table.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/write_batch.h" ) if (WIN32) target_sources(leveldb PRIVATE "util/env_windows.cc" "util/windows_logger.h" ) else (WIN32) target_sources(leveldb PRIVATE "util/env_posix.cc" "util/posix_logger.h" ) endif (WIN32) # MemEnv is not part of the interface and could be pulled to a separate library. target_sources(leveldb PRIVATE "helpers/memenv/memenv.cc" "helpers/memenv/memenv.h" ) target_include_directories(leveldb PUBLIC $<BUILD_INTERFACE:${PROJECT_SOURCE_DIR}/include> $<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}> ) set_target_properties(leveldb PROPERTIES VERSION ${PROJECT_VERSION} SOVERSION ${PROJECT_VERSION_MAJOR}) target_compile_definitions(leveldb PRIVATE # Used by include/export.h when building shared libraries. LEVELDB_COMPILE_LIBRARY # Used by port/port.h. ${LEVELDB_PLATFORM_NAME}=1 ) if (NOT HAVE_CXX17_HAS_INCLUDE) target_compile_definitions(leveldb PRIVATE LEVELDB_HAS_PORT_CONFIG_H=1 ) endif(NOT HAVE_CXX17_HAS_INCLUDE) if(BUILD_SHARED_LIBS) target_compile_definitions(leveldb PUBLIC # Used by include/export.h. LEVELDB_SHARED_LIBRARY ) endif(BUILD_SHARED_LIBS) if(HAVE_CLANG_THREAD_SAFETY) target_compile_options(leveldb PUBLIC -Werror -Wthread-safety) endif(HAVE_CLANG_THREAD_SAFETY) if(HAVE_CRC32C) target_link_libraries(leveldb crc32c) endif(HAVE_CRC32C) if(HAVE_SNAPPY) target_link_libraries(leveldb snappy) endif(HAVE_SNAPPY) if(HAVE_TCMALLOC) target_link_libraries(leveldb tcmalloc) endif(HAVE_TCMALLOC) # Needed by port_stdcxx.h find_package(Threads REQUIRED) target_link_libraries(leveldb Threads::Threads) add_executable(leveldbutil "db/leveldbutil.cc" ) target_link_libraries(leveldbutil leveldb) if(LEVELDB_BUILD_TESTS) enable_testing() function(leveldb_test test_file) get_filename_component(test_target_name "${test_file}" NAME_WE) add_executable("${test_target_name}" "") target_sources("${test_target_name}" PRIVATE "${PROJECT_BINARY_DIR}/${LEVELDB_PORT_CONFIG_DIR}/port_config.h" "util/testharness.cc" "util/testharness.h" "util/testutil.cc" "util/testutil.h" "${test_file}" ) target_link_libraries("${test_target_name}" leveldb) target_compile_definitions("${test_target_name}" PRIVATE ${LEVELDB_PLATFORM_NAME}=1 ) if (NOT HAVE_CXX17_HAS_INCLUDE) target_compile_definitions("${test_target_name}" PRIVATE LEVELDB_HAS_PORT_CONFIG_H=1 ) endif(NOT HAVE_CXX17_HAS_INCLUDE) add_test(NAME "${test_target_name}" COMMAND "${test_target_name}") endfunction(leveldb_test) leveldb_test("db/c_test.c") leveldb_test("db/fault_injection_test.cc") leveldb_test("issues/issue178_test.cc") leveldb_test("issues/issue200_test.cc") leveldb_test("issues/issue320_test.cc") leveldb_test("util/env_test.cc") leveldb_test("util/status_test.cc") leveldb_test("util/no_destructor_test.cc") if(NOT BUILD_SHARED_LIBS) leveldb_test("db/autocompact_test.cc") leveldb_test("db/corruption_test.cc") leveldb_test("db/db_test.cc") leveldb_test("db/dbformat_test.cc") leveldb_test("db/filename_test.cc") leveldb_test("db/log_test.cc") leveldb_test("db/recovery_test.cc") leveldb_test("db/skiplist_test.cc") leveldb_test("db/version_edit_test.cc") leveldb_test("db/version_set_test.cc") leveldb_test("db/write_batch_test.cc") leveldb_test("helpers/memenv/memenv_test.cc") leveldb_test("table/filter_block_test.cc") leveldb_test("table/table_test.cc") leveldb_test("util/arena_test.cc") leveldb_test("util/bloom_test.cc") leveldb_test("util/cache_test.cc") leveldb_test("util/coding_test.cc") leveldb_test("util/crc32c_test.cc") leveldb_test("util/hash_test.cc") leveldb_test("util/logging_test.cc") # TODO(costan): This test also uses # "util/env_{posix|windows}_test_helper.h" if (WIN32) leveldb_test("util/env_windows_test.cc") else (WIN32) leveldb_test("util/env_posix_test.cc") endif (WIN32) endif(NOT BUILD_SHARED_LIBS) endif(LEVELDB_BUILD_TESTS) if(LEVELDB_BUILD_BENCHMARKS) function(leveldb_benchmark bench_file) get_filename_component(bench_target_name "${bench_file}" NAME_WE) add_executable("${bench_target_name}" "") target_sources("${bench_target_name}" PRIVATE "${PROJECT_BINARY_DIR}/${LEVELDB_PORT_CONFIG_DIR}/port_config.h" "util/histogram.cc" "util/histogram.h" "util/testharness.cc" "util/testharness.h" "util/testutil.cc" "util/testutil.h" "${bench_file}" ) target_link_libraries("${bench_target_name}" leveldb) target_compile_definitions("${bench_target_name}" PRIVATE ${LEVELDB_PLATFORM_NAME}=1 ) if (NOT HAVE_CXX17_HAS_INCLUDE) target_compile_definitions("${bench_target_name}" PRIVATE LEVELDB_HAS_PORT_CONFIG_H=1 ) endif(NOT HAVE_CXX17_HAS_INCLUDE) endfunction(leveldb_benchmark) if(NOT BUILD_SHARED_LIBS) leveldb_benchmark("benchmarks/db_bench.cc") endif(NOT BUILD_SHARED_LIBS) check_library_exists(sqlite3 sqlite3_open "" HAVE_SQLITE3) if(HAVE_SQLITE3) leveldb_benchmark("benchmarks/db_bench_sqlite3.cc") target_link_libraries(db_bench_sqlite3 sqlite3) endif(HAVE_SQLITE3) # check_library_exists is insufficient here because the library names have # different manglings when compiled with clang or gcc, at least when installed # with Homebrew on Mac. set(OLD_CMAKE_REQURED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES}) list(APPEND CMAKE_REQUIRED_LIBRARIES kyotocabinet) check_cxx_source_compiles(" #include <kcpolydb.h> int main() { kyotocabinet::TreeDB* db = new kyotocabinet::TreeDB(); delete db; return 0; } " HAVE_KYOTOCABINET) set(CMAKE_REQUIRED_LIBRARIES ${OLD_CMAKE_REQURED_LIBRARIES}) if(HAVE_KYOTOCABINET) leveldb_benchmark("benchmarks/db_bench_tree_db.cc") target_link_libraries(db_bench_tree_db kyotocabinet) endif(HAVE_KYOTOCABINET) endif(LEVELDB_BUILD_BENCHMARKS) if(LEVELDB_INSTALL) install(TARGETS leveldb EXPORT leveldbTargets RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} ) install( FILES "${LEVELDB_PUBLIC_INCLUDE_DIR}/c.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/cache.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/comparator.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/db.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/dumpfile.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/env.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/export.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/filter_policy.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/iterator.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/options.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/slice.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/status.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/table_builder.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/table.h" "${LEVELDB_PUBLIC_INCLUDE_DIR}/write_batch.h" DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/leveldb ) include(CMakePackageConfigHelpers) write_basic_package_version_file( "${PROJECT_BINARY_DIR}/leveldbConfigVersion.cmake" COMPATIBILITY SameMajorVersion ) install( EXPORT leveldbTargets NAMESPACE leveldb:: DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/leveldb" ) install( FILES "cmake/leveldbConfig.cmake" "${PROJECT_BINARY_DIR}/leveldbConfigVersion.cmake" DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/leveldb" ) endif(LEVELDB_INSTALL)
0
bitcoin/src
bitcoin/src/leveldb/LICENSE
Copyright (c) 2011 The LevelDB Authors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Google Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0
bitcoin/src
bitcoin/src/leveldb/AUTHORS
# Names should be added to this file like so: # Name or Organization <email address> Google Inc. # Initial version authors: Jeffrey Dean <[email protected]> Sanjay Ghemawat <[email protected]> # Partial list of contributors: Kevin Regan <[email protected]> Johan Bilien <[email protected]>
0
bitcoin/src
bitcoin/src/leveldb/.appveyor.yml
# Build matrix / environment variables are explained on: # https://www.appveyor.com/docs/appveyor-yml/ # This file can be validated on: https://ci.appveyor.com/tools/validate-yaml version: "{build}" environment: matrix: # AppVeyor currently has no custom job name feature. # http://help.appveyor.com/discussions/questions/1623-can-i-provide-a-friendly-name-for-jobs - JOB: Visual Studio 2017 APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017 CMAKE_GENERATOR: Visual Studio 15 2017 platform: - x86 - x64 configuration: - RelWithDebInfo - Debug build_script: - git submodule update --init --recursive - mkdir build - cd build - if "%platform%"=="x64" set CMAKE_GENERATOR=%CMAKE_GENERATOR% Win64 - cmake --version - cmake .. -G "%CMAKE_GENERATOR%" -DCMAKE_CONFIGURATION_TYPES="%CONFIGURATION%" - cmake --build . --config "%CONFIGURATION%" - cd .. test_script: - cd build && ctest --verbose --build-config "%CONFIGURATION%" && cd ..
0
bitcoin/src
bitcoin/src/leveldb/TODO
ss - Stats db - Maybe implement DB::BulkDeleteForRange(start_key, end_key) that would blow away files whose ranges are entirely contained within [start_key..end_key]? For Chrome, deletion of obsolete object stores, etc. can be done in the background anyway, so probably not that important. - There have been requests for MultiGet. After a range is completely deleted, what gets rid of the corresponding files if we do no future changes to that range. Make the conditions for triggering compactions fire in more situations?
0
bitcoin/src
bitcoin/src/leveldb/README.md
**LevelDB is a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.** [![Build Status](https://travis-ci.org/google/leveldb.svg?branch=master)](https://travis-ci.org/google/leveldb) [![Build status](https://ci.appveyor.com/api/projects/status/g2j5j4rfkda6eyw5/branch/master?svg=true)](https://ci.appveyor.com/project/pwnall/leveldb) Authors: Sanjay Ghemawat ([email protected]) and Jeff Dean ([email protected]) # Features * Keys and values are arbitrary byte arrays. * Data is stored sorted by key. * Callers can provide a custom comparison function to override the sort order. * The basic operations are `Put(key,value)`, `Get(key)`, `Delete(key)`. * Multiple changes can be made in one atomic batch. * Users can create a transient snapshot to get a consistent view of data. * Forward and backward iteration is supported over the data. * Data is automatically compressed using the [Snappy compression library](http://google.github.io/snappy/). * External activity (file system operations etc.) is relayed through a virtual interface so users can customize the operating system interactions. # Documentation [LevelDB library documentation](https://github.com/google/leveldb/blob/master/doc/index.md) is online and bundled with the source code. # Limitations * This is not a SQL database. It does not have a relational data model, it does not support SQL queries, and it has no support for indexes. * Only a single process (possibly multi-threaded) can access a particular database at a time. * There is no client-server support builtin to the library. An application that needs such support will have to wrap their own server around the library. # Building This project supports [CMake](https://cmake.org/) out of the box. ### Build for POSIX Quick start: ```bash mkdir -p build && cd build cmake -DCMAKE_BUILD_TYPE=Release .. && cmake --build . ``` ### Building for Windows First generate the Visual Studio 2017 project/solution files: ```cmd mkdir build cd build cmake -G "Visual Studio 15" .. ``` The default default will build for x86. For 64-bit run: ```cmd cmake -G "Visual Studio 15 Win64" .. ``` To compile the Windows solution from the command-line: ```cmd devenv /build Debug leveldb.sln ``` or open leveldb.sln in Visual Studio and build from within. Please see the CMake documentation and `CMakeLists.txt` for more advanced usage. # Contributing to the leveldb Project The leveldb project welcomes contributions. leveldb's primary goal is to be a reliable and fast key/value store. Changes that are in line with the features/limitations outlined above, and meet the requirements below, will be considered. Contribution requirements: 1. **Tested platforms only**. We _generally_ will only accept changes for platforms that are compiled and tested. This means POSIX (for Linux and macOS) or Windows. Very small changes will sometimes be accepted, but consider that more of an exception than the rule. 2. **Stable API**. We strive very hard to maintain a stable API. Changes that require changes for projects using leveldb _might_ be rejected without sufficient benefit to the project. 3. **Tests**: All changes must be accompanied by a new (or changed) test, or a sufficient explanation as to why a new (or changed) test is not required. 4. **Consistent Style**: This project conforms to the [Google C++ Style Guide](https://google.github.io/styleguide/cppguide.html). To ensure your changes are properly formatted please run: ``` clang-format -i --style=file <file> ``` ## Submitting a Pull Request Before any pull request will be accepted the author must first sign a Contributor License Agreement (CLA) at https://cla.developers.google.com/. In order to keep the commit timeline linear [squash](https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History#Squashing-Commits) your changes down to a single commit and [rebase](https://git-scm.com/docs/git-rebase) on google/leveldb/master. This keeps the commit timeline linear and more easily sync'ed with the internal repository at Google. More information at GitHub's [About Git rebase](https://help.github.com/articles/about-git-rebase/) page. # Performance Here is a performance report (with explanations) from the run of the included db_bench program. The results are somewhat noisy, but should be enough to get a ballpark performance estimate. ## Setup We use a database with a million entries. Each entry has a 16 byte key, and a 100 byte value. Values used by the benchmark compress to about half their original size. LevelDB: version 1.1 Date: Sun May 1 12:11:26 2011 CPU: 4 x Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz CPUCache: 4096 KB Keys: 16 bytes each Values: 100 bytes each (50 bytes after compression) Entries: 1000000 Raw Size: 110.6 MB (estimated) File Size: 62.9 MB (estimated) ## Write performance The "fill" benchmarks create a brand new database, in either sequential, or random order. The "fillsync" benchmark flushes data from the operating system to the disk after every operation; the other write operations leave the data sitting in the operating system buffer cache for a while. The "overwrite" benchmark does random writes that update existing keys in the database. fillseq : 1.765 micros/op; 62.7 MB/s fillsync : 268.409 micros/op; 0.4 MB/s (10000 ops) fillrandom : 2.460 micros/op; 45.0 MB/s overwrite : 2.380 micros/op; 46.5 MB/s Each "op" above corresponds to a write of a single key/value pair. I.e., a random write benchmark goes at approximately 400,000 writes per second. Each "fillsync" operation costs much less (0.3 millisecond) than a disk seek (typically 10 milliseconds). We suspect that this is because the hard disk itself is buffering the update in its memory and responding before the data has been written to the platter. This may or may not be safe based on whether or not the hard disk has enough power to save its memory in the event of a power failure. ## Read performance We list the performance of reading sequentially in both the forward and reverse direction, and also the performance of a random lookup. Note that the database created by the benchmark is quite small. Therefore the report characterizes the performance of leveldb when the working set fits in memory. The cost of reading a piece of data that is not present in the operating system buffer cache will be dominated by the one or two disk seeks needed to fetch the data from disk. Write performance will be mostly unaffected by whether or not the working set fits in memory. readrandom : 16.677 micros/op; (approximately 60,000 reads per second) readseq : 0.476 micros/op; 232.3 MB/s readreverse : 0.724 micros/op; 152.9 MB/s LevelDB compacts its underlying storage data in the background to improve read performance. The results listed above were done immediately after a lot of random writes. The results after compactions (which are usually triggered automatically) are better. readrandom : 11.602 micros/op; (approximately 85,000 reads per second) readseq : 0.423 micros/op; 261.8 MB/s readreverse : 0.663 micros/op; 166.9 MB/s Some of the high cost of reads comes from repeated decompression of blocks read from disk. If we supply enough cache to the leveldb so it can hold the uncompressed blocks in memory, the read performance improves again: readrandom : 9.775 micros/op; (approximately 100,000 reads per second before compaction) readrandom : 5.215 micros/op; (approximately 190,000 reads per second after compaction) ## Repository contents See [doc/index.md](doc/index.md) for more explanation. See [doc/impl.md](doc/impl.md) for a brief overview of the implementation. The public interface is in include/leveldb/*.h. Callers should not include or rely on the details of any other header files in this package. Those internal APIs may be changed without warning. Guide to header files: * **include/leveldb/db.h**: Main interface to the DB: Start here. * **include/leveldb/options.h**: Control over the behavior of an entire database, and also control over the behavior of individual reads and writes. * **include/leveldb/comparator.h**: Abstraction for user-specified comparison function. If you want just bytewise comparison of keys, you can use the default comparator, but clients can write their own comparator implementations if they want custom ordering (e.g. to handle different character encodings, etc.). * **include/leveldb/iterator.h**: Interface for iterating over data. You can get an iterator from a DB object. * **include/leveldb/write_batch.h**: Interface for atomically applying multiple updates to a database. * **include/leveldb/slice.h**: A simple module for maintaining a pointer and a length into some other byte array. * **include/leveldb/status.h**: Status is returned from many of the public interfaces and is used to report success and various kinds of errors. * **include/leveldb/env.h**: Abstraction of the OS environment. A posix implementation of this interface is in util/env_posix.cc. * **include/leveldb/table.h, include/leveldb/table_builder.h**: Lower-level modules that most clients probably won't use directly.
0
bitcoin/src
bitcoin/src/leveldb/NEWS
Release 1.2 2011-05-16 ---------------------- Fixes for larger databases (tested up to one billion 100-byte entries, i.e., ~100GB). (1) Place hard limit on number of level-0 files. This fixes errors of the form "too many open files". (2) Fixed memtable management. Before the fix, a heavy write burst could cause unbounded memory usage. A fix for a logging bug where the reader would incorrectly complain about corruption. Allow public access to WriteBatch contents so that users can easily wrap a DB.
0
bitcoin/src
bitcoin/src/leveldb/CONTRIBUTING.md
# Contributing We'd love to accept your code patches! However, before we can take them, we have to jump a couple of legal hurdles. ## Contributor License Agreements Please fill out either the individual or corporate Contributor License Agreement as appropriate. * If you are an individual writing original source code and you're sure you own the intellectual property, then sign an [individual CLA](https://developers.google.com/open-source/cla/individual). * If you work for a company that wants to allow you to contribute your work, then sign a [corporate CLA](https://developers.google.com/open-source/cla/corporate). Follow either of the two links above to access the appropriate CLA and instructions for how to sign and return it. ## Submitting a Patch 1. Sign the contributors license agreement above. 2. Decide which code you want to submit. A submission should be a set of changes that addresses one issue in the [issue tracker](https://github.com/google/leveldb/issues). Please don't mix more than one logical change per submission, because it makes the history hard to follow. If you want to make a change (e.g. add a sample or feature) that doesn't have a corresponding issue in the issue tracker, please create one. 3. **Submitting**: When you are ready to submit, send us a Pull Request. Be sure to include the issue number you fixed and the name you used to sign the CLA. ## Writing Code ## If your contribution contains code, please make sure that it follows [the style guide](http://google.github.io/styleguide/cppguide.html). Otherwise we will have to ask you to make changes, and that's no fun for anyone.
0
bitcoin/src
bitcoin/src/leveldb/.clang-format
# Run manually to reformat a file: # clang-format -i --style=file <file> # find . -iname '*.cc' -o -iname '*.h' -o -iname '*.h.in' | xargs clang-format -i --style=file BasedOnStyle: Google DerivePointerAlignment: false # Public headers are in a different location in the internal Google repository. # Order them so that when imported to the authoritative repository they will be # in correct alphabetical order. IncludeCategories: - Regex: '^(<|"(benchmarks|db|helpers)/)' Priority: 1 - Regex: '^"(leveldb)/' Priority: 2 - Regex: '^(<|"(issues|port|table|third_party|util)/)' Priority: 3 - Regex: '.*' Priority: 4
0
bitcoin/src
bitcoin/src/leveldb/.travis.yml
# Build matrix / environment variables are explained on: # http://about.travis-ci.org/docs/user/build-configuration/ # This file can be validated on: http://lint.travis-ci.org/ language: cpp dist: bionic osx_image: xcode10.3 compiler: - gcc - clang os: - linux - osx env: - BUILD_TYPE=Debug - BUILD_TYPE=RelWithDebInfo addons: apt: sources: - sourceline: 'deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main' key_url: 'https://apt.llvm.org/llvm-snapshot.gpg.key' - sourceline: 'ppa:ubuntu-toolchain-r/test' packages: - clang-9 - cmake - gcc-9 - g++-9 - libgoogle-perftools-dev - libkyotocabinet-dev - libsnappy-dev - libsqlite3-dev - ninja-build homebrew: packages: - cmake - crc32c - gcc@9 - gperftools - kyoto-cabinet - llvm@9 - ninja - snappy - sqlite3 update: true install: # The following Homebrew packages aren't linked by default, and need to be # prepended to the path explicitly. - if [ "$TRAVIS_OS_NAME" = "osx" ]; then export PATH="$(brew --prefix llvm)/bin:$PATH"; fi # /usr/bin/gcc points to an older compiler on both Linux and macOS. - if [ "$CXX" = "g++" ]; then export CXX="g++-9" CC="gcc-9"; fi # /usr/bin/clang points to an older compiler on both Linux and macOS. # # Homebrew's llvm package doesn't ship a versioned clang++ binary, so the values # below don't work on macOS. Fortunately, the path change above makes the # default values (clang and clang++) resolve to the correct compiler on macOS. - if [ "$TRAVIS_OS_NAME" = "linux" ]; then if [ "$CXX" = "clang++" ]; then export CXX="clang++-9" CC="clang-9"; fi; fi - echo ${CC} - echo ${CXX} - ${CXX} --version - cmake --version before_script: - mkdir -p build && cd build - cmake .. -G Ninja -DCMAKE_BUILD_TYPE=$BUILD_TYPE -DCMAKE_INSTALL_PREFIX=$HOME/.local - cmake --build . - cd .. script: - cd build && ctest --verbose && cd .. - "if [ -f build/db_bench ] ; then build/db_bench ; fi" - "if [ -f build/db_bench_sqlite3 ] ; then build/db_bench_sqlite3 ; fi" - "if [ -f build/db_bench_tree_db ] ; then build/db_bench_tree_db ; fi" - cd build && cmake --build . --target install
0
bitcoin/src/leveldb
bitcoin/src/leveldb/cmake/leveldbConfig.cmake
include("${CMAKE_CURRENT_LIST_DIR}/leveldbTargets.cmake")
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/testutil.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/testutil.h" #include "util/random.h" namespace leveldb { namespace test { Slice RandomString(Random* rnd, int len, std::string* dst) { dst->resize(len); for (int i = 0; i < len; i++) { (*dst)[i] = static_cast<char>(' ' + rnd->Uniform(95)); // ' ' .. '~' } return Slice(*dst); } std::string RandomKey(Random* rnd, int len) { // Make sure to generate a wide variety of characters so we // test the boundary conditions for short-key optimizations. static const char kTestChars[] = {'\0', '\1', 'a', 'b', 'c', 'd', 'e', '\xfd', '\xfe', '\xff'}; std::string result; for (int i = 0; i < len; i++) { result += kTestChars[rnd->Uniform(sizeof(kTestChars))]; } return result; } Slice CompressibleString(Random* rnd, double compressed_fraction, size_t len, std::string* dst) { int raw = static_cast<int>(len * compressed_fraction); if (raw < 1) raw = 1; std::string raw_data; RandomString(rnd, raw, &raw_data); // Duplicate the random data until we have filled "len" bytes dst->clear(); while (dst->size() < len) { dst->append(raw_data); } dst->resize(len); return Slice(*dst); } } // namespace test } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/status.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/status.h" #include <stdio.h> #include "port/port.h" namespace leveldb { const char* Status::CopyState(const char* state) { uint32_t size; memcpy(&size, state, sizeof(size)); char* result = new char[size + 5]; memcpy(result, state, size + 5); return result; } Status::Status(Code code, const Slice& msg, const Slice& msg2) { assert(code != kOk); const uint32_t len1 = static_cast<uint32_t>(msg.size()); const uint32_t len2 = static_cast<uint32_t>(msg2.size()); const uint32_t size = len1 + (len2 ? (2 + len2) : 0); char* result = new char[size + 5]; memcpy(result, &size, sizeof(size)); result[4] = static_cast<char>(code); memcpy(result + 5, msg.data(), len1); if (len2) { result[5 + len1] = ':'; result[6 + len1] = ' '; memcpy(result + 7 + len1, msg2.data(), len2); } state_ = result; } std::string Status::ToString() const { if (state_ == nullptr) { return "OK"; } else { char tmp[30]; const char* type; switch (code()) { case kOk: type = "OK"; break; case kNotFound: type = "NotFound: "; break; case kCorruption: type = "Corruption: "; break; case kNotSupported: type = "Not implemented: "; break; case kInvalidArgument: type = "Invalid argument: "; break; case kIOError: type = "IO error: "; break; default: snprintf(tmp, sizeof(tmp), "Unknown code(%d): ", static_cast<int>(code())); type = tmp; break; } std::string result(type); uint32_t length; memcpy(&length, state_, sizeof(length)); result.append(state_ + 5, length); return result; } } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/arena.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/arena.h" namespace leveldb { static const int kBlockSize = 4096; Arena::Arena() : alloc_ptr_(nullptr), alloc_bytes_remaining_(0), memory_usage_(0) {} Arena::~Arena() { for (size_t i = 0; i < blocks_.size(); i++) { delete[] blocks_[i]; } } char* Arena::AllocateFallback(size_t bytes) { if (bytes > kBlockSize / 4) { // Object is more than a quarter of our block size. Allocate it separately // to avoid wasting too much space in leftover bytes. char* result = AllocateNewBlock(bytes); return result; } // We waste the remaining space in the current block. alloc_ptr_ = AllocateNewBlock(kBlockSize); alloc_bytes_remaining_ = kBlockSize; char* result = alloc_ptr_; alloc_ptr_ += bytes; alloc_bytes_remaining_ -= bytes; return result; } char* Arena::AllocateAligned(size_t bytes) { const int align = (sizeof(void*) > 8) ? sizeof(void*) : 8; static_assert((align & (align - 1)) == 0, "Pointer size should be a power of 2"); size_t current_mod = reinterpret_cast<uintptr_t>(alloc_ptr_) & (align - 1); size_t slop = (current_mod == 0 ? 0 : align - current_mod); size_t needed = bytes + slop; char* result; if (needed <= alloc_bytes_remaining_) { result = alloc_ptr_ + slop; alloc_ptr_ += needed; alloc_bytes_remaining_ -= needed; } else { // AllocateFallback always returned aligned memory result = AllocateFallback(bytes); } assert((reinterpret_cast<uintptr_t>(result) & (align - 1)) == 0); return result; } char* Arena::AllocateNewBlock(size_t block_bytes) { char* result = new char[block_bytes]; blocks_.push_back(result); memory_usage_.fetch_add(block_bytes + sizeof(char*), std::memory_order_relaxed); return result; } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/bloom.cc
// Copyright (c) 2012 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/filter_policy.h" #include "leveldb/slice.h" #include "util/hash.h" namespace leveldb { namespace { static uint32_t BloomHash(const Slice& key) { return Hash(key.data(), key.size(), 0xbc9f1d34); } class BloomFilterPolicy : public FilterPolicy { public: explicit BloomFilterPolicy(int bits_per_key) : bits_per_key_(bits_per_key) { // We intentionally round down to reduce probing cost a little bit k_ = static_cast<size_t>(bits_per_key * 0.69); // 0.69 =~ ln(2) if (k_ < 1) k_ = 1; if (k_ > 30) k_ = 30; } const char* Name() const override { return "leveldb.BuiltinBloomFilter2"; } void CreateFilter(const Slice* keys, int n, std::string* dst) const override { // Compute bloom filter size (in both bits and bytes) size_t bits = n * bits_per_key_; // For small n, we can see a very high false positive rate. Fix it // by enforcing a minimum bloom filter length. if (bits < 64) bits = 64; size_t bytes = (bits + 7) / 8; bits = bytes * 8; const size_t init_size = dst->size(); dst->resize(init_size + bytes, 0); dst->push_back(static_cast<char>(k_)); // Remember # of probes in filter char* array = &(*dst)[init_size]; for (int i = 0; i < n; i++) { // Use double-hashing to generate a sequence of hash values. // See analysis in [Kirsch,Mitzenmacher 2006]. uint32_t h = BloomHash(keys[i]); const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits for (size_t j = 0; j < k_; j++) { const uint32_t bitpos = h % bits; array[bitpos / 8] |= (1 << (bitpos % 8)); h += delta; } } } bool KeyMayMatch(const Slice& key, const Slice& bloom_filter) const override { const size_t len = bloom_filter.size(); if (len < 2) return false; const char* array = bloom_filter.data(); const size_t bits = (len - 1) * 8; // Use the encoded k so that we can read filters generated by // bloom filters created using different parameters. const size_t k = array[len - 1]; if (k > 30) { // Reserved for potentially new encodings for short bloom filters. // Consider it a match. return true; } uint32_t h = BloomHash(key); const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits for (size_t j = 0; j < k; j++) { const uint32_t bitpos = h % bits; if ((array[bitpos / 8] & (1 << (bitpos % 8))) == 0) return false; h += delta; } return true; } private: size_t bits_per_key_; size_t k_; }; } // namespace const FilterPolicy* NewBloomFilterPolicy(int bits_per_key) { return new BloomFilterPolicy(bits_per_key); } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/posix_logger.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // Logger implementation that can be shared by all environments // where enough posix functionality is available. #ifndef STORAGE_LEVELDB_UTIL_POSIX_LOGGER_H_ #define STORAGE_LEVELDB_UTIL_POSIX_LOGGER_H_ #include <sys/time.h> #include <cassert> #include <cstdarg> #include <cstdio> #include <ctime> #include <sstream> #include <thread> #include "leveldb/env.h" namespace leveldb { class PosixLogger final : public Logger { public: // Creates a logger that writes to the given file. // // The PosixLogger instance takes ownership of the file handle. explicit PosixLogger(std::FILE* fp) : fp_(fp) { assert(fp != nullptr); } ~PosixLogger() override { std::fclose(fp_); } void Logv(const char* format, va_list arguments) override { // Record the time as close to the Logv() call as possible. struct ::timeval now_timeval; ::gettimeofday(&now_timeval, nullptr); const std::time_t now_seconds = now_timeval.tv_sec; struct std::tm now_components; ::localtime_r(&now_seconds, &now_components); // Record the thread ID. constexpr const int kMaxThreadIdSize = 32; std::ostringstream thread_stream; thread_stream << std::this_thread::get_id(); std::string thread_id = thread_stream.str(); if (thread_id.size() > kMaxThreadIdSize) { thread_id.resize(kMaxThreadIdSize); } // We first attempt to print into a stack-allocated buffer. If this attempt // fails, we make a second attempt with a dynamically allocated buffer. constexpr const int kStackBufferSize = 512; char stack_buffer[kStackBufferSize]; static_assert(sizeof(stack_buffer) == static_cast<size_t>(kStackBufferSize), "sizeof(char) is expected to be 1 in C++"); int dynamic_buffer_size = 0; // Computed in the first iteration. for (int iteration = 0; iteration < 2; ++iteration) { const int buffer_size = (iteration == 0) ? kStackBufferSize : dynamic_buffer_size; char* const buffer = (iteration == 0) ? stack_buffer : new char[dynamic_buffer_size]; // Print the header into the buffer. int buffer_offset = snprintf( buffer, buffer_size, "%04d/%02d/%02d-%02d:%02d:%02d.%06d %s ", now_components.tm_year + 1900, now_components.tm_mon + 1, now_components.tm_mday, now_components.tm_hour, now_components.tm_min, now_components.tm_sec, static_cast<int>(now_timeval.tv_usec), thread_id.c_str()); // The header can be at most 28 characters (10 date + 15 time + // 3 delimiters) plus the thread ID, which should fit comfortably into the // static buffer. assert(buffer_offset <= 28 + kMaxThreadIdSize); static_assert(28 + kMaxThreadIdSize < kStackBufferSize, "stack-allocated buffer may not fit the message header"); assert(buffer_offset < buffer_size); // Print the message into the buffer. std::va_list arguments_copy; va_copy(arguments_copy, arguments); buffer_offset += std::vsnprintf(buffer + buffer_offset, buffer_size - buffer_offset, format, arguments_copy); va_end(arguments_copy); // The code below may append a newline at the end of the buffer, which // requires an extra character. if (buffer_offset >= buffer_size - 1) { // The message did not fit into the buffer. if (iteration == 0) { // Re-run the loop and use a dynamically-allocated buffer. The buffer // will be large enough for the log message, an extra newline and a // null terminator. dynamic_buffer_size = buffer_offset + 2; continue; } // The dynamically-allocated buffer was incorrectly sized. This should // not happen, assuming a correct implementation of (v)snprintf. Fail // in tests, recover by truncating the log message in production. assert(false); buffer_offset = buffer_size - 1; } // Add a newline if necessary. if (buffer[buffer_offset - 1] != '\n') { buffer[buffer_offset] = '\n'; ++buffer_offset; } assert(buffer_offset <= buffer_size); std::fwrite(buffer, 1, buffer_offset, fp_); std::fflush(fp_); if (iteration != 0) { delete[] buffer; } break; } } private: std::FILE* const fp_; }; } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_POSIX_LOGGER_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/testharness.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_UTIL_TESTHARNESS_H_ #define STORAGE_LEVELDB_UTIL_TESTHARNESS_H_ #include <stdio.h> #include <stdlib.h> #include <sstream> #include "leveldb/status.h" namespace leveldb { namespace test { // Run some of the tests registered by the TEST() macro. If the // environment variable "LEVELDB_TESTS" is not set, runs all tests. // Otherwise, runs only the tests whose name contains the value of // "LEVELDB_TESTS" as a substring. E.g., suppose the tests are: // TEST(Foo, Hello) { ... } // TEST(Foo, World) { ... } // LEVELDB_TESTS=Hello will run the first test // LEVELDB_TESTS=o will run both tests // LEVELDB_TESTS=Junk will run no tests // // Returns 0 if all tests pass. // Dies or returns a non-zero value if some test fails. int RunAllTests(); // Return the directory to use for temporary storage. std::string TmpDir(); // Return a randomization seed for this run. Typically returns the // same number on repeated invocations of this binary, but automated // runs may be able to vary the seed. int RandomSeed(); // An instance of Tester is allocated to hold temporary state during // the execution of an assertion. class Tester { private: bool ok_; const char* fname_; int line_; std::stringstream ss_; public: Tester(const char* f, int l) : ok_(true), fname_(f), line_(l) {} ~Tester() { if (!ok_) { fprintf(stderr, "%s:%d:%s\n", fname_, line_, ss_.str().c_str()); exit(1); } } Tester& Is(bool b, const char* msg) { if (!b) { ss_ << " Assertion failure " << msg; ok_ = false; } return *this; } Tester& IsOk(const Status& s) { if (!s.ok()) { ss_ << " " << s.ToString(); ok_ = false; } return *this; } #define BINARY_OP(name, op) \ template <class X, class Y> \ Tester& name(const X& x, const Y& y) { \ if (!(x op y)) { \ ss_ << " failed: " << x << (" " #op " ") << y; \ ok_ = false; \ } \ return *this; \ } BINARY_OP(IsEq, ==) BINARY_OP(IsNe, !=) BINARY_OP(IsGe, >=) BINARY_OP(IsGt, >) BINARY_OP(IsLe, <=) BINARY_OP(IsLt, <) #undef BINARY_OP // Attach the specified value to the error message if an error has occurred template <class V> Tester& operator<<(const V& value) { if (!ok_) { ss_ << " " << value; } return *this; } }; #define ASSERT_TRUE(c) ::leveldb::test::Tester(__FILE__, __LINE__).Is((c), #c) #define ASSERT_OK(s) ::leveldb::test::Tester(__FILE__, __LINE__).IsOk((s)) #define ASSERT_EQ(a, b) \ ::leveldb::test::Tester(__FILE__, __LINE__).IsEq((a), (b)) #define ASSERT_NE(a, b) \ ::leveldb::test::Tester(__FILE__, __LINE__).IsNe((a), (b)) #define ASSERT_GE(a, b) \ ::leveldb::test::Tester(__FILE__, __LINE__).IsGe((a), (b)) #define ASSERT_GT(a, b) \ ::leveldb::test::Tester(__FILE__, __LINE__).IsGt((a), (b)) #define ASSERT_LE(a, b) \ ::leveldb::test::Tester(__FILE__, __LINE__).IsLe((a), (b)) #define ASSERT_LT(a, b) \ ::leveldb::test::Tester(__FILE__, __LINE__).IsLt((a), (b)) #define TCONCAT(a, b) TCONCAT1(a, b) #define TCONCAT1(a, b) a##b #define TEST(base, name) \ class TCONCAT(_Test_, name) : public base { \ public: \ void _Run(); \ static void _RunIt() { \ TCONCAT(_Test_, name) t; \ t._Run(); \ } \ }; \ bool TCONCAT(_Test_ignored_, name) = ::leveldb::test::RegisterTest( \ #base, #name, &TCONCAT(_Test_, name)::_RunIt); \ void TCONCAT(_Test_, name)::_Run() // Register the specified test. Typically not used directly, but // invoked via the macro expansion of TEST. bool RegisterTest(const char* base, const char* name, void (*func)()); } // namespace test } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_TESTHARNESS_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/env_windows_test.cc
// Copyright (c) 2018 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/env.h" #include "port/port.h" #include "util/env_windows_test_helper.h" #include "util/testharness.h" namespace leveldb { static const int kMMapLimit = 4; class EnvWindowsTest { public: static void SetFileLimits(int mmap_limit) { EnvWindowsTestHelper::SetReadOnlyMMapLimit(mmap_limit); } EnvWindowsTest() : env_(Env::Default()) {} Env* env_; }; TEST(EnvWindowsTest, TestOpenOnRead) { // Write some test data to a single file that will be opened |n| times. std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string test_file = test_dir + "/open_on_read.txt"; FILE* f = fopen(test_file.c_str(), "w"); ASSERT_TRUE(f != nullptr); const char kFileData[] = "abcdefghijklmnopqrstuvwxyz"; fputs(kFileData, f); fclose(f); // Open test file some number above the sum of the two limits to force // leveldb::WindowsEnv to switch from mapping the file into memory // to basic file reading. const int kNumFiles = kMMapLimit + 5; leveldb::RandomAccessFile* files[kNumFiles] = {0}; for (int i = 0; i < kNumFiles; i++) { ASSERT_OK(env_->NewRandomAccessFile(test_file, &files[i])); } char scratch; Slice read_result; for (int i = 0; i < kNumFiles; i++) { ASSERT_OK(files[i]->Read(i, 1, &read_result, &scratch)); ASSERT_EQ(kFileData[i], read_result[0]); } for (int i = 0; i < kNumFiles; i++) { delete files[i]; } ASSERT_OK(env_->DeleteFile(test_file)); } } // namespace leveldb int main(int argc, char** argv) { // All tests currently run with the same read-only file limits. leveldb::EnvWindowsTest::SetFileLimits(leveldb::kMMapLimit); return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/hash.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/hash.h" #include <string.h> #include "util/coding.h" // The FALLTHROUGH_INTENDED macro can be used to annotate implicit fall-through // between switch labels. The real definition should be provided externally. // This one is a fallback version for unsupported compilers. #ifndef FALLTHROUGH_INTENDED #define FALLTHROUGH_INTENDED \ do { \ } while (0) #endif namespace leveldb { uint32_t Hash(const char* data, size_t n, uint32_t seed) { // Similar to murmur hash const uint32_t m = 0xc6a4a793; const uint32_t r = 24; const char* limit = data + n; uint32_t h = seed ^ (n * m); // Pick up four bytes at a time while (data + 4 <= limit) { uint32_t w = DecodeFixed32(data); data += 4; h += w; h *= m; h ^= (h >> 16); } // Pick up remaining bytes switch (limit - data) { case 3: h += static_cast<uint8_t>(data[2]) << 16; FALLTHROUGH_INTENDED; case 2: h += static_cast<uint8_t>(data[1]) << 8; FALLTHROUGH_INTENDED; case 1: h += static_cast<uint8_t>(data[0]); h *= m; h ^= (h >> r); break; } return h; } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/crc32c_test.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/crc32c.h" #include "util/testharness.h" namespace leveldb { namespace crc32c { class CRC {}; TEST(CRC, StandardResults) { // From rfc3720 section B.4. char buf[32]; memset(buf, 0, sizeof(buf)); ASSERT_EQ(0x8a9136aa, Value(buf, sizeof(buf))); memset(buf, 0xff, sizeof(buf)); ASSERT_EQ(0x62a8ab43, Value(buf, sizeof(buf))); for (int i = 0; i < 32; i++) { buf[i] = i; } ASSERT_EQ(0x46dd794e, Value(buf, sizeof(buf))); for (int i = 0; i < 32; i++) { buf[i] = 31 - i; } ASSERT_EQ(0x113fdb5c, Value(buf, sizeof(buf))); uint8_t data[48] = { 0x01, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x18, 0x28, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; ASSERT_EQ(0xd9963a56, Value(reinterpret_cast<char*>(data), sizeof(data))); } TEST(CRC, Values) { ASSERT_NE(Value("a", 1), Value("foo", 3)); } TEST(CRC, Extend) { ASSERT_EQ(Value("hello world", 11), Extend(Value("hello ", 6), "world", 5)); } TEST(CRC, Mask) { uint32_t crc = Value("foo", 3); ASSERT_NE(crc, Mask(crc)); ASSERT_NE(crc, Mask(Mask(crc))); ASSERT_EQ(crc, Unmask(Mask(crc))); ASSERT_EQ(crc, Unmask(Unmask(Mask(Mask(crc))))); } } // namespace crc32c } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/bloom_test.cc
// Copyright (c) 2012 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/filter_policy.h" #include "util/coding.h" #include "util/logging.h" #include "util/testharness.h" #include "util/testutil.h" namespace leveldb { static const int kVerbose = 1; static Slice Key(int i, char* buffer) { EncodeFixed32(buffer, i); return Slice(buffer, sizeof(uint32_t)); } class BloomTest { public: BloomTest() : policy_(NewBloomFilterPolicy(10)) {} ~BloomTest() { delete policy_; } void Reset() { keys_.clear(); filter_.clear(); } void Add(const Slice& s) { keys_.push_back(s.ToString()); } void Build() { std::vector<Slice> key_slices; for (size_t i = 0; i < keys_.size(); i++) { key_slices.push_back(Slice(keys_[i])); } filter_.clear(); policy_->CreateFilter(&key_slices[0], static_cast<int>(key_slices.size()), &filter_); keys_.clear(); if (kVerbose >= 2) DumpFilter(); } size_t FilterSize() const { return filter_.size(); } void DumpFilter() { fprintf(stderr, "F("); for (size_t i = 0; i + 1 < filter_.size(); i++) { const unsigned int c = static_cast<unsigned int>(filter_[i]); for (int j = 0; j < 8; j++) { fprintf(stderr, "%c", (c & (1 << j)) ? '1' : '.'); } } fprintf(stderr, ")\n"); } bool Matches(const Slice& s) { if (!keys_.empty()) { Build(); } return policy_->KeyMayMatch(s, filter_); } double FalsePositiveRate() { char buffer[sizeof(int)]; int result = 0; for (int i = 0; i < 10000; i++) { if (Matches(Key(i + 1000000000, buffer))) { result++; } } return result / 10000.0; } private: const FilterPolicy* policy_; std::string filter_; std::vector<std::string> keys_; }; TEST(BloomTest, EmptyFilter) { ASSERT_TRUE(!Matches("hello")); ASSERT_TRUE(!Matches("world")); } TEST(BloomTest, Small) { Add("hello"); Add("world"); ASSERT_TRUE(Matches("hello")); ASSERT_TRUE(Matches("world")); ASSERT_TRUE(!Matches("x")); ASSERT_TRUE(!Matches("foo")); } static int NextLength(int length) { if (length < 10) { length += 1; } else if (length < 100) { length += 10; } else if (length < 1000) { length += 100; } else { length += 1000; } return length; } TEST(BloomTest, VaryingLengths) { char buffer[sizeof(int)]; // Count number of filters that significantly exceed the false positive rate int mediocre_filters = 0; int good_filters = 0; for (int length = 1; length <= 10000; length = NextLength(length)) { Reset(); for (int i = 0; i < length; i++) { Add(Key(i, buffer)); } Build(); ASSERT_LE(FilterSize(), static_cast<size_t>((length * 10 / 8) + 40)) << length; // All added keys must match for (int i = 0; i < length; i++) { ASSERT_TRUE(Matches(Key(i, buffer))) << "Length " << length << "; key " << i; } // Check false positive rate double rate = FalsePositiveRate(); if (kVerbose >= 1) { fprintf(stderr, "False positives: %5.2f%% @ length = %6d ; bytes = %6d\n", rate * 100.0, length, static_cast<int>(FilterSize())); } ASSERT_LE(rate, 0.02); // Must not be over 2% if (rate > 0.0125) mediocre_filters++; // Allowed, but not too often else good_filters++; } if (kVerbose >= 1) { fprintf(stderr, "Filters: %d good, %d mediocre\n", good_filters, mediocre_filters); } ASSERT_LE(mediocre_filters, good_filters / 5); } // Different bits-per-byte } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/hash_test.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/hash.h" #include "util/testharness.h" namespace leveldb { class HASH {}; TEST(HASH, SignedUnsignedIssue) { const uint8_t data1[1] = {0x62}; const uint8_t data2[2] = {0xc3, 0x97}; const uint8_t data3[3] = {0xe2, 0x99, 0xa5}; const uint8_t data4[4] = {0xe1, 0x80, 0xb9, 0x32}; const uint8_t data5[48] = { 0x01, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x18, 0x28, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; ASSERT_EQ(Hash(0, 0, 0xbc9f1d34), 0xbc9f1d34); ASSERT_EQ( Hash(reinterpret_cast<const char*>(data1), sizeof(data1), 0xbc9f1d34), 0xef1345c4); ASSERT_EQ( Hash(reinterpret_cast<const char*>(data2), sizeof(data2), 0xbc9f1d34), 0x5b663814); ASSERT_EQ( Hash(reinterpret_cast<const char*>(data3), sizeof(data3), 0xbc9f1d34), 0x323c078f); ASSERT_EQ( Hash(reinterpret_cast<const char*>(data4), sizeof(data4), 0xbc9f1d34), 0xed21633a); ASSERT_EQ( Hash(reinterpret_cast<const char*>(data5), sizeof(data5), 0x12345678), 0xf333dabb); } } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/coding.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // Endian-neutral encoding: // * Fixed-length numbers are encoded with least-significant byte first // * In addition we support variable length "varint" encoding // * Strings are encoded prefixed by their length in varint format #ifndef STORAGE_LEVELDB_UTIL_CODING_H_ #define STORAGE_LEVELDB_UTIL_CODING_H_ #include <cstdint> #include <cstring> #include <string> #include "leveldb/slice.h" #include "port/port.h" namespace leveldb { // Standard Put... routines append to a string void PutFixed32(std::string* dst, uint32_t value); void PutFixed64(std::string* dst, uint64_t value); void PutVarint32(std::string* dst, uint32_t value); void PutVarint64(std::string* dst, uint64_t value); void PutLengthPrefixedSlice(std::string* dst, const Slice& value); // Standard Get... routines parse a value from the beginning of a Slice // and advance the slice past the parsed value. bool GetVarint32(Slice* input, uint32_t* value); bool GetVarint64(Slice* input, uint64_t* value); bool GetLengthPrefixedSlice(Slice* input, Slice* result); // Pointer-based variants of GetVarint... These either store a value // in *v and return a pointer just past the parsed value, or return // nullptr on error. These routines only look at bytes in the range // [p..limit-1] const char* GetVarint32Ptr(const char* p, const char* limit, uint32_t* v); const char* GetVarint64Ptr(const char* p, const char* limit, uint64_t* v); // Returns the length of the varint32 or varint64 encoding of "v" int VarintLength(uint64_t v); // Lower-level versions of Put... that write directly into a character buffer // and return a pointer just past the last byte written. // REQUIRES: dst has enough space for the value being written char* EncodeVarint32(char* dst, uint32_t value); char* EncodeVarint64(char* dst, uint64_t value); // TODO(costan): Remove port::kLittleEndian and the fast paths based on // std::memcpy when clang learns to optimize the generic code, as // described in https://bugs.llvm.org/show_bug.cgi?id=41761 // // The platform-independent code in DecodeFixed{32,64}() gets optimized to mov // on x86 and ldr on ARM64, by both clang and gcc. However, only gcc optimizes // the platform-independent code in EncodeFixed{32,64}() to mov / str. // Lower-level versions of Put... that write directly into a character buffer // REQUIRES: dst has enough space for the value being written inline void EncodeFixed32(char* dst, uint32_t value) { uint8_t* const buffer = reinterpret_cast<uint8_t*>(dst); if (port::kLittleEndian) { // Fast path for little-endian CPUs. All major compilers optimize this to a // single mov (x86_64) / str (ARM) instruction. std::memcpy(buffer, &value, sizeof(uint32_t)); return; } // Platform-independent code. // Currently, only gcc optimizes this to a single mov / str instruction. buffer[0] = static_cast<uint8_t>(value); buffer[1] = static_cast<uint8_t>(value >> 8); buffer[2] = static_cast<uint8_t>(value >> 16); buffer[3] = static_cast<uint8_t>(value >> 24); } inline void EncodeFixed64(char* dst, uint64_t value) { uint8_t* const buffer = reinterpret_cast<uint8_t*>(dst); if (port::kLittleEndian) { // Fast path for little-endian CPUs. All major compilers optimize this to a // single mov (x86_64) / str (ARM) instruction. std::memcpy(buffer, &value, sizeof(uint64_t)); return; } // Platform-independent code. // Currently, only gcc optimizes this to a single mov / str instruction. buffer[0] = static_cast<uint8_t>(value); buffer[1] = static_cast<uint8_t>(value >> 8); buffer[2] = static_cast<uint8_t>(value >> 16); buffer[3] = static_cast<uint8_t>(value >> 24); buffer[4] = static_cast<uint8_t>(value >> 32); buffer[5] = static_cast<uint8_t>(value >> 40); buffer[6] = static_cast<uint8_t>(value >> 48); buffer[7] = static_cast<uint8_t>(value >> 56); } // Lower-level versions of Get... that read directly from a character buffer // without any bounds checking. inline uint32_t DecodeFixed32(const char* ptr) { const uint8_t* const buffer = reinterpret_cast<const uint8_t*>(ptr); if (port::kLittleEndian) { // Fast path for little-endian CPUs. All major compilers optimize this to a // single mov (x86_64) / ldr (ARM) instruction. uint32_t result; std::memcpy(&result, buffer, sizeof(uint32_t)); return result; } // Platform-independent code. // Clang and gcc optimize this to a single mov / ldr instruction. return (static_cast<uint32_t>(buffer[0])) | (static_cast<uint32_t>(buffer[1]) << 8) | (static_cast<uint32_t>(buffer[2]) << 16) | (static_cast<uint32_t>(buffer[3]) << 24); } inline uint64_t DecodeFixed64(const char* ptr) { const uint8_t* const buffer = reinterpret_cast<const uint8_t*>(ptr); if (port::kLittleEndian) { // Fast path for little-endian CPUs. All major compilers optimize this to a // single mov (x86_64) / ldr (ARM) instruction. uint64_t result; std::memcpy(&result, buffer, sizeof(uint64_t)); return result; } // Platform-independent code. // Clang and gcc optimize this to a single mov / ldr instruction. return (static_cast<uint64_t>(buffer[0])) | (static_cast<uint64_t>(buffer[1]) << 8) | (static_cast<uint64_t>(buffer[2]) << 16) | (static_cast<uint64_t>(buffer[3]) << 24) | (static_cast<uint64_t>(buffer[4]) << 32) | (static_cast<uint64_t>(buffer[5]) << 40) | (static_cast<uint64_t>(buffer[6]) << 48) | (static_cast<uint64_t>(buffer[7]) << 56); } // Internal routine for use by fallback path of GetVarint32Ptr const char* GetVarint32PtrFallback(const char* p, const char* limit, uint32_t* value); inline const char* GetVarint32Ptr(const char* p, const char* limit, uint32_t* value) { if (p < limit) { uint32_t result = *(reinterpret_cast<const uint8_t*>(p)); if ((result & 128) == 0) { *value = result; return p + 1; } } return GetVarint32PtrFallback(p, limit, value); } } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_CODING_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/logging.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // Must not be included from any .h files to avoid polluting the namespace // with macros. #ifndef STORAGE_LEVELDB_UTIL_LOGGING_H_ #define STORAGE_LEVELDB_UTIL_LOGGING_H_ #include <stdint.h> #include <stdio.h> #include <string> #include "port/port.h" namespace leveldb { class Slice; class WritableFile; // Append a human-readable printout of "num" to *str void AppendNumberTo(std::string* str, uint64_t num); // Append a human-readable printout of "value" to *str. // Escapes any non-printable characters found in "value". void AppendEscapedStringTo(std::string* str, const Slice& value); // Return a human-readable printout of "num" std::string NumberToString(uint64_t num); // Return a human-readable version of "value". // Escapes any non-printable characters found in "value". std::string EscapeString(const Slice& value); // Parse a human-readable number from "*in" into *value. On success, // advances "*in" past the consumed number and sets "*val" to the // numeric value. Otherwise, returns false and leaves *in in an // unspecified state. bool ConsumeDecimalNumber(Slice* in, uint64_t* val); } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_LOGGING_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/filter_policy.cc
// Copyright (c) 2012 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/filter_policy.h" namespace leveldb { FilterPolicy::~FilterPolicy() {} } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/arena_test.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/arena.h" #include "util/random.h" #include "util/testharness.h" namespace leveldb { class ArenaTest {}; TEST(ArenaTest, Empty) { Arena arena; } TEST(ArenaTest, Simple) { std::vector<std::pair<size_t, char*>> allocated; Arena arena; const int N = 100000; size_t bytes = 0; Random rnd(301); for (int i = 0; i < N; i++) { size_t s; if (i % (N / 10) == 0) { s = i; } else { s = rnd.OneIn(4000) ? rnd.Uniform(6000) : (rnd.OneIn(10) ? rnd.Uniform(100) : rnd.Uniform(20)); } if (s == 0) { // Our arena disallows size 0 allocations. s = 1; } char* r; if (rnd.OneIn(10)) { r = arena.AllocateAligned(s); } else { r = arena.Allocate(s); } for (size_t b = 0; b < s; b++) { // Fill the "i"th allocation with a known bit pattern r[b] = i % 256; } bytes += s; allocated.push_back(std::make_pair(s, r)); ASSERT_GE(arena.MemoryUsage(), bytes); if (i > N / 10) { ASSERT_LE(arena.MemoryUsage(), bytes * 1.10); } } for (size_t i = 0; i < allocated.size(); i++) { size_t num_bytes = allocated[i].first; const char* p = allocated[i].second; for (size_t b = 0; b < num_bytes; b++) { // Check the "i"th allocation for the known bit pattern ASSERT_EQ(int(p[b]) & 0xff, i % 256); } } } } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/histogram.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/histogram.h" #include <math.h> #include <stdio.h> #include "port/port.h" namespace leveldb { const double Histogram::kBucketLimit[kNumBuckets] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 7000, 8000, 9000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 60000, 70000, 80000, 90000, 100000, 120000, 140000, 160000, 180000, 200000, 250000, 300000, 350000, 400000, 450000, 500000, 600000, 700000, 800000, 900000, 1000000, 1200000, 1400000, 1600000, 1800000, 2000000, 2500000, 3000000, 3500000, 4000000, 4500000, 5000000, 6000000, 7000000, 8000000, 9000000, 10000000, 12000000, 14000000, 16000000, 18000000, 20000000, 25000000, 30000000, 35000000, 40000000, 45000000, 50000000, 60000000, 70000000, 80000000, 90000000, 100000000, 120000000, 140000000, 160000000, 180000000, 200000000, 250000000, 300000000, 350000000, 400000000, 450000000, 500000000, 600000000, 700000000, 800000000, 900000000, 1000000000, 1200000000, 1400000000, 1600000000, 1800000000, 2000000000, 2500000000.0, 3000000000.0, 3500000000.0, 4000000000.0, 4500000000.0, 5000000000.0, 6000000000.0, 7000000000.0, 8000000000.0, 9000000000.0, 1e200, }; void Histogram::Clear() { min_ = kBucketLimit[kNumBuckets - 1]; max_ = 0; num_ = 0; sum_ = 0; sum_squares_ = 0; for (int i = 0; i < kNumBuckets; i++) { buckets_[i] = 0; } } void Histogram::Add(double value) { // Linear search is fast enough for our usage in db_bench int b = 0; while (b < kNumBuckets - 1 && kBucketLimit[b] <= value) { b++; } buckets_[b] += 1.0; if (min_ > value) min_ = value; if (max_ < value) max_ = value; num_++; sum_ += value; sum_squares_ += (value * value); } void Histogram::Merge(const Histogram& other) { if (other.min_ < min_) min_ = other.min_; if (other.max_ > max_) max_ = other.max_; num_ += other.num_; sum_ += other.sum_; sum_squares_ += other.sum_squares_; for (int b = 0; b < kNumBuckets; b++) { buckets_[b] += other.buckets_[b]; } } double Histogram::Median() const { return Percentile(50.0); } double Histogram::Percentile(double p) const { double threshold = num_ * (p / 100.0); double sum = 0; for (int b = 0; b < kNumBuckets; b++) { sum += buckets_[b]; if (sum >= threshold) { // Scale linearly within this bucket double left_point = (b == 0) ? 0 : kBucketLimit[b - 1]; double right_point = kBucketLimit[b]; double left_sum = sum - buckets_[b]; double right_sum = sum; double pos = (threshold - left_sum) / (right_sum - left_sum); double r = left_point + (right_point - left_point) * pos; if (r < min_) r = min_; if (r > max_) r = max_; return r; } } return max_; } double Histogram::Average() const { if (num_ == 0.0) return 0; return sum_ / num_; } double Histogram::StandardDeviation() const { if (num_ == 0.0) return 0; double variance = (sum_squares_ * num_ - sum_ * sum_) / (num_ * num_); return sqrt(variance); } std::string Histogram::ToString() const { std::string r; char buf[200]; snprintf(buf, sizeof(buf), "Count: %.0f Average: %.4f StdDev: %.2f\n", num_, Average(), StandardDeviation()); r.append(buf); snprintf(buf, sizeof(buf), "Min: %.4f Median: %.4f Max: %.4f\n", (num_ == 0.0 ? 0.0 : min_), Median(), max_); r.append(buf); r.append("------------------------------------------------------\n"); const double mult = 100.0 / num_; double sum = 0; for (int b = 0; b < kNumBuckets; b++) { if (buckets_[b] <= 0.0) continue; sum += buckets_[b]; snprintf(buf, sizeof(buf), "[ %7.0f, %7.0f ) %7.0f %7.3f%% %7.3f%% ", ((b == 0) ? 0.0 : kBucketLimit[b - 1]), // left kBucketLimit[b], // right buckets_[b], // count mult * buckets_[b], // percentage mult * sum); // cumulative percentage r.append(buf); // Add hash marks based on percentage; 20 marks for 100%. int marks = static_cast<int>(20 * (buckets_[b] / num_) + 0.5); r.append(marks, '#'); r.push_back('\n'); } return r; } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/logging_test.cc
// Copyright (c) 2018 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include <limits> #include <string> #include "leveldb/slice.h" #include "util/logging.h" #include "util/testharness.h" namespace leveldb { class Logging {}; TEST(Logging, NumberToString) { ASSERT_EQ("0", NumberToString(0)); ASSERT_EQ("1", NumberToString(1)); ASSERT_EQ("9", NumberToString(9)); ASSERT_EQ("10", NumberToString(10)); ASSERT_EQ("11", NumberToString(11)); ASSERT_EQ("19", NumberToString(19)); ASSERT_EQ("99", NumberToString(99)); ASSERT_EQ("100", NumberToString(100)); ASSERT_EQ("109", NumberToString(109)); ASSERT_EQ("190", NumberToString(190)); ASSERT_EQ("123", NumberToString(123)); ASSERT_EQ("12345678", NumberToString(12345678)); static_assert(std::numeric_limits<uint64_t>::max() == 18446744073709551615U, "Test consistency check"); ASSERT_EQ("18446744073709551000", NumberToString(18446744073709551000U)); ASSERT_EQ("18446744073709551600", NumberToString(18446744073709551600U)); ASSERT_EQ("18446744073709551610", NumberToString(18446744073709551610U)); ASSERT_EQ("18446744073709551614", NumberToString(18446744073709551614U)); ASSERT_EQ("18446744073709551615", NumberToString(18446744073709551615U)); } void ConsumeDecimalNumberRoundtripTest(uint64_t number, const std::string& padding = "") { std::string decimal_number = NumberToString(number); std::string input_string = decimal_number + padding; Slice input(input_string); Slice output = input; uint64_t result; ASSERT_TRUE(ConsumeDecimalNumber(&output, &result)); ASSERT_EQ(number, result); ASSERT_EQ(decimal_number.size(), output.data() - input.data()); ASSERT_EQ(padding.size(), output.size()); } TEST(Logging, ConsumeDecimalNumberRoundtrip) { ConsumeDecimalNumberRoundtripTest(0); ConsumeDecimalNumberRoundtripTest(1); ConsumeDecimalNumberRoundtripTest(9); ConsumeDecimalNumberRoundtripTest(10); ConsumeDecimalNumberRoundtripTest(11); ConsumeDecimalNumberRoundtripTest(19); ConsumeDecimalNumberRoundtripTest(99); ConsumeDecimalNumberRoundtripTest(100); ConsumeDecimalNumberRoundtripTest(109); ConsumeDecimalNumberRoundtripTest(190); ConsumeDecimalNumberRoundtripTest(123); ASSERT_EQ("12345678", NumberToString(12345678)); for (uint64_t i = 0; i < 100; ++i) { uint64_t large_number = std::numeric_limits<uint64_t>::max() - i; ConsumeDecimalNumberRoundtripTest(large_number); } } TEST(Logging, ConsumeDecimalNumberRoundtripWithPadding) { ConsumeDecimalNumberRoundtripTest(0, " "); ConsumeDecimalNumberRoundtripTest(1, "abc"); ConsumeDecimalNumberRoundtripTest(9, "x"); ConsumeDecimalNumberRoundtripTest(10, "_"); ConsumeDecimalNumberRoundtripTest(11, std::string("\0\0\0", 3)); ConsumeDecimalNumberRoundtripTest(19, "abc"); ConsumeDecimalNumberRoundtripTest(99, "padding"); ConsumeDecimalNumberRoundtripTest(100, " "); for (uint64_t i = 0; i < 100; ++i) { uint64_t large_number = std::numeric_limits<uint64_t>::max() - i; ConsumeDecimalNumberRoundtripTest(large_number, "pad"); } } void ConsumeDecimalNumberOverflowTest(const std::string& input_string) { Slice input(input_string); Slice output = input; uint64_t result; ASSERT_EQ(false, ConsumeDecimalNumber(&output, &result)); } TEST(Logging, ConsumeDecimalNumberOverflow) { static_assert(std::numeric_limits<uint64_t>::max() == 18446744073709551615U, "Test consistency check"); ConsumeDecimalNumberOverflowTest("18446744073709551616"); ConsumeDecimalNumberOverflowTest("18446744073709551617"); ConsumeDecimalNumberOverflowTest("18446744073709551618"); ConsumeDecimalNumberOverflowTest("18446744073709551619"); ConsumeDecimalNumberOverflowTest("18446744073709551620"); ConsumeDecimalNumberOverflowTest("18446744073709551621"); ConsumeDecimalNumberOverflowTest("18446744073709551622"); ConsumeDecimalNumberOverflowTest("18446744073709551623"); ConsumeDecimalNumberOverflowTest("18446744073709551624"); ConsumeDecimalNumberOverflowTest("18446744073709551625"); ConsumeDecimalNumberOverflowTest("18446744073709551626"); ConsumeDecimalNumberOverflowTest("18446744073709551700"); ConsumeDecimalNumberOverflowTest("99999999999999999999"); } void ConsumeDecimalNumberNoDigitsTest(const std::string& input_string) { Slice input(input_string); Slice output = input; uint64_t result; ASSERT_EQ(false, ConsumeDecimalNumber(&output, &result)); ASSERT_EQ(input.data(), output.data()); ASSERT_EQ(input.size(), output.size()); } TEST(Logging, ConsumeDecimalNumberNoDigits) { ConsumeDecimalNumberNoDigitsTest(""); ConsumeDecimalNumberNoDigitsTest(" "); ConsumeDecimalNumberNoDigitsTest("a"); ConsumeDecimalNumberNoDigitsTest(" 123"); ConsumeDecimalNumberNoDigitsTest("a123"); ConsumeDecimalNumberNoDigitsTest(std::string("\000123", 4)); ConsumeDecimalNumberNoDigitsTest(std::string("\177123", 4)); ConsumeDecimalNumberNoDigitsTest(std::string("\377123", 4)); } } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/crc32c.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // A portable implementation of crc32c. #include "util/crc32c.h" #include <stddef.h> #include <stdint.h> #include "port/port.h" #include "util/coding.h" namespace leveldb { namespace crc32c { namespace { const uint32_t kByteExtensionTable[256] = { 0x00000000, 0xf26b8303, 0xe13b70f7, 0x1350f3f4, 0xc79a971f, 0x35f1141c, 0x26a1e7e8, 0xd4ca64eb, 0x8ad958cf, 0x78b2dbcc, 0x6be22838, 0x9989ab3b, 0x4d43cfd0, 0xbf284cd3, 0xac78bf27, 0x5e133c24, 0x105ec76f, 0xe235446c, 0xf165b798, 0x030e349b, 0xd7c45070, 0x25afd373, 0x36ff2087, 0xc494a384, 0x9a879fa0, 0x68ec1ca3, 0x7bbcef57, 0x89d76c54, 0x5d1d08bf, 0xaf768bbc, 0xbc267848, 0x4e4dfb4b, 0x20bd8ede, 0xd2d60ddd, 0xc186fe29, 0x33ed7d2a, 0xe72719c1, 0x154c9ac2, 0x061c6936, 0xf477ea35, 0xaa64d611, 0x580f5512, 0x4b5fa6e6, 0xb93425e5, 0x6dfe410e, 0x9f95c20d, 0x8cc531f9, 0x7eaeb2fa, 0x30e349b1, 0xc288cab2, 0xd1d83946, 0x23b3ba45, 0xf779deae, 0x05125dad, 0x1642ae59, 0xe4292d5a, 0xba3a117e, 0x4851927d, 0x5b016189, 0xa96ae28a, 0x7da08661, 0x8fcb0562, 0x9c9bf696, 0x6ef07595, 0x417b1dbc, 0xb3109ebf, 0xa0406d4b, 0x522bee48, 0x86e18aa3, 0x748a09a0, 0x67dafa54, 0x95b17957, 0xcba24573, 0x39c9c670, 0x2a993584, 0xd8f2b687, 0x0c38d26c, 0xfe53516f, 0xed03a29b, 0x1f682198, 0x5125dad3, 0xa34e59d0, 0xb01eaa24, 0x42752927, 0x96bf4dcc, 0x64d4cecf, 0x77843d3b, 0x85efbe38, 0xdbfc821c, 0x2997011f, 0x3ac7f2eb, 0xc8ac71e8, 0x1c661503, 0xee0d9600, 0xfd5d65f4, 0x0f36e6f7, 0x61c69362, 0x93ad1061, 0x80fde395, 0x72966096, 0xa65c047d, 0x5437877e, 0x4767748a, 0xb50cf789, 0xeb1fcbad, 0x197448ae, 0x0a24bb5a, 0xf84f3859, 0x2c855cb2, 0xdeeedfb1, 0xcdbe2c45, 0x3fd5af46, 0x7198540d, 0x83f3d70e, 0x90a324fa, 0x62c8a7f9, 0xb602c312, 0x44694011, 0x5739b3e5, 0xa55230e6, 0xfb410cc2, 0x092a8fc1, 0x1a7a7c35, 0xe811ff36, 0x3cdb9bdd, 0xceb018de, 0xdde0eb2a, 0x2f8b6829, 0x82f63b78, 0x709db87b, 0x63cd4b8f, 0x91a6c88c, 0x456cac67, 0xb7072f64, 0xa457dc90, 0x563c5f93, 0x082f63b7, 0xfa44e0b4, 0xe9141340, 0x1b7f9043, 0xcfb5f4a8, 0x3dde77ab, 0x2e8e845f, 0xdce5075c, 0x92a8fc17, 0x60c37f14, 0x73938ce0, 0x81f80fe3, 0x55326b08, 0xa759e80b, 0xb4091bff, 0x466298fc, 0x1871a4d8, 0xea1a27db, 0xf94ad42f, 0x0b21572c, 0xdfeb33c7, 0x2d80b0c4, 0x3ed04330, 0xccbbc033, 0xa24bb5a6, 0x502036a5, 0x4370c551, 0xb11b4652, 0x65d122b9, 0x97baa1ba, 0x84ea524e, 0x7681d14d, 0x2892ed69, 0xdaf96e6a, 0xc9a99d9e, 0x3bc21e9d, 0xef087a76, 0x1d63f975, 0x0e330a81, 0xfc588982, 0xb21572c9, 0x407ef1ca, 0x532e023e, 0xa145813d, 0x758fe5d6, 0x87e466d5, 0x94b49521, 0x66df1622, 0x38cc2a06, 0xcaa7a905, 0xd9f75af1, 0x2b9cd9f2, 0xff56bd19, 0x0d3d3e1a, 0x1e6dcdee, 0xec064eed, 0xc38d26c4, 0x31e6a5c7, 0x22b65633, 0xd0ddd530, 0x0417b1db, 0xf67c32d8, 0xe52cc12c, 0x1747422f, 0x49547e0b, 0xbb3ffd08, 0xa86f0efc, 0x5a048dff, 0x8ecee914, 0x7ca56a17, 0x6ff599e3, 0x9d9e1ae0, 0xd3d3e1ab, 0x21b862a8, 0x32e8915c, 0xc083125f, 0x144976b4, 0xe622f5b7, 0xf5720643, 0x07198540, 0x590ab964, 0xab613a67, 0xb831c993, 0x4a5a4a90, 0x9e902e7b, 0x6cfbad78, 0x7fab5e8c, 0x8dc0dd8f, 0xe330a81a, 0x115b2b19, 0x020bd8ed, 0xf0605bee, 0x24aa3f05, 0xd6c1bc06, 0xc5914ff2, 0x37faccf1, 0x69e9f0d5, 0x9b8273d6, 0x88d28022, 0x7ab90321, 0xae7367ca, 0x5c18e4c9, 0x4f48173d, 0xbd23943e, 0xf36e6f75, 0x0105ec76, 0x12551f82, 0xe03e9c81, 0x34f4f86a, 0xc69f7b69, 0xd5cf889d, 0x27a40b9e, 0x79b737ba, 0x8bdcb4b9, 0x988c474d, 0x6ae7c44e, 0xbe2da0a5, 0x4c4623a6, 0x5f16d052, 0xad7d5351}; const uint32_t kStrideExtensionTable0[256] = { 0x00000000, 0x30d23865, 0x61a470ca, 0x517648af, 0xc348e194, 0xf39ad9f1, 0xa2ec915e, 0x923ea93b, 0x837db5d9, 0xb3af8dbc, 0xe2d9c513, 0xd20bfd76, 0x4035544d, 0x70e76c28, 0x21912487, 0x11431ce2, 0x03171d43, 0x33c52526, 0x62b36d89, 0x526155ec, 0xc05ffcd7, 0xf08dc4b2, 0xa1fb8c1d, 0x9129b478, 0x806aa89a, 0xb0b890ff, 0xe1ced850, 0xd11ce035, 0x4322490e, 0x73f0716b, 0x228639c4, 0x125401a1, 0x062e3a86, 0x36fc02e3, 0x678a4a4c, 0x57587229, 0xc566db12, 0xf5b4e377, 0xa4c2abd8, 0x941093bd, 0x85538f5f, 0xb581b73a, 0xe4f7ff95, 0xd425c7f0, 0x461b6ecb, 0x76c956ae, 0x27bf1e01, 0x176d2664, 0x053927c5, 0x35eb1fa0, 0x649d570f, 0x544f6f6a, 0xc671c651, 0xf6a3fe34, 0xa7d5b69b, 0x97078efe, 0x8644921c, 0xb696aa79, 0xe7e0e2d6, 0xd732dab3, 0x450c7388, 0x75de4bed, 0x24a80342, 0x147a3b27, 0x0c5c750c, 0x3c8e4d69, 0x6df805c6, 0x5d2a3da3, 0xcf149498, 0xffc6acfd, 0xaeb0e452, 0x9e62dc37, 0x8f21c0d5, 0xbff3f8b0, 0xee85b01f, 0xde57887a, 0x4c692141, 0x7cbb1924, 0x2dcd518b, 0x1d1f69ee, 0x0f4b684f, 0x3f99502a, 0x6eef1885, 0x5e3d20e0, 0xcc0389db, 0xfcd1b1be, 0xada7f911, 0x9d75c174, 0x8c36dd96, 0xbce4e5f3, 0xed92ad5c, 0xdd409539, 0x4f7e3c02, 0x7fac0467, 0x2eda4cc8, 0x1e0874ad, 0x0a724f8a, 0x3aa077ef, 0x6bd63f40, 0x5b040725, 0xc93aae1e, 0xf9e8967b, 0xa89eded4, 0x984ce6b1, 0x890ffa53, 0xb9ddc236, 0xe8ab8a99, 0xd879b2fc, 0x4a471bc7, 0x7a9523a2, 0x2be36b0d, 0x1b315368, 0x096552c9, 0x39b76aac, 0x68c12203, 0x58131a66, 0xca2db35d, 0xfaff8b38, 0xab89c397, 0x9b5bfbf2, 0x8a18e710, 0xbacadf75, 0xebbc97da, 0xdb6eafbf, 0x49500684, 0x79823ee1, 0x28f4764e, 0x18264e2b, 0x18b8ea18, 0x286ad27d, 0x791c9ad2, 0x49cea2b7, 0xdbf00b8c, 0xeb2233e9, 0xba547b46, 0x8a864323, 0x9bc55fc1, 0xab1767a4, 0xfa612f0b, 0xcab3176e, 0x588dbe55, 0x685f8630, 0x3929ce9f, 0x09fbf6fa, 0x1baff75b, 0x2b7dcf3e, 0x7a0b8791, 0x4ad9bff4, 0xd8e716cf, 0xe8352eaa, 0xb9436605, 0x89915e60, 0x98d24282, 0xa8007ae7, 0xf9763248, 0xc9a40a2d, 0x5b9aa316, 0x6b489b73, 0x3a3ed3dc, 0x0aecebb9, 0x1e96d09e, 0x2e44e8fb, 0x7f32a054, 0x4fe09831, 0xddde310a, 0xed0c096f, 0xbc7a41c0, 0x8ca879a5, 0x9deb6547, 0xad395d22, 0xfc4f158d, 0xcc9d2de8, 0x5ea384d3, 0x6e71bcb6, 0x3f07f419, 0x0fd5cc7c, 0x1d81cddd, 0x2d53f5b8, 0x7c25bd17, 0x4cf78572, 0xdec92c49, 0xee1b142c, 0xbf6d5c83, 0x8fbf64e6, 0x9efc7804, 0xae2e4061, 0xff5808ce, 0xcf8a30ab, 0x5db49990, 0x6d66a1f5, 0x3c10e95a, 0x0cc2d13f, 0x14e49f14, 0x2436a771, 0x7540efde, 0x4592d7bb, 0xd7ac7e80, 0xe77e46e5, 0xb6080e4a, 0x86da362f, 0x97992acd, 0xa74b12a8, 0xf63d5a07, 0xc6ef6262, 0x54d1cb59, 0x6403f33c, 0x3575bb93, 0x05a783f6, 0x17f38257, 0x2721ba32, 0x7657f29d, 0x4685caf8, 0xd4bb63c3, 0xe4695ba6, 0xb51f1309, 0x85cd2b6c, 0x948e378e, 0xa45c0feb, 0xf52a4744, 0xc5f87f21, 0x57c6d61a, 0x6714ee7f, 0x3662a6d0, 0x06b09eb5, 0x12caa592, 0x22189df7, 0x736ed558, 0x43bced3d, 0xd1824406, 0xe1507c63, 0xb02634cc, 0x80f40ca9, 0x91b7104b, 0xa165282e, 0xf0136081, 0xc0c158e4, 0x52fff1df, 0x622dc9ba, 0x335b8115, 0x0389b970, 0x11ddb8d1, 0x210f80b4, 0x7079c81b, 0x40abf07e, 0xd2955945, 0xe2476120, 0xb331298f, 0x83e311ea, 0x92a00d08, 0xa272356d, 0xf3047dc2, 0xc3d645a7, 0x51e8ec9c, 0x613ad4f9, 0x304c9c56, 0x009ea433}; const uint32_t kStrideExtensionTable1[256] = { 0x00000000, 0x54075546, 0xa80eaa8c, 0xfc09ffca, 0x55f123e9, 0x01f676af, 0xfdff8965, 0xa9f8dc23, 0xabe247d2, 0xffe51294, 0x03eced5e, 0x57ebb818, 0xfe13643b, 0xaa14317d, 0x561dceb7, 0x021a9bf1, 0x5228f955, 0x062fac13, 0xfa2653d9, 0xae21069f, 0x07d9dabc, 0x53de8ffa, 0xafd77030, 0xfbd02576, 0xf9cabe87, 0xadcdebc1, 0x51c4140b, 0x05c3414d, 0xac3b9d6e, 0xf83cc828, 0x043537e2, 0x503262a4, 0xa451f2aa, 0xf056a7ec, 0x0c5f5826, 0x58580d60, 0xf1a0d143, 0xa5a78405, 0x59ae7bcf, 0x0da92e89, 0x0fb3b578, 0x5bb4e03e, 0xa7bd1ff4, 0xf3ba4ab2, 0x5a429691, 0x0e45c3d7, 0xf24c3c1d, 0xa64b695b, 0xf6790bff, 0xa27e5eb9, 0x5e77a173, 0x0a70f435, 0xa3882816, 0xf78f7d50, 0x0b86829a, 0x5f81d7dc, 0x5d9b4c2d, 0x099c196b, 0xf595e6a1, 0xa192b3e7, 0x086a6fc4, 0x5c6d3a82, 0xa064c548, 0xf463900e, 0x4d4f93a5, 0x1948c6e3, 0xe5413929, 0xb1466c6f, 0x18beb04c, 0x4cb9e50a, 0xb0b01ac0, 0xe4b74f86, 0xe6add477, 0xb2aa8131, 0x4ea37efb, 0x1aa42bbd, 0xb35cf79e, 0xe75ba2d8, 0x1b525d12, 0x4f550854, 0x1f676af0, 0x4b603fb6, 0xb769c07c, 0xe36e953a, 0x4a964919, 0x1e911c5f, 0xe298e395, 0xb69fb6d3, 0xb4852d22, 0xe0827864, 0x1c8b87ae, 0x488cd2e8, 0xe1740ecb, 0xb5735b8d, 0x497aa447, 0x1d7df101, 0xe91e610f, 0xbd193449, 0x4110cb83, 0x15179ec5, 0xbcef42e6, 0xe8e817a0, 0x14e1e86a, 0x40e6bd2c, 0x42fc26dd, 0x16fb739b, 0xeaf28c51, 0xbef5d917, 0x170d0534, 0x430a5072, 0xbf03afb8, 0xeb04fafe, 0xbb36985a, 0xef31cd1c, 0x133832d6, 0x473f6790, 0xeec7bbb3, 0xbac0eef5, 0x46c9113f, 0x12ce4479, 0x10d4df88, 0x44d38ace, 0xb8da7504, 0xecdd2042, 0x4525fc61, 0x1122a927, 0xed2b56ed, 0xb92c03ab, 0x9a9f274a, 0xce98720c, 0x32918dc6, 0x6696d880, 0xcf6e04a3, 0x9b6951e5, 0x6760ae2f, 0x3367fb69, 0x317d6098, 0x657a35de, 0x9973ca14, 0xcd749f52, 0x648c4371, 0x308b1637, 0xcc82e9fd, 0x9885bcbb, 0xc8b7de1f, 0x9cb08b59, 0x60b97493, 0x34be21d5, 0x9d46fdf6, 0xc941a8b0, 0x3548577a, 0x614f023c, 0x635599cd, 0x3752cc8b, 0xcb5b3341, 0x9f5c6607, 0x36a4ba24, 0x62a3ef62, 0x9eaa10a8, 0xcaad45ee, 0x3eced5e0, 0x6ac980a6, 0x96c07f6c, 0xc2c72a2a, 0x6b3ff609, 0x3f38a34f, 0xc3315c85, 0x973609c3, 0x952c9232, 0xc12bc774, 0x3d2238be, 0x69256df8, 0xc0ddb1db, 0x94dae49d, 0x68d31b57, 0x3cd44e11, 0x6ce62cb5, 0x38e179f3, 0xc4e88639, 0x90efd37f, 0x39170f5c, 0x6d105a1a, 0x9119a5d0, 0xc51ef096, 0xc7046b67, 0x93033e21, 0x6f0ac1eb, 0x3b0d94ad, 0x92f5488e, 0xc6f21dc8, 0x3afbe202, 0x6efcb744, 0xd7d0b4ef, 0x83d7e1a9, 0x7fde1e63, 0x2bd94b25, 0x82219706, 0xd626c240, 0x2a2f3d8a, 0x7e2868cc, 0x7c32f33d, 0x2835a67b, 0xd43c59b1, 0x803b0cf7, 0x29c3d0d4, 0x7dc48592, 0x81cd7a58, 0xd5ca2f1e, 0x85f84dba, 0xd1ff18fc, 0x2df6e736, 0x79f1b270, 0xd0096e53, 0x840e3b15, 0x7807c4df, 0x2c009199, 0x2e1a0a68, 0x7a1d5f2e, 0x8614a0e4, 0xd213f5a2, 0x7beb2981, 0x2fec7cc7, 0xd3e5830d, 0x87e2d64b, 0x73814645, 0x27861303, 0xdb8fecc9, 0x8f88b98f, 0x267065ac, 0x727730ea, 0x8e7ecf20, 0xda799a66, 0xd8630197, 0x8c6454d1, 0x706dab1b, 0x246afe5d, 0x8d92227e, 0xd9957738, 0x259c88f2, 0x719bddb4, 0x21a9bf10, 0x75aeea56, 0x89a7159c, 0xdda040da, 0x74589cf9, 0x205fc9bf, 0xdc563675, 0x88516333, 0x8a4bf8c2, 0xde4cad84, 0x2245524e, 0x76420708, 0xdfbadb2b, 0x8bbd8e6d, 0x77b471a7, 0x23b324e1}; const uint32_t kStrideExtensionTable2[256] = { 0x00000000, 0x678efd01, 0xcf1dfa02, 0xa8930703, 0x9bd782f5, 0xfc597ff4, 0x54ca78f7, 0x334485f6, 0x3243731b, 0x55cd8e1a, 0xfd5e8919, 0x9ad07418, 0xa994f1ee, 0xce1a0cef, 0x66890bec, 0x0107f6ed, 0x6486e636, 0x03081b37, 0xab9b1c34, 0xcc15e135, 0xff5164c3, 0x98df99c2, 0x304c9ec1, 0x57c263c0, 0x56c5952d, 0x314b682c, 0x99d86f2f, 0xfe56922e, 0xcd1217d8, 0xaa9cead9, 0x020fedda, 0x658110db, 0xc90dcc6c, 0xae83316d, 0x0610366e, 0x619ecb6f, 0x52da4e99, 0x3554b398, 0x9dc7b49b, 0xfa49499a, 0xfb4ebf77, 0x9cc04276, 0x34534575, 0x53ddb874, 0x60993d82, 0x0717c083, 0xaf84c780, 0xc80a3a81, 0xad8b2a5a, 0xca05d75b, 0x6296d058, 0x05182d59, 0x365ca8af, 0x51d255ae, 0xf94152ad, 0x9ecfafac, 0x9fc85941, 0xf846a440, 0x50d5a343, 0x375b5e42, 0x041fdbb4, 0x639126b5, 0xcb0221b6, 0xac8cdcb7, 0x97f7ee29, 0xf0791328, 0x58ea142b, 0x3f64e92a, 0x0c206cdc, 0x6bae91dd, 0xc33d96de, 0xa4b36bdf, 0xa5b49d32, 0xc23a6033, 0x6aa96730, 0x0d279a31, 0x3e631fc7, 0x59ede2c6, 0xf17ee5c5, 0x96f018c4, 0xf371081f, 0x94fff51e, 0x3c6cf21d, 0x5be20f1c, 0x68a68aea, 0x0f2877eb, 0xa7bb70e8, 0xc0358de9, 0xc1327b04, 0xa6bc8605, 0x0e2f8106, 0x69a17c07, 0x5ae5f9f1, 0x3d6b04f0, 0x95f803f3, 0xf276fef2, 0x5efa2245, 0x3974df44, 0x91e7d847, 0xf6692546, 0xc52da0b0, 0xa2a35db1, 0x0a305ab2, 0x6dbea7b3, 0x6cb9515e, 0x0b37ac5f, 0xa3a4ab5c, 0xc42a565d, 0xf76ed3ab, 0x90e02eaa, 0x387329a9, 0x5ffdd4a8, 0x3a7cc473, 0x5df23972, 0xf5613e71, 0x92efc370, 0xa1ab4686, 0xc625bb87, 0x6eb6bc84, 0x09384185, 0x083fb768, 0x6fb14a69, 0xc7224d6a, 0xa0acb06b, 0x93e8359d, 0xf466c89c, 0x5cf5cf9f, 0x3b7b329e, 0x2a03aaa3, 0x4d8d57a2, 0xe51e50a1, 0x8290ada0, 0xb1d42856, 0xd65ad557, 0x7ec9d254, 0x19472f55, 0x1840d9b8, 0x7fce24b9, 0xd75d23ba, 0xb0d3debb, 0x83975b4d, 0xe419a64c, 0x4c8aa14f, 0x2b045c4e, 0x4e854c95, 0x290bb194, 0x8198b697, 0xe6164b96, 0xd552ce60, 0xb2dc3361, 0x1a4f3462, 0x7dc1c963, 0x7cc63f8e, 0x1b48c28f, 0xb3dbc58c, 0xd455388d, 0xe711bd7b, 0x809f407a, 0x280c4779, 0x4f82ba78, 0xe30e66cf, 0x84809bce, 0x2c139ccd, 0x4b9d61cc, 0x78d9e43a, 0x1f57193b, 0xb7c41e38, 0xd04ae339, 0xd14d15d4, 0xb6c3e8d5, 0x1e50efd6, 0x79de12d7, 0x4a9a9721, 0x2d146a20, 0x85876d23, 0xe2099022, 0x878880f9, 0xe0067df8, 0x48957afb, 0x2f1b87fa, 0x1c5f020c, 0x7bd1ff0d, 0xd342f80e, 0xb4cc050f, 0xb5cbf3e2, 0xd2450ee3, 0x7ad609e0, 0x1d58f4e1, 0x2e1c7117, 0x49928c16, 0xe1018b15, 0x868f7614, 0xbdf4448a, 0xda7ab98b, 0x72e9be88, 0x15674389, 0x2623c67f, 0x41ad3b7e, 0xe93e3c7d, 0x8eb0c17c, 0x8fb73791, 0xe839ca90, 0x40aacd93, 0x27243092, 0x1460b564, 0x73ee4865, 0xdb7d4f66, 0xbcf3b267, 0xd972a2bc, 0xbefc5fbd, 0x166f58be, 0x71e1a5bf, 0x42a52049, 0x252bdd48, 0x8db8da4b, 0xea36274a, 0xeb31d1a7, 0x8cbf2ca6, 0x242c2ba5, 0x43a2d6a4, 0x70e65352, 0x1768ae53, 0xbffba950, 0xd8755451, 0x74f988e6, 0x137775e7, 0xbbe472e4, 0xdc6a8fe5, 0xef2e0a13, 0x88a0f712, 0x2033f011, 0x47bd0d10, 0x46bafbfd, 0x213406fc, 0x89a701ff, 0xee29fcfe, 0xdd6d7908, 0xbae38409, 0x1270830a, 0x75fe7e0b, 0x107f6ed0, 0x77f193d1, 0xdf6294d2, 0xb8ec69d3, 0x8ba8ec25, 0xec261124, 0x44b51627, 0x233beb26, 0x223c1dcb, 0x45b2e0ca, 0xed21e7c9, 0x8aaf1ac8, 0xb9eb9f3e, 0xde65623f, 0x76f6653c, 0x1178983d}; const uint32_t kStrideExtensionTable3[256] = { 0x00000000, 0xf20c0dfe, 0xe1f46d0d, 0x13f860f3, 0xc604aceb, 0x3408a115, 0x27f0c1e6, 0xd5fccc18, 0x89e52f27, 0x7be922d9, 0x6811422a, 0x9a1d4fd4, 0x4fe183cc, 0xbded8e32, 0xae15eec1, 0x5c19e33f, 0x162628bf, 0xe42a2541, 0xf7d245b2, 0x05de484c, 0xd0228454, 0x222e89aa, 0x31d6e959, 0xc3dae4a7, 0x9fc30798, 0x6dcf0a66, 0x7e376a95, 0x8c3b676b, 0x59c7ab73, 0xabcba68d, 0xb833c67e, 0x4a3fcb80, 0x2c4c517e, 0xde405c80, 0xcdb83c73, 0x3fb4318d, 0xea48fd95, 0x1844f06b, 0x0bbc9098, 0xf9b09d66, 0xa5a97e59, 0x57a573a7, 0x445d1354, 0xb6511eaa, 0x63add2b2, 0x91a1df4c, 0x8259bfbf, 0x7055b241, 0x3a6a79c1, 0xc866743f, 0xdb9e14cc, 0x29921932, 0xfc6ed52a, 0x0e62d8d4, 0x1d9ab827, 0xef96b5d9, 0xb38f56e6, 0x41835b18, 0x527b3beb, 0xa0773615, 0x758bfa0d, 0x8787f7f3, 0x947f9700, 0x66739afe, 0x5898a2fc, 0xaa94af02, 0xb96ccff1, 0x4b60c20f, 0x9e9c0e17, 0x6c9003e9, 0x7f68631a, 0x8d646ee4, 0xd17d8ddb, 0x23718025, 0x3089e0d6, 0xc285ed28, 0x17792130, 0xe5752cce, 0xf68d4c3d, 0x048141c3, 0x4ebe8a43, 0xbcb287bd, 0xaf4ae74e, 0x5d46eab0, 0x88ba26a8, 0x7ab62b56, 0x694e4ba5, 0x9b42465b, 0xc75ba564, 0x3557a89a, 0x26afc869, 0xd4a3c597, 0x015f098f, 0xf3530471, 0xe0ab6482, 0x12a7697c, 0x74d4f382, 0x86d8fe7c, 0x95209e8f, 0x672c9371, 0xb2d05f69, 0x40dc5297, 0x53243264, 0xa1283f9a, 0xfd31dca5, 0x0f3dd15b, 0x1cc5b1a8, 0xeec9bc56, 0x3b35704e, 0xc9397db0, 0xdac11d43, 0x28cd10bd, 0x62f2db3d, 0x90fed6c3, 0x8306b630, 0x710abbce, 0xa4f677d6, 0x56fa7a28, 0x45021adb, 0xb70e1725, 0xeb17f41a, 0x191bf9e4, 0x0ae39917, 0xf8ef94e9, 0x2d1358f1, 0xdf1f550f, 0xcce735fc, 0x3eeb3802, 0xb13145f8, 0x433d4806, 0x50c528f5, 0xa2c9250b, 0x7735e913, 0x8539e4ed, 0x96c1841e, 0x64cd89e0, 0x38d46adf, 0xcad86721, 0xd92007d2, 0x2b2c0a2c, 0xfed0c634, 0x0cdccbca, 0x1f24ab39, 0xed28a6c7, 0xa7176d47, 0x551b60b9, 0x46e3004a, 0xb4ef0db4, 0x6113c1ac, 0x931fcc52, 0x80e7aca1, 0x72eba15f, 0x2ef24260, 0xdcfe4f9e, 0xcf062f6d, 0x3d0a2293, 0xe8f6ee8b, 0x1afae375, 0x09028386, 0xfb0e8e78, 0x9d7d1486, 0x6f711978, 0x7c89798b, 0x8e857475, 0x5b79b86d, 0xa975b593, 0xba8dd560, 0x4881d89e, 0x14983ba1, 0xe694365f, 0xf56c56ac, 0x07605b52, 0xd29c974a, 0x20909ab4, 0x3368fa47, 0xc164f7b9, 0x8b5b3c39, 0x795731c7, 0x6aaf5134, 0x98a35cca, 0x4d5f90d2, 0xbf539d2c, 0xacabfddf, 0x5ea7f021, 0x02be131e, 0xf0b21ee0, 0xe34a7e13, 0x114673ed, 0xc4babff5, 0x36b6b20b, 0x254ed2f8, 0xd742df06, 0xe9a9e704, 0x1ba5eafa, 0x085d8a09, 0xfa5187f7, 0x2fad4bef, 0xdda14611, 0xce5926e2, 0x3c552b1c, 0x604cc823, 0x9240c5dd, 0x81b8a52e, 0x73b4a8d0, 0xa64864c8, 0x54446936, 0x47bc09c5, 0xb5b0043b, 0xff8fcfbb, 0x0d83c245, 0x1e7ba2b6, 0xec77af48, 0x398b6350, 0xcb876eae, 0xd87f0e5d, 0x2a7303a3, 0x766ae09c, 0x8466ed62, 0x979e8d91, 0x6592806f, 0xb06e4c77, 0x42624189, 0x519a217a, 0xa3962c84, 0xc5e5b67a, 0x37e9bb84, 0x2411db77, 0xd61dd689, 0x03e11a91, 0xf1ed176f, 0xe215779c, 0x10197a62, 0x4c00995d, 0xbe0c94a3, 0xadf4f450, 0x5ff8f9ae, 0x8a0435b6, 0x78083848, 0x6bf058bb, 0x99fc5545, 0xd3c39ec5, 0x21cf933b, 0x3237f3c8, 0xc03bfe36, 0x15c7322e, 0xe7cb3fd0, 0xf4335f23, 0x063f52dd, 0x5a26b1e2, 0xa82abc1c, 0xbbd2dcef, 0x49ded111, 0x9c221d09, 0x6e2e10f7, 0x7dd67004, 0x8fda7dfa}; // CRCs are pre- and post- conditioned by xoring with all ones. static constexpr const uint32_t kCRC32Xor = static_cast<uint32_t>(0xffffffffU); // Reads a little-endian 32-bit integer from a 32-bit-aligned buffer. inline uint32_t ReadUint32LE(const uint8_t* buffer) { return DecodeFixed32(reinterpret_cast<const char*>(buffer)); } // Returns the smallest address >= the given address that is aligned to N bytes. // // N must be a power of two. template <int N> constexpr inline const uint8_t* RoundUp(const uint8_t* pointer) { return reinterpret_cast<uint8_t*>( (reinterpret_cast<uintptr_t>(pointer) + (N - 1)) & ~static_cast<uintptr_t>(N - 1)); } } // namespace // Determine if the CPU running this program can accelerate the CRC32C // calculation. static bool CanAccelerateCRC32C() { // port::AcceleretedCRC32C returns zero when unable to accelerate. static const char kTestCRCBuffer[] = "TestCRCBuffer"; static const char kBufSize = sizeof(kTestCRCBuffer) - 1; static const uint32_t kTestCRCValue = 0xdcbc59fa; return port::AcceleratedCRC32C(0, kTestCRCBuffer, kBufSize) == kTestCRCValue; } uint32_t Extend(uint32_t crc, const char* data, size_t n) { static bool accelerate = CanAccelerateCRC32C(); if (accelerate) { return port::AcceleratedCRC32C(crc, data, n); } const uint8_t* p = reinterpret_cast<const uint8_t*>(data); const uint8_t* e = p + n; uint32_t l = crc ^ kCRC32Xor; // Process one byte at a time. #define STEP1 \ do { \ int c = (l & 0xff) ^ *p++; \ l = kByteExtensionTable[c] ^ (l >> 8); \ } while (0) // Process one of the 4 strides of 4-byte data. #define STEP4(s) \ do { \ crc##s = ReadUint32LE(p + s * 4) ^ kStrideExtensionTable3[crc##s & 0xff] ^ \ kStrideExtensionTable2[(crc##s >> 8) & 0xff] ^ \ kStrideExtensionTable1[(crc##s >> 16) & 0xff] ^ \ kStrideExtensionTable0[crc##s >> 24]; \ } while (0) // Process a 16-byte swath of 4 strides, each of which has 4 bytes of data. #define STEP16 \ do { \ STEP4(0); \ STEP4(1); \ STEP4(2); \ STEP4(3); \ p += 16; \ } while (0) // Process 4 bytes that were already loaded into a word. #define STEP4W(w) \ do { \ w ^= l; \ for (size_t i = 0; i < 4; ++i) { \ w = (w >> 8) ^ kByteExtensionTable[w & 0xff]; \ } \ l = w; \ } while (0) // Point x at first 4-byte aligned byte in the buffer. This might be past the // end of the buffer. const uint8_t* x = RoundUp<4>(p); if (x <= e) { // Process bytes p is 4-byte aligned. while (p != x) { STEP1; } } if ((e - p) >= 16) { // Load a 16-byte swath into the stride partial results. uint32_t crc0 = ReadUint32LE(p + 0 * 4) ^ l; uint32_t crc1 = ReadUint32LE(p + 1 * 4); uint32_t crc2 = ReadUint32LE(p + 2 * 4); uint32_t crc3 = ReadUint32LE(p + 3 * 4); p += 16; // It is possible to get better speeds (at least on x86) by interleaving // prefetching 256 bytes ahead with processing 64 bytes at a time. See the // portable implementation in https://github.com/google/crc32c/. // Process one 16-byte swath at a time. while ((e - p) >= 16) { STEP16; } // Advance one word at a time as far as possible. while ((e - p) >= 4) { STEP4(0); uint32_t tmp = crc0; crc0 = crc1; crc1 = crc2; crc2 = crc3; crc3 = tmp; p += 4; } // Combine the 4 partial stride results. l = 0; STEP4W(crc0); STEP4W(crc1); STEP4W(crc2); STEP4W(crc3); } // Process the last few bytes. while (p != e) { STEP1; } #undef STEP4W #undef STEP16 #undef STEP4 #undef STEP1 return l ^ kCRC32Xor; } } // namespace crc32c } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/mutexlock.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_UTIL_MUTEXLOCK_H_ #define STORAGE_LEVELDB_UTIL_MUTEXLOCK_H_ #include "port/port.h" #include "port/thread_annotations.h" namespace leveldb { // Helper class that locks a mutex on construction and unlocks the mutex when // the destructor of the MutexLock object is invoked. // // Typical usage: // // void MyClass::MyMethod() { // MutexLock l(&mu_); // mu_ is an instance variable // ... some complex code, possibly with multiple return paths ... // } class SCOPED_LOCKABLE MutexLock { public: explicit MutexLock(port::Mutex* mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { this->mu_->Lock(); } ~MutexLock() UNLOCK_FUNCTION() { this->mu_->Unlock(); } MutexLock(const MutexLock&) = delete; MutexLock& operator=(const MutexLock&) = delete; private: port::Mutex* const mu_; }; } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_MUTEXLOCK_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/coding_test.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include <vector> #include "util/coding.h" #include "util/testharness.h" namespace leveldb { class Coding {}; TEST(Coding, Fixed32) { std::string s; for (uint32_t v = 0; v < 100000; v++) { PutFixed32(&s, v); } const char* p = s.data(); for (uint32_t v = 0; v < 100000; v++) { uint32_t actual = DecodeFixed32(p); ASSERT_EQ(v, actual); p += sizeof(uint32_t); } } TEST(Coding, Fixed64) { std::string s; for (int power = 0; power <= 63; power++) { uint64_t v = static_cast<uint64_t>(1) << power; PutFixed64(&s, v - 1); PutFixed64(&s, v + 0); PutFixed64(&s, v + 1); } const char* p = s.data(); for (int power = 0; power <= 63; power++) { uint64_t v = static_cast<uint64_t>(1) << power; uint64_t actual; actual = DecodeFixed64(p); ASSERT_EQ(v - 1, actual); p += sizeof(uint64_t); actual = DecodeFixed64(p); ASSERT_EQ(v + 0, actual); p += sizeof(uint64_t); actual = DecodeFixed64(p); ASSERT_EQ(v + 1, actual); p += sizeof(uint64_t); } } // Test that encoding routines generate little-endian encodings TEST(Coding, EncodingOutput) { std::string dst; PutFixed32(&dst, 0x04030201); ASSERT_EQ(4, dst.size()); ASSERT_EQ(0x01, static_cast<int>(dst[0])); ASSERT_EQ(0x02, static_cast<int>(dst[1])); ASSERT_EQ(0x03, static_cast<int>(dst[2])); ASSERT_EQ(0x04, static_cast<int>(dst[3])); dst.clear(); PutFixed64(&dst, 0x0807060504030201ull); ASSERT_EQ(8, dst.size()); ASSERT_EQ(0x01, static_cast<int>(dst[0])); ASSERT_EQ(0x02, static_cast<int>(dst[1])); ASSERT_EQ(0x03, static_cast<int>(dst[2])); ASSERT_EQ(0x04, static_cast<int>(dst[3])); ASSERT_EQ(0x05, static_cast<int>(dst[4])); ASSERT_EQ(0x06, static_cast<int>(dst[5])); ASSERT_EQ(0x07, static_cast<int>(dst[6])); ASSERT_EQ(0x08, static_cast<int>(dst[7])); } TEST(Coding, Varint32) { std::string s; for (uint32_t i = 0; i < (32 * 32); i++) { uint32_t v = (i / 32) << (i % 32); PutVarint32(&s, v); } const char* p = s.data(); const char* limit = p + s.size(); for (uint32_t i = 0; i < (32 * 32); i++) { uint32_t expected = (i / 32) << (i % 32); uint32_t actual; const char* start = p; p = GetVarint32Ptr(p, limit, &actual); ASSERT_TRUE(p != nullptr); ASSERT_EQ(expected, actual); ASSERT_EQ(VarintLength(actual), p - start); } ASSERT_EQ(p, s.data() + s.size()); } TEST(Coding, Varint64) { // Construct the list of values to check std::vector<uint64_t> values; // Some special values values.push_back(0); values.push_back(100); values.push_back(~static_cast<uint64_t>(0)); values.push_back(~static_cast<uint64_t>(0) - 1); for (uint32_t k = 0; k < 64; k++) { // Test values near powers of two const uint64_t power = 1ull << k; values.push_back(power); values.push_back(power - 1); values.push_back(power + 1); } std::string s; for (size_t i = 0; i < values.size(); i++) { PutVarint64(&s, values[i]); } const char* p = s.data(); const char* limit = p + s.size(); for (size_t i = 0; i < values.size(); i++) { ASSERT_TRUE(p < limit); uint64_t actual; const char* start = p; p = GetVarint64Ptr(p, limit, &actual); ASSERT_TRUE(p != nullptr); ASSERT_EQ(values[i], actual); ASSERT_EQ(VarintLength(actual), p - start); } ASSERT_EQ(p, limit); } TEST(Coding, Varint32Overflow) { uint32_t result; std::string input("\x81\x82\x83\x84\x85\x11"); ASSERT_TRUE(GetVarint32Ptr(input.data(), input.data() + input.size(), &result) == nullptr); } TEST(Coding, Varint32Truncation) { uint32_t large_value = (1u << 31) + 100; std::string s; PutVarint32(&s, large_value); uint32_t result; for (size_t len = 0; len < s.size() - 1; len++) { ASSERT_TRUE(GetVarint32Ptr(s.data(), s.data() + len, &result) == nullptr); } ASSERT_TRUE(GetVarint32Ptr(s.data(), s.data() + s.size(), &result) != nullptr); ASSERT_EQ(large_value, result); } TEST(Coding, Varint64Overflow) { uint64_t result; std::string input("\x81\x82\x83\x84\x85\x81\x82\x83\x84\x85\x11"); ASSERT_TRUE(GetVarint64Ptr(input.data(), input.data() + input.size(), &result) == nullptr); } TEST(Coding, Varint64Truncation) { uint64_t large_value = (1ull << 63) + 100ull; std::string s; PutVarint64(&s, large_value); uint64_t result; for (size_t len = 0; len < s.size() - 1; len++) { ASSERT_TRUE(GetVarint64Ptr(s.data(), s.data() + len, &result) == nullptr); } ASSERT_TRUE(GetVarint64Ptr(s.data(), s.data() + s.size(), &result) != nullptr); ASSERT_EQ(large_value, result); } TEST(Coding, Strings) { std::string s; PutLengthPrefixedSlice(&s, Slice("")); PutLengthPrefixedSlice(&s, Slice("foo")); PutLengthPrefixedSlice(&s, Slice("bar")); PutLengthPrefixedSlice(&s, Slice(std::string(200, 'x'))); Slice input(s); Slice v; ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v)); ASSERT_EQ("", v.ToString()); ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v)); ASSERT_EQ("foo", v.ToString()); ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v)); ASSERT_EQ("bar", v.ToString()); ASSERT_TRUE(GetLengthPrefixedSlice(&input, &v)); ASSERT_EQ(std::string(200, 'x'), v.ToString()); ASSERT_EQ("", input.ToString()); } } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/cache.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include <assert.h> #include <stdio.h> #include <stdlib.h> #include "leveldb/cache.h" #include "port/port.h" #include "port/thread_annotations.h" #include "util/hash.h" #include "util/mutexlock.h" namespace leveldb { Cache::~Cache() {} namespace { // LRU cache implementation // // Cache entries have an "in_cache" boolean indicating whether the cache has a // reference on the entry. The only ways that this can become false without the // entry being passed to its "deleter" are via Erase(), via Insert() when // an element with a duplicate key is inserted, or on destruction of the cache. // // The cache keeps two linked lists of items in the cache. All items in the // cache are in one list or the other, and never both. Items still referenced // by clients but erased from the cache are in neither list. The lists are: // - in-use: contains the items currently referenced by clients, in no // particular order. (This list is used for invariant checking. If we // removed the check, elements that would otherwise be on this list could be // left as disconnected singleton lists.) // - LRU: contains the items not currently referenced by clients, in LRU order // Elements are moved between these lists by the Ref() and Unref() methods, // when they detect an element in the cache acquiring or losing its only // external reference. // An entry is a variable length heap-allocated structure. Entries // are kept in a circular doubly linked list ordered by access time. struct LRUHandle { void* value; void (*deleter)(const Slice&, void* value); LRUHandle* next_hash; LRUHandle* next; LRUHandle* prev; size_t charge; // TODO(opt): Only allow uint32_t? size_t key_length; bool in_cache; // Whether entry is in the cache. uint32_t refs; // References, including cache reference, if present. uint32_t hash; // Hash of key(); used for fast sharding and comparisons char key_data[1]; // Beginning of key Slice key() const { // next_ is only equal to this if the LRU handle is the list head of an // empty list. List heads never have meaningful keys. assert(next != this); return Slice(key_data, key_length); } }; // We provide our own simple hash table since it removes a whole bunch // of porting hacks and is also faster than some of the built-in hash // table implementations in some of the compiler/runtime combinations // we have tested. E.g., readrandom speeds up by ~5% over the g++ // 4.4.3's builtin hashtable. class HandleTable { public: HandleTable() : length_(0), elems_(0), list_(nullptr) { Resize(); } ~HandleTable() { delete[] list_; } LRUHandle* Lookup(const Slice& key, uint32_t hash) { return *FindPointer(key, hash); } LRUHandle* Insert(LRUHandle* h) { LRUHandle** ptr = FindPointer(h->key(), h->hash); LRUHandle* old = *ptr; h->next_hash = (old == nullptr ? nullptr : old->next_hash); *ptr = h; if (old == nullptr) { ++elems_; if (elems_ > length_) { // Since each cache entry is fairly large, we aim for a small // average linked list length (<= 1). Resize(); } } return old; } LRUHandle* Remove(const Slice& key, uint32_t hash) { LRUHandle** ptr = FindPointer(key, hash); LRUHandle* result = *ptr; if (result != nullptr) { *ptr = result->next_hash; --elems_; } return result; } private: // The table consists of an array of buckets where each bucket is // a linked list of cache entries that hash into the bucket. uint32_t length_; uint32_t elems_; LRUHandle** list_; // Return a pointer to slot that points to a cache entry that // matches key/hash. If there is no such cache entry, return a // pointer to the trailing slot in the corresponding linked list. LRUHandle** FindPointer(const Slice& key, uint32_t hash) { LRUHandle** ptr = &list_[hash & (length_ - 1)]; while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) { ptr = &(*ptr)->next_hash; } return ptr; } void Resize() { uint32_t new_length = 4; while (new_length < elems_) { new_length *= 2; } LRUHandle** new_list = new LRUHandle*[new_length]; memset(new_list, 0, sizeof(new_list[0]) * new_length); uint32_t count = 0; for (uint32_t i = 0; i < length_; i++) { LRUHandle* h = list_[i]; while (h != nullptr) { LRUHandle* next = h->next_hash; uint32_t hash = h->hash; LRUHandle** ptr = &new_list[hash & (new_length - 1)]; h->next_hash = *ptr; *ptr = h; h = next; count++; } } assert(elems_ == count); delete[] list_; list_ = new_list; length_ = new_length; } }; // A single shard of sharded cache. class LRUCache { public: LRUCache(); ~LRUCache(); // Separate from constructor so caller can easily make an array of LRUCache void SetCapacity(size_t capacity) { capacity_ = capacity; } // Like Cache methods, but with an extra "hash" parameter. Cache::Handle* Insert(const Slice& key, uint32_t hash, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)); Cache::Handle* Lookup(const Slice& key, uint32_t hash); void Release(Cache::Handle* handle); void Erase(const Slice& key, uint32_t hash); void Prune(); size_t TotalCharge() const { MutexLock l(&mutex_); return usage_; } private: void LRU_Remove(LRUHandle* e); void LRU_Append(LRUHandle* list, LRUHandle* e); void Ref(LRUHandle* e); void Unref(LRUHandle* e); bool FinishErase(LRUHandle* e) EXCLUSIVE_LOCKS_REQUIRED(mutex_); // Initialized before use. size_t capacity_; // mutex_ protects the following state. mutable port::Mutex mutex_; size_t usage_ GUARDED_BY(mutex_); // Dummy head of LRU list. // lru.prev is newest entry, lru.next is oldest entry. // Entries have refs==1 and in_cache==true. LRUHandle lru_ GUARDED_BY(mutex_); // Dummy head of in-use list. // Entries are in use by clients, and have refs >= 2 and in_cache==true. LRUHandle in_use_ GUARDED_BY(mutex_); HandleTable table_ GUARDED_BY(mutex_); }; LRUCache::LRUCache() : capacity_(0), usage_(0) { // Make empty circular linked lists. lru_.next = &lru_; lru_.prev = &lru_; in_use_.next = &in_use_; in_use_.prev = &in_use_; } LRUCache::~LRUCache() { assert(in_use_.next == &in_use_); // Error if caller has an unreleased handle for (LRUHandle* e = lru_.next; e != &lru_;) { LRUHandle* next = e->next; assert(e->in_cache); e->in_cache = false; assert(e->refs == 1); // Invariant of lru_ list. Unref(e); e = next; } } void LRUCache::Ref(LRUHandle* e) { if (e->refs == 1 && e->in_cache) { // If on lru_ list, move to in_use_ list. LRU_Remove(e); LRU_Append(&in_use_, e); } e->refs++; } void LRUCache::Unref(LRUHandle* e) { assert(e->refs > 0); e->refs--; if (e->refs == 0) { // Deallocate. assert(!e->in_cache); (*e->deleter)(e->key(), e->value); free(e); } else if (e->in_cache && e->refs == 1) { // No longer in use; move to lru_ list. LRU_Remove(e); LRU_Append(&lru_, e); } } void LRUCache::LRU_Remove(LRUHandle* e) { e->next->prev = e->prev; e->prev->next = e->next; } void LRUCache::LRU_Append(LRUHandle* list, LRUHandle* e) { // Make "e" newest entry by inserting just before *list e->next = list; e->prev = list->prev; e->prev->next = e; e->next->prev = e; } Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) { MutexLock l(&mutex_); LRUHandle* e = table_.Lookup(key, hash); if (e != nullptr) { Ref(e); } return reinterpret_cast<Cache::Handle*>(e); } void LRUCache::Release(Cache::Handle* handle) { MutexLock l(&mutex_); Unref(reinterpret_cast<LRUHandle*>(handle)); } Cache::Handle* LRUCache::Insert(const Slice& key, uint32_t hash, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)) { MutexLock l(&mutex_); LRUHandle* e = reinterpret_cast<LRUHandle*>(malloc(sizeof(LRUHandle) - 1 + key.size())); e->value = value; e->deleter = deleter; e->charge = charge; e->key_length = key.size(); e->hash = hash; e->in_cache = false; e->refs = 1; // for the returned handle. memcpy(e->key_data, key.data(), key.size()); if (capacity_ > 0) { e->refs++; // for the cache's reference. e->in_cache = true; LRU_Append(&in_use_, e); usage_ += charge; FinishErase(table_.Insert(e)); } else { // don't cache. (capacity_==0 is supported and turns off caching.) // next is read by key() in an assert, so it must be initialized e->next = nullptr; } while (usage_ > capacity_ && lru_.next != &lru_) { LRUHandle* old = lru_.next; assert(old->refs == 1); bool erased = FinishErase(table_.Remove(old->key(), old->hash)); if (!erased) { // to avoid unused variable when compiled NDEBUG assert(erased); } } return reinterpret_cast<Cache::Handle*>(e); } // If e != nullptr, finish removing *e from the cache; it has already been // removed from the hash table. Return whether e != nullptr. bool LRUCache::FinishErase(LRUHandle* e) { if (e != nullptr) { assert(e->in_cache); LRU_Remove(e); e->in_cache = false; usage_ -= e->charge; Unref(e); } return e != nullptr; } void LRUCache::Erase(const Slice& key, uint32_t hash) { MutexLock l(&mutex_); FinishErase(table_.Remove(key, hash)); } void LRUCache::Prune() { MutexLock l(&mutex_); while (lru_.next != &lru_) { LRUHandle* e = lru_.next; assert(e->refs == 1); bool erased = FinishErase(table_.Remove(e->key(), e->hash)); if (!erased) { // to avoid unused variable when compiled NDEBUG assert(erased); } } } static const int kNumShardBits = 4; static const int kNumShards = 1 << kNumShardBits; class ShardedLRUCache : public Cache { private: LRUCache shard_[kNumShards]; port::Mutex id_mutex_; uint64_t last_id_; static inline uint32_t HashSlice(const Slice& s) { return Hash(s.data(), s.size(), 0); } static uint32_t Shard(uint32_t hash) { return hash >> (32 - kNumShardBits); } public: explicit ShardedLRUCache(size_t capacity) : last_id_(0) { const size_t per_shard = (capacity + (kNumShards - 1)) / kNumShards; for (int s = 0; s < kNumShards; s++) { shard_[s].SetCapacity(per_shard); } } ~ShardedLRUCache() override {} Handle* Insert(const Slice& key, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)) override { const uint32_t hash = HashSlice(key); return shard_[Shard(hash)].Insert(key, hash, value, charge, deleter); } Handle* Lookup(const Slice& key) override { const uint32_t hash = HashSlice(key); return shard_[Shard(hash)].Lookup(key, hash); } void Release(Handle* handle) override { LRUHandle* h = reinterpret_cast<LRUHandle*>(handle); shard_[Shard(h->hash)].Release(handle); } void Erase(const Slice& key) override { const uint32_t hash = HashSlice(key); shard_[Shard(hash)].Erase(key, hash); } void* Value(Handle* handle) override { return reinterpret_cast<LRUHandle*>(handle)->value; } uint64_t NewId() override { MutexLock l(&id_mutex_); return ++(last_id_); } void Prune() override { for (int s = 0; s < kNumShards; s++) { shard_[s].Prune(); } } size_t TotalCharge() const override { size_t total = 0; for (int s = 0; s < kNumShards; s++) { total += shard_[s].TotalCharge(); } return total; } }; } // end anonymous namespace Cache* NewLRUCache(size_t capacity) { return new ShardedLRUCache(capacity); } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/testharness.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/testharness.h" #include <stdlib.h> #include <sys/stat.h> #include <sys/types.h> #include <string> #include <vector> #include "leveldb/env.h" namespace leveldb { namespace test { namespace { struct Test { const char* base; const char* name; void (*func)(); }; std::vector<Test>* tests; } // namespace bool RegisterTest(const char* base, const char* name, void (*func)()) { if (tests == nullptr) { tests = new std::vector<Test>; } Test t; t.base = base; t.name = name; t.func = func; tests->push_back(t); return true; } int RunAllTests() { const char* matcher = getenv("LEVELDB_TESTS"); int num = 0; if (tests != nullptr) { for (size_t i = 0; i < tests->size(); i++) { const Test& t = (*tests)[i]; if (matcher != nullptr) { std::string name = t.base; name.push_back('.'); name.append(t.name); if (strstr(name.c_str(), matcher) == nullptr) { continue; } } fprintf(stderr, "==== Test %s.%s\n", t.base, t.name); (*t.func)(); ++num; } } fprintf(stderr, "==== PASSED %d tests\n", num); return 0; } std::string TmpDir() { std::string dir; Status s = Env::Default()->GetTestDirectory(&dir); ASSERT_TRUE(s.ok()) << s.ToString(); return dir; } int RandomSeed() { const char* env = getenv("TEST_RANDOM_SEED"); int result = (env != nullptr ? atoi(env) : 301); if (result <= 0) { result = 301; } return result; } } // namespace test } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/status_test.cc
// Copyright (c) 2018 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include <utility> #include "leveldb/slice.h" #include "leveldb/status.h" #include "util/testharness.h" namespace leveldb { TEST(Status, MoveConstructor) { { Status ok = Status::OK(); Status ok2 = std::move(ok); ASSERT_TRUE(ok2.ok()); } { Status status = Status::NotFound("custom NotFound status message"); Status status2 = std::move(status); ASSERT_TRUE(status2.IsNotFound()); ASSERT_EQ("NotFound: custom NotFound status message", status2.ToString()); } { Status self_moved = Status::IOError("custom IOError status message"); // Needed to bypass compiler warning about explicit move-assignment. Status& self_moved_reference = self_moved; self_moved_reference = std::move(self_moved); } } } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/histogram.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_UTIL_HISTOGRAM_H_ #define STORAGE_LEVELDB_UTIL_HISTOGRAM_H_ #include <string> namespace leveldb { class Histogram { public: Histogram() {} ~Histogram() {} void Clear(); void Add(double value); void Merge(const Histogram& other); std::string ToString() const; private: enum { kNumBuckets = 154 }; double Median() const; double Percentile(double p) const; double Average() const; double StandardDeviation() const; static const double kBucketLimit[kNumBuckets]; double min_; double max_; double num_; double sum_; double sum_squares_; double buckets_[kNumBuckets]; }; } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_HISTOGRAM_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/crc32c.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_UTIL_CRC32C_H_ #define STORAGE_LEVELDB_UTIL_CRC32C_H_ #include <stddef.h> #include <stdint.h> namespace leveldb { namespace crc32c { // Return the crc32c of concat(A, data[0,n-1]) where init_crc is the // crc32c of some string A. Extend() is often used to maintain the // crc32c of a stream of data. uint32_t Extend(uint32_t init_crc, const char* data, size_t n); // Return the crc32c of data[0,n-1] inline uint32_t Value(const char* data, size_t n) { return Extend(0, data, n); } static const uint32_t kMaskDelta = 0xa282ead8ul; // Return a masked representation of crc. // // Motivation: it is problematic to compute the CRC of a string that // contains embedded CRCs. Therefore we recommend that CRCs stored // somewhere (e.g., in files) should be masked before being stored. inline uint32_t Mask(uint32_t crc) { // Rotate right by 15 bits and add a constant. return ((crc >> 15) | (crc << 17)) + kMaskDelta; } // Return the crc whose masked representation is masked_crc. inline uint32_t Unmask(uint32_t masked_crc) { uint32_t rot = masked_crc - kMaskDelta; return ((rot >> 17) | (rot << 15)); } } // namespace crc32c } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_CRC32C_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/env_windows.cc
// Copyright (c) 2018 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // Prevent Windows headers from defining min/max macros and instead // use STL. #ifndef NOMINMAX #define NOMINMAX #endif // ifndef NOMINMAX #include <windows.h> #include <algorithm> #include <atomic> #include <chrono> #include <condition_variable> #include <cstddef> #include <cstdint> #include <cstdlib> #include <cstring> #include <memory> #include <mutex> #include <queue> #include <sstream> #include <string> #include <vector> #include "leveldb/env.h" #include "leveldb/slice.h" #include "port/port.h" #include "port/thread_annotations.h" #include "util/env_windows_test_helper.h" #include "util/logging.h" #include "util/mutexlock.h" #include "util/windows_logger.h" #if defined(DeleteFile) #undef DeleteFile #endif // defined(DeleteFile) namespace leveldb { namespace { constexpr const size_t kWritableFileBufferSize = 65536; // Up to 1000 mmaps for 64-bit binaries; none for 32-bit. constexpr int kDefaultMmapLimit = (sizeof(void*) >= 8) ? 1000 : 0; // Can be set by by EnvWindowsTestHelper::SetReadOnlyMMapLimit(). int g_mmap_limit = kDefaultMmapLimit; std::string GetWindowsErrorMessage(DWORD error_code) { std::string message; char* error_text = nullptr; // Use MBCS version of FormatMessage to match return value. size_t error_text_size = ::FormatMessageA( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_IGNORE_INSERTS, nullptr, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), reinterpret_cast<char*>(&error_text), 0, nullptr); if (!error_text) { return message; } message.assign(error_text, error_text_size); ::LocalFree(error_text); return message; } Status WindowsError(const std::string& context, DWORD error_code) { if (error_code == ERROR_FILE_NOT_FOUND || error_code == ERROR_PATH_NOT_FOUND) return Status::NotFound(context, GetWindowsErrorMessage(error_code)); return Status::IOError(context, GetWindowsErrorMessage(error_code)); } class ScopedHandle { public: ScopedHandle(HANDLE handle) : handle_(handle) {} ScopedHandle(const ScopedHandle&) = delete; ScopedHandle(ScopedHandle&& other) noexcept : handle_(other.Release()) {} ~ScopedHandle() { Close(); } ScopedHandle& operator=(const ScopedHandle&) = delete; ScopedHandle& operator=(ScopedHandle&& rhs) noexcept { if (this != &rhs) handle_ = rhs.Release(); return *this; } bool Close() { if (!is_valid()) { return true; } HANDLE h = handle_; handle_ = INVALID_HANDLE_VALUE; return ::CloseHandle(h); } bool is_valid() const { return handle_ != INVALID_HANDLE_VALUE && handle_ != nullptr; } HANDLE get() const { return handle_; } HANDLE Release() { HANDLE h = handle_; handle_ = INVALID_HANDLE_VALUE; return h; } private: HANDLE handle_; }; // Helper class to limit resource usage to avoid exhaustion. // Currently used to limit read-only file descriptors and mmap file usage // so that we do not run out of file descriptors or virtual memory, or run into // kernel performance problems for very large databases. class Limiter { public: // Limit maximum number of resources to |max_acquires|. Limiter(int max_acquires) : acquires_allowed_(max_acquires) {} Limiter(const Limiter&) = delete; Limiter operator=(const Limiter&) = delete; // If another resource is available, acquire it and return true. // Else return false. bool Acquire() { int old_acquires_allowed = acquires_allowed_.fetch_sub(1, std::memory_order_relaxed); if (old_acquires_allowed > 0) return true; acquires_allowed_.fetch_add(1, std::memory_order_relaxed); return false; } // Release a resource acquired by a previous call to Acquire() that returned // true. void Release() { acquires_allowed_.fetch_add(1, std::memory_order_relaxed); } private: // The number of available resources. // // This is a counter and is not tied to the invariants of any other class, so // it can be operated on safely using std::memory_order_relaxed. std::atomic<int> acquires_allowed_; }; class WindowsSequentialFile : public SequentialFile { public: WindowsSequentialFile(std::string filename, ScopedHandle handle) : handle_(std::move(handle)), filename_(std::move(filename)) {} ~WindowsSequentialFile() override {} Status Read(size_t n, Slice* result, char* scratch) override { DWORD bytes_read; // DWORD is 32-bit, but size_t could technically be larger. However leveldb // files are limited to leveldb::Options::max_file_size which is clamped to // 1<<30 or 1 GiB. assert(n <= std::numeric_limits<DWORD>::max()); if (!::ReadFile(handle_.get(), scratch, static_cast<DWORD>(n), &bytes_read, nullptr)) { return WindowsError(filename_, ::GetLastError()); } *result = Slice(scratch, bytes_read); return Status::OK(); } Status Skip(uint64_t n) override { LARGE_INTEGER distance; distance.QuadPart = n; if (!::SetFilePointerEx(handle_.get(), distance, nullptr, FILE_CURRENT)) { return WindowsError(filename_, ::GetLastError()); } return Status::OK(); } std::string GetName() const override { return filename_; } private: const ScopedHandle handle_; const std::string filename_; }; class WindowsRandomAccessFile : public RandomAccessFile { public: WindowsRandomAccessFile(std::string filename, ScopedHandle handle) : handle_(std::move(handle)), filename_(std::move(filename)) {} ~WindowsRandomAccessFile() override = default; Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { DWORD bytes_read = 0; OVERLAPPED overlapped = {}; overlapped.OffsetHigh = static_cast<DWORD>(offset >> 32); overlapped.Offset = static_cast<DWORD>(offset); if (!::ReadFile(handle_.get(), scratch, static_cast<DWORD>(n), &bytes_read, &overlapped)) { DWORD error_code = ::GetLastError(); if (error_code != ERROR_HANDLE_EOF) { *result = Slice(scratch, 0); return Status::IOError(filename_, GetWindowsErrorMessage(error_code)); } } *result = Slice(scratch, bytes_read); return Status::OK(); } std::string GetName() const override { return filename_; } private: const ScopedHandle handle_; const std::string filename_; }; class WindowsMmapReadableFile : public RandomAccessFile { public: // base[0,length-1] contains the mmapped contents of the file. WindowsMmapReadableFile(std::string filename, char* mmap_base, size_t length, Limiter* mmap_limiter) : mmap_base_(mmap_base), length_(length), mmap_limiter_(mmap_limiter), filename_(std::move(filename)) {} ~WindowsMmapReadableFile() override { ::UnmapViewOfFile(mmap_base_); mmap_limiter_->Release(); } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { if (offset + n > length_) { *result = Slice(); return WindowsError(filename_, ERROR_INVALID_PARAMETER); } *result = Slice(mmap_base_ + offset, n); return Status::OK(); } std::string GetName() const override { return filename_; } private: char* const mmap_base_; const size_t length_; Limiter* const mmap_limiter_; const std::string filename_; }; class WindowsWritableFile : public WritableFile { public: WindowsWritableFile(std::string filename, ScopedHandle handle) : pos_(0), handle_(std::move(handle)), filename_(std::move(filename)) {} ~WindowsWritableFile() override = default; Status Append(const Slice& data) override { size_t write_size = data.size(); const char* write_data = data.data(); // Fit as much as possible into buffer. size_t copy_size = std::min(write_size, kWritableFileBufferSize - pos_); std::memcpy(buf_ + pos_, write_data, copy_size); write_data += copy_size; write_size -= copy_size; pos_ += copy_size; if (write_size == 0) { return Status::OK(); } // Can't fit in buffer, so need to do at least one write. Status status = FlushBuffer(); if (!status.ok()) { return status; } // Small writes go to buffer, large writes are written directly. if (write_size < kWritableFileBufferSize) { std::memcpy(buf_, write_data, write_size); pos_ = write_size; return Status::OK(); } return WriteUnbuffered(write_data, write_size); } Status Close() override { Status status = FlushBuffer(); if (!handle_.Close() && status.ok()) { status = WindowsError(filename_, ::GetLastError()); } return status; } Status Flush() override { return FlushBuffer(); } Status Sync() override { // On Windows no need to sync parent directory. Its metadata will be updated // via the creation of the new file, without an explicit sync. Status status = FlushBuffer(); if (!status.ok()) { return status; } if (!::FlushFileBuffers(handle_.get())) { return Status::IOError(filename_, GetWindowsErrorMessage(::GetLastError())); } return Status::OK(); } std::string GetName() const override { return filename_; } private: Status FlushBuffer() { Status status = WriteUnbuffered(buf_, pos_); pos_ = 0; return status; } Status WriteUnbuffered(const char* data, size_t size) { DWORD bytes_written; if (!::WriteFile(handle_.get(), data, static_cast<DWORD>(size), &bytes_written, nullptr)) { return Status::IOError(filename_, GetWindowsErrorMessage(::GetLastError())); } return Status::OK(); } // buf_[0, pos_-1] contains data to be written to handle_. char buf_[kWritableFileBufferSize]; size_t pos_; ScopedHandle handle_; const std::string filename_; }; // Lock or unlock the entire file as specified by |lock|. Returns true // when successful, false upon failure. Caller should call ::GetLastError() // to determine cause of failure bool LockOrUnlock(HANDLE handle, bool lock) { if (lock) { return ::LockFile(handle, /*dwFileOffsetLow=*/0, /*dwFileOffsetHigh=*/0, /*nNumberOfBytesToLockLow=*/MAXDWORD, /*nNumberOfBytesToLockHigh=*/MAXDWORD); } else { return ::UnlockFile(handle, /*dwFileOffsetLow=*/0, /*dwFileOffsetHigh=*/0, /*nNumberOfBytesToLockLow=*/MAXDWORD, /*nNumberOfBytesToLockHigh=*/MAXDWORD); } } class WindowsFileLock : public FileLock { public: WindowsFileLock(ScopedHandle handle, std::string filename) : handle_(std::move(handle)), filename_(std::move(filename)) {} const ScopedHandle& handle() const { return handle_; } const std::string& filename() const { return filename_; } private: const ScopedHandle handle_; const std::string filename_; }; class WindowsEnv : public Env { public: WindowsEnv(); ~WindowsEnv() override { static const char msg[] = "WindowsEnv singleton destroyed. Unsupported behavior!\n"; std::fwrite(msg, 1, sizeof(msg), stderr); std::abort(); } Status NewSequentialFile(const std::string& filename, SequentialFile** result) override { *result = nullptr; DWORD desired_access = GENERIC_READ; DWORD share_mode = FILE_SHARE_READ; auto wFilename = toUtf16(filename); ScopedHandle handle = ::CreateFileW( wFilename.c_str(), desired_access, share_mode, /*lpSecurityAttributes=*/nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, /*hTemplateFile=*/nullptr); if (!handle.is_valid()) { return WindowsError(filename, ::GetLastError()); } *result = new WindowsSequentialFile(filename, std::move(handle)); return Status::OK(); } Status NewRandomAccessFile(const std::string& filename, RandomAccessFile** result) override { *result = nullptr; DWORD desired_access = GENERIC_READ; DWORD share_mode = FILE_SHARE_READ; auto wFilename = toUtf16(filename); ScopedHandle handle = ::CreateFileW(wFilename.c_str(), desired_access, share_mode, /*lpSecurityAttributes=*/nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_READONLY, /*hTemplateFile=*/nullptr); if (!handle.is_valid()) { return WindowsError(filename, ::GetLastError()); } if (!mmap_limiter_.Acquire()) { *result = new WindowsRandomAccessFile(filename, std::move(handle)); return Status::OK(); } LARGE_INTEGER file_size; Status status; if (!::GetFileSizeEx(handle.get(), &file_size)) { mmap_limiter_.Release(); return WindowsError(filename, ::GetLastError()); } ScopedHandle mapping = ::CreateFileMappingW(handle.get(), /*security attributes=*/nullptr, PAGE_READONLY, /*dwMaximumSizeHigh=*/0, /*dwMaximumSizeLow=*/0, /*lpName=*/nullptr); if (mapping.is_valid()) { void* mmap_base = ::MapViewOfFile(mapping.get(), FILE_MAP_READ, /*dwFileOffsetHigh=*/0, /*dwFileOffsetLow=*/0, /*dwNumberOfBytesToMap=*/0); if (mmap_base) { *result = new WindowsMmapReadableFile( filename, reinterpret_cast<char*>(mmap_base), static_cast<size_t>(file_size.QuadPart), &mmap_limiter_); return Status::OK(); } } mmap_limiter_.Release(); return WindowsError(filename, ::GetLastError()); } Status NewWritableFile(const std::string& filename, WritableFile** result) override { DWORD desired_access = GENERIC_WRITE; DWORD share_mode = 0; // Exclusive access. auto wFilename = toUtf16(filename); ScopedHandle handle = ::CreateFileW( wFilename.c_str(), desired_access, share_mode, /*lpSecurityAttributes=*/nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, /*hTemplateFile=*/nullptr); if (!handle.is_valid()) { *result = nullptr; return WindowsError(filename, ::GetLastError()); } *result = new WindowsWritableFile(filename, std::move(handle)); return Status::OK(); } Status NewAppendableFile(const std::string& filename, WritableFile** result) override { DWORD desired_access = FILE_APPEND_DATA; DWORD share_mode = 0; // Exclusive access. auto wFilename = toUtf16(filename); ScopedHandle handle = ::CreateFileW( wFilename.c_str(), desired_access, share_mode, /*lpSecurityAttributes=*/nullptr, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, /*hTemplateFile=*/nullptr); if (!handle.is_valid()) { *result = nullptr; return WindowsError(filename, ::GetLastError()); } *result = new WindowsWritableFile(filename, std::move(handle)); return Status::OK(); } bool FileExists(const std::string& filename) override { auto wFilename = toUtf16(filename); return GetFileAttributesW(wFilename.c_str()) != INVALID_FILE_ATTRIBUTES; } Status GetChildren(const std::string& directory_path, std::vector<std::string>* result) override { const std::string find_pattern = directory_path + "\\*"; WIN32_FIND_DATAW find_data; auto wFind_pattern = toUtf16(find_pattern); HANDLE dir_handle = ::FindFirstFileW(wFind_pattern.c_str(), &find_data); if (dir_handle == INVALID_HANDLE_VALUE) { DWORD last_error = ::GetLastError(); if (last_error == ERROR_FILE_NOT_FOUND) { return Status::OK(); } return WindowsError(directory_path, last_error); } do { char base_name[_MAX_FNAME]; char ext[_MAX_EXT]; auto find_data_filename = toUtf8(find_data.cFileName); if (!_splitpath_s(find_data_filename.c_str(), nullptr, 0, nullptr, 0, base_name, ARRAYSIZE(base_name), ext, ARRAYSIZE(ext))) { result->emplace_back(std::string(base_name) + ext); } } while (::FindNextFileW(dir_handle, &find_data)); DWORD last_error = ::GetLastError(); ::FindClose(dir_handle); if (last_error != ERROR_NO_MORE_FILES) { return WindowsError(directory_path, last_error); } return Status::OK(); } Status DeleteFile(const std::string& filename) override { auto wFilename = toUtf16(filename); if (!::DeleteFileW(wFilename.c_str())) { return WindowsError(filename, ::GetLastError()); } return Status::OK(); } Status CreateDir(const std::string& dirname) override { auto wDirname = toUtf16(dirname); if (!::CreateDirectoryW(wDirname.c_str(), nullptr)) { return WindowsError(dirname, ::GetLastError()); } return Status::OK(); } Status DeleteDir(const std::string& dirname) override { auto wDirname = toUtf16(dirname); if (!::RemoveDirectoryW(wDirname.c_str())) { return WindowsError(dirname, ::GetLastError()); } return Status::OK(); } Status GetFileSize(const std::string& filename, uint64_t* size) override { WIN32_FILE_ATTRIBUTE_DATA file_attributes; auto wFilename = toUtf16(filename); if (!::GetFileAttributesExW(wFilename.c_str(), GetFileExInfoStandard, &file_attributes)) { return WindowsError(filename, ::GetLastError()); } ULARGE_INTEGER file_size; file_size.HighPart = file_attributes.nFileSizeHigh; file_size.LowPart = file_attributes.nFileSizeLow; *size = file_size.QuadPart; return Status::OK(); } Status RenameFile(const std::string& from, const std::string& to) override { // Try a simple move first. It will only succeed when |to| doesn't already // exist. auto wFrom = toUtf16(from); auto wTo = toUtf16(to); if (::MoveFileW(wFrom.c_str(), wTo.c_str())) { return Status::OK(); } DWORD move_error = ::GetLastError(); // Try the full-blown replace if the move fails, as ReplaceFile will only // succeed when |to| does exist. When writing to a network share, we may not // be able to change the ACLs. Ignore ACL errors then // (REPLACEFILE_IGNORE_MERGE_ERRORS). if (::ReplaceFileW(wTo.c_str(), wFrom.c_str(), /*lpBackupFileName=*/nullptr, REPLACEFILE_IGNORE_MERGE_ERRORS, /*lpExclude=*/nullptr, /*lpReserved=*/nullptr)) { return Status::OK(); } DWORD replace_error = ::GetLastError(); // In the case of FILE_ERROR_NOT_FOUND from ReplaceFile, it is likely that // |to| does not exist. In this case, the more relevant error comes from the // call to MoveFile. if (replace_error == ERROR_FILE_NOT_FOUND || replace_error == ERROR_PATH_NOT_FOUND) { return WindowsError(from, move_error); } else { return WindowsError(from, replace_error); } } Status LockFile(const std::string& filename, FileLock** lock) override { *lock = nullptr; Status result; auto wFilename = toUtf16(filename); ScopedHandle handle = ::CreateFileW( wFilename.c_str(), GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ, /*lpSecurityAttributes=*/nullptr, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr); if (!handle.is_valid()) { result = WindowsError(filename, ::GetLastError()); } else if (!LockOrUnlock(handle.get(), true)) { result = WindowsError("lock " + filename, ::GetLastError()); } else { *lock = new WindowsFileLock(std::move(handle), filename); } return result; } Status UnlockFile(FileLock* lock) override { WindowsFileLock* windows_file_lock = reinterpret_cast<WindowsFileLock*>(lock); if (!LockOrUnlock(windows_file_lock->handle().get(), false)) { return WindowsError("unlock " + windows_file_lock->filename(), ::GetLastError()); } delete windows_file_lock; return Status::OK(); } void Schedule(void (*background_work_function)(void* background_work_arg), void* background_work_arg) override; void StartThread(void (*thread_main)(void* thread_main_arg), void* thread_main_arg) override { std::thread new_thread(thread_main, thread_main_arg); new_thread.detach(); } Status GetTestDirectory(std::string* result) override { const char* env = getenv("TEST_TMPDIR"); if (env && env[0] != '\0') { *result = env; return Status::OK(); } wchar_t wtmp_path[MAX_PATH]; if (!GetTempPathW(ARRAYSIZE(wtmp_path), wtmp_path)) { return WindowsError("GetTempPath", ::GetLastError()); } std::string tmp_path = toUtf8(std::wstring(wtmp_path)); std::stringstream ss; ss << tmp_path << "leveldbtest-" << std::this_thread::get_id(); *result = ss.str(); // Directory may already exist CreateDir(*result); return Status::OK(); } Status NewLogger(const std::string& filename, Logger** result) override { auto wFilename = toUtf16(filename); std::FILE* fp = _wfopen(wFilename.c_str(), L"w"); if (fp == nullptr) { *result = nullptr; return WindowsError(filename, ::GetLastError()); } else { *result = new WindowsLogger(fp); return Status::OK(); } } uint64_t NowMicros() override { // GetSystemTimeAsFileTime typically has a resolution of 10-20 msec. // TODO(cmumford): Switch to GetSystemTimePreciseAsFileTime which is // available in Windows 8 and later. FILETIME ft; ::GetSystemTimeAsFileTime(&ft); // Each tick represents a 100-nanosecond intervals since January 1, 1601 // (UTC). uint64_t num_ticks = (static_cast<uint64_t>(ft.dwHighDateTime) << 32) + ft.dwLowDateTime; return num_ticks / 10; } void SleepForMicroseconds(int micros) override { std::this_thread::sleep_for(std::chrono::microseconds(micros)); } private: void BackgroundThreadMain(); static void BackgroundThreadEntryPoint(WindowsEnv* env) { env->BackgroundThreadMain(); } // Stores the work item data in a Schedule() call. // // Instances are constructed on the thread calling Schedule() and used on the // background thread. // // This structure is thread-safe beacuse it is immutable. struct BackgroundWorkItem { explicit BackgroundWorkItem(void (*function)(void* arg), void* arg) : function(function), arg(arg) {} void (*const function)(void*); void* const arg; }; port::Mutex background_work_mutex_; port::CondVar background_work_cv_ GUARDED_BY(background_work_mutex_); bool started_background_thread_ GUARDED_BY(background_work_mutex_); std::queue<BackgroundWorkItem> background_work_queue_ GUARDED_BY(background_work_mutex_); Limiter mmap_limiter_; // Thread-safe. // Converts a Windows wide multi-byte UTF-16 string to a UTF-8 string. // See http://utf8everywhere.org/#windows std::string toUtf8(const std::wstring& wstr) { if (wstr.empty()) return std::string(); int size_needed = WideCharToMultiByte( CP_UTF8, 0, &wstr[0], (int)wstr.size(), NULL, 0, NULL, NULL); std::string strTo(size_needed, 0); WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), &strTo[0], size_needed, NULL, NULL); return strTo; } // Converts a UTF-8 string to a Windows UTF-16 multi-byte wide character // string. // See http://utf8everywhere.org/#windows std::wstring toUtf16(const std::string& str) { if (str.empty()) return std::wstring(); int size_needed = MultiByteToWideChar(CP_UTF8, 0, &str[0], (int)str.size(), NULL, 0); std::wstring strTo(size_needed, 0); MultiByteToWideChar(CP_UTF8, 0, &str[0], (int)str.size(), &strTo[0], size_needed); return strTo; } }; // Return the maximum number of concurrent mmaps. int MaxMmaps() { return g_mmap_limit; } WindowsEnv::WindowsEnv() : background_work_cv_(&background_work_mutex_), started_background_thread_(false), mmap_limiter_(MaxMmaps()) {} void WindowsEnv::Schedule( void (*background_work_function)(void* background_work_arg), void* background_work_arg) { background_work_mutex_.Lock(); // Start the background thread, if we haven't done so already. if (!started_background_thread_) { started_background_thread_ = true; std::thread background_thread(WindowsEnv::BackgroundThreadEntryPoint, this); background_thread.detach(); } // If the queue is empty, the background thread may be waiting for work. if (background_work_queue_.empty()) { background_work_cv_.Signal(); } background_work_queue_.emplace(background_work_function, background_work_arg); background_work_mutex_.Unlock(); } void WindowsEnv::BackgroundThreadMain() { while (true) { background_work_mutex_.Lock(); // Wait until there is work to be done. while (background_work_queue_.empty()) { background_work_cv_.Wait(); } assert(!background_work_queue_.empty()); auto background_work_function = background_work_queue_.front().function; void* background_work_arg = background_work_queue_.front().arg; background_work_queue_.pop(); background_work_mutex_.Unlock(); background_work_function(background_work_arg); } } // Wraps an Env instance whose destructor is never created. // // Intended usage: // using PlatformSingletonEnv = SingletonEnv<PlatformEnv>; // void ConfigurePosixEnv(int param) { // PlatformSingletonEnv::AssertEnvNotInitialized(); // // set global configuration flags. // } // Env* Env::Default() { // static PlatformSingletonEnv default_env; // return default_env.env(); // } template <typename EnvType> class SingletonEnv { public: SingletonEnv() { #if !defined(NDEBUG) env_initialized_.store(true, std::memory_order_relaxed); #endif // !defined(NDEBUG) static_assert(sizeof(env_storage_) >= sizeof(EnvType), "env_storage_ will not fit the Env"); static_assert(alignof(decltype(env_storage_)) >= alignof(EnvType), "env_storage_ does not meet the Env's alignment needs"); new (&env_storage_) EnvType(); } ~SingletonEnv() = default; SingletonEnv(const SingletonEnv&) = delete; SingletonEnv& operator=(const SingletonEnv&) = delete; Env* env() { return reinterpret_cast<Env*>(&env_storage_); } static void AssertEnvNotInitialized() { #if !defined(NDEBUG) assert(!env_initialized_.load(std::memory_order_relaxed)); #endif // !defined(NDEBUG) } private: typename std::aligned_storage<sizeof(EnvType), alignof(EnvType)>::type env_storage_; #if !defined(NDEBUG) static std::atomic<bool> env_initialized_; #endif // !defined(NDEBUG) }; #if !defined(NDEBUG) template <typename EnvType> std::atomic<bool> SingletonEnv<EnvType>::env_initialized_; #endif // !defined(NDEBUG) using WindowsDefaultEnv = SingletonEnv<WindowsEnv>; } // namespace void EnvWindowsTestHelper::SetReadOnlyMMapLimit(int limit) { WindowsDefaultEnv::AssertEnvNotInitialized(); g_mmap_limit = limit; } Env* Env::Default() { static WindowsDefaultEnv env_container; return env_container.env(); } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/env_test.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/env.h" #include <algorithm> #include "port/port.h" #include "port/thread_annotations.h" #include "util/mutexlock.h" #include "util/testharness.h" #include "util/testutil.h" namespace leveldb { static const int kDelayMicros = 100000; class EnvTest { public: EnvTest() : env_(Env::Default()) {} Env* env_; }; TEST(EnvTest, ReadWrite) { Random rnd(test::RandomSeed()); // Get file to use for testing. std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string test_file_name = test_dir + "/open_on_read.txt"; WritableFile* writable_file; ASSERT_OK(env_->NewWritableFile(test_file_name, &writable_file)); // Fill a file with data generated via a sequence of randomly sized writes. static const size_t kDataSize = 10 * 1048576; std::string data; while (data.size() < kDataSize) { int len = rnd.Skewed(18); // Up to 2^18 - 1, but typically much smaller std::string r; test::RandomString(&rnd, len, &r); ASSERT_OK(writable_file->Append(r)); data += r; if (rnd.OneIn(10)) { ASSERT_OK(writable_file->Flush()); } } ASSERT_OK(writable_file->Sync()); ASSERT_OK(writable_file->Close()); delete writable_file; // Read all data using a sequence of randomly sized reads. SequentialFile* sequential_file; ASSERT_OK(env_->NewSequentialFile(test_file_name, &sequential_file)); std::string read_result; std::string scratch; while (read_result.size() < data.size()) { int len = std::min<int>(rnd.Skewed(18), data.size() - read_result.size()); scratch.resize(std::max(len, 1)); // at least 1 so &scratch[0] is legal Slice read; ASSERT_OK(sequential_file->Read(len, &read, &scratch[0])); if (len > 0) { ASSERT_GT(read.size(), 0); } ASSERT_LE(read.size(), len); read_result.append(read.data(), read.size()); } ASSERT_EQ(read_result, data); delete sequential_file; } TEST(EnvTest, RunImmediately) { struct RunState { port::Mutex mu; port::CondVar cvar{&mu}; bool called = false; static void Run(void* arg) { RunState* state = reinterpret_cast<RunState*>(arg); MutexLock l(&state->mu); ASSERT_EQ(state->called, false); state->called = true; state->cvar.Signal(); } }; RunState state; env_->Schedule(&RunState::Run, &state); MutexLock l(&state.mu); while (!state.called) { state.cvar.Wait(); } } TEST(EnvTest, RunMany) { struct RunState { port::Mutex mu; port::CondVar cvar{&mu}; int last_id = 0; }; struct Callback { RunState* state_; // Pointer to shared state. const int id_; // Order# for the execution of this callback. Callback(RunState* s, int id) : state_(s), id_(id) {} static void Run(void* arg) { Callback* callback = reinterpret_cast<Callback*>(arg); RunState* state = callback->state_; MutexLock l(&state->mu); ASSERT_EQ(state->last_id, callback->id_ - 1); state->last_id = callback->id_; state->cvar.Signal(); } }; RunState state; Callback callback1(&state, 1); Callback callback2(&state, 2); Callback callback3(&state, 3); Callback callback4(&state, 4); env_->Schedule(&Callback::Run, &callback1); env_->Schedule(&Callback::Run, &callback2); env_->Schedule(&Callback::Run, &callback3); env_->Schedule(&Callback::Run, &callback4); MutexLock l(&state.mu); while (state.last_id != 4) { state.cvar.Wait(); } } struct State { port::Mutex mu; port::CondVar cvar{&mu}; int val GUARDED_BY(mu); int num_running GUARDED_BY(mu); State(int val, int num_running) : val(val), num_running(num_running) {} }; static void ThreadBody(void* arg) { State* s = reinterpret_cast<State*>(arg); s->mu.Lock(); s->val += 1; s->num_running -= 1; s->cvar.Signal(); s->mu.Unlock(); } TEST(EnvTest, StartThread) { State state(0, 3); for (int i = 0; i < 3; i++) { env_->StartThread(&ThreadBody, &state); } MutexLock l(&state.mu); while (state.num_running != 0) { state.cvar.Wait(); } ASSERT_EQ(state.val, 3); } TEST(EnvTest, TestOpenNonExistentFile) { // Write some test data to a single file that will be opened |n| times. std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string non_existent_file = test_dir + "/non_existent_file"; ASSERT_TRUE(!env_->FileExists(non_existent_file)); RandomAccessFile* random_access_file; Status status = env_->NewRandomAccessFile(non_existent_file, &random_access_file); ASSERT_TRUE(status.IsNotFound()); SequentialFile* sequential_file; status = env_->NewSequentialFile(non_existent_file, &sequential_file); ASSERT_TRUE(status.IsNotFound()); } TEST(EnvTest, ReopenWritableFile) { std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string test_file_name = test_dir + "/reopen_writable_file.txt"; env_->DeleteFile(test_file_name); WritableFile* writable_file; ASSERT_OK(env_->NewWritableFile(test_file_name, &writable_file)); std::string data("hello world!"); ASSERT_OK(writable_file->Append(data)); ASSERT_OK(writable_file->Close()); delete writable_file; ASSERT_OK(env_->NewWritableFile(test_file_name, &writable_file)); data = "42"; ASSERT_OK(writable_file->Append(data)); ASSERT_OK(writable_file->Close()); delete writable_file; ASSERT_OK(ReadFileToString(env_, test_file_name, &data)); ASSERT_EQ(std::string("42"), data); env_->DeleteFile(test_file_name); } TEST(EnvTest, ReopenAppendableFile) { std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string test_file_name = test_dir + "/reopen_appendable_file.txt"; env_->DeleteFile(test_file_name); WritableFile* appendable_file; ASSERT_OK(env_->NewAppendableFile(test_file_name, &appendable_file)); std::string data("hello world!"); ASSERT_OK(appendable_file->Append(data)); ASSERT_OK(appendable_file->Close()); delete appendable_file; ASSERT_OK(env_->NewAppendableFile(test_file_name, &appendable_file)); data = "42"; ASSERT_OK(appendable_file->Append(data)); ASSERT_OK(appendable_file->Close()); delete appendable_file; ASSERT_OK(ReadFileToString(env_, test_file_name, &data)); ASSERT_EQ(std::string("hello world!42"), data); env_->DeleteFile(test_file_name); } } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/logging.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/logging.h" #include <errno.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <limits> #include "leveldb/env.h" #include "leveldb/slice.h" namespace leveldb { void AppendNumberTo(std::string* str, uint64_t num) { char buf[30]; snprintf(buf, sizeof(buf), "%llu", (unsigned long long)num); str->append(buf); } void AppendEscapedStringTo(std::string* str, const Slice& value) { for (size_t i = 0; i < value.size(); i++) { char c = value[i]; if (c >= ' ' && c <= '~') { str->push_back(c); } else { char buf[10]; snprintf(buf, sizeof(buf), "\\x%02x", static_cast<unsigned int>(c) & 0xff); str->append(buf); } } } std::string NumberToString(uint64_t num) { std::string r; AppendNumberTo(&r, num); return r; } std::string EscapeString(const Slice& value) { std::string r; AppendEscapedStringTo(&r, value); return r; } bool ConsumeDecimalNumber(Slice* in, uint64_t* val) { // Constants that will be optimized away. constexpr const uint64_t kMaxUint64 = std::numeric_limits<uint64_t>::max(); constexpr const char kLastDigitOfMaxUint64 = '0' + static_cast<char>(kMaxUint64 % 10); uint64_t value = 0; // reinterpret_cast-ing from char* to uint8_t* to avoid signedness. const uint8_t* start = reinterpret_cast<const uint8_t*>(in->data()); const uint8_t* end = start + in->size(); const uint8_t* current = start; for (; current != end; ++current) { const uint8_t ch = *current; if (ch < '0' || ch > '9') break; // Overflow check. // kMaxUint64 / 10 is also constant and will be optimized away. if (value > kMaxUint64 / 10 || (value == kMaxUint64 / 10 && ch > kLastDigitOfMaxUint64)) { return false; } value = (value * 10) + (ch - '0'); } *val = value; const size_t digits_consumed = current - start; in->remove_prefix(digits_consumed); return digits_consumed != 0; } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/env_windows_test_helper.h
// Copyright 2018 (c) The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_UTIL_ENV_WINDOWS_TEST_HELPER_H_ #define STORAGE_LEVELDB_UTIL_ENV_WINDOWS_TEST_HELPER_H_ namespace leveldb { class EnvWindowsTest; // A helper for the Windows Env to facilitate testing. class EnvWindowsTestHelper { private: friend class CorruptionTest; friend class EnvWindowsTest; // Set the maximum number of read-only files that will be mapped via mmap. // Must be called before creating an Env. static void SetReadOnlyMMapLimit(int limit); }; } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_ENV_WINDOWS_TEST_HELPER_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/options.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/options.h" #include "leveldb/comparator.h" #include "leveldb/env.h" namespace leveldb { Options::Options() : comparator(BytewiseComparator()), env(Env::Default()) {} } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/cache_test.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/cache.h" #include <vector> #include "util/coding.h" #include "util/testharness.h" namespace leveldb { // Conversions between numeric keys/values and the types expected by Cache. static std::string EncodeKey(int k) { std::string result; PutFixed32(&result, k); return result; } static int DecodeKey(const Slice& k) { assert(k.size() == 4); return DecodeFixed32(k.data()); } static void* EncodeValue(uintptr_t v) { return reinterpret_cast<void*>(v); } static int DecodeValue(void* v) { return reinterpret_cast<uintptr_t>(v); } class CacheTest { public: static void Deleter(const Slice& key, void* v) { current_->deleted_keys_.push_back(DecodeKey(key)); current_->deleted_values_.push_back(DecodeValue(v)); } static const int kCacheSize = 1000; std::vector<int> deleted_keys_; std::vector<int> deleted_values_; Cache* cache_; CacheTest() : cache_(NewLRUCache(kCacheSize)) { current_ = this; } ~CacheTest() { delete cache_; } int Lookup(int key) { Cache::Handle* handle = cache_->Lookup(EncodeKey(key)); const int r = (handle == nullptr) ? -1 : DecodeValue(cache_->Value(handle)); if (handle != nullptr) { cache_->Release(handle); } return r; } void Insert(int key, int value, int charge = 1) { cache_->Release(cache_->Insert(EncodeKey(key), EncodeValue(value), charge, &CacheTest::Deleter)); } Cache::Handle* InsertAndReturnHandle(int key, int value, int charge = 1) { return cache_->Insert(EncodeKey(key), EncodeValue(value), charge, &CacheTest::Deleter); } void Erase(int key) { cache_->Erase(EncodeKey(key)); } static CacheTest* current_; }; CacheTest* CacheTest::current_; TEST(CacheTest, HitAndMiss) { ASSERT_EQ(-1, Lookup(100)); Insert(100, 101); ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(-1, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); Insert(200, 201); ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); Insert(100, 102); ASSERT_EQ(102, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(-1, Lookup(300)); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); } TEST(CacheTest, Erase) { Erase(200); ASSERT_EQ(0, deleted_keys_.size()); Insert(100, 101); Insert(200, 201); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(201, Lookup(200)); ASSERT_EQ(1, deleted_keys_.size()); } TEST(CacheTest, EntriesArePinned) { Insert(100, 101); Cache::Handle* h1 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(101, DecodeValue(cache_->Value(h1))); Insert(100, 102); Cache::Handle* h2 = cache_->Lookup(EncodeKey(100)); ASSERT_EQ(102, DecodeValue(cache_->Value(h2))); ASSERT_EQ(0, deleted_keys_.size()); cache_->Release(h1); ASSERT_EQ(1, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[0]); ASSERT_EQ(101, deleted_values_[0]); Erase(100); ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(1, deleted_keys_.size()); cache_->Release(h2); ASSERT_EQ(2, deleted_keys_.size()); ASSERT_EQ(100, deleted_keys_[1]); ASSERT_EQ(102, deleted_values_[1]); } TEST(CacheTest, EvictionPolicy) { Insert(100, 101); Insert(200, 201); Insert(300, 301); Cache::Handle* h = cache_->Lookup(EncodeKey(300)); // Frequently used entry must be kept around, // as must things that are still in use. for (int i = 0; i < kCacheSize + 100; i++) { Insert(1000 + i, 2000 + i); ASSERT_EQ(2000 + i, Lookup(1000 + i)); ASSERT_EQ(101, Lookup(100)); } ASSERT_EQ(101, Lookup(100)); ASSERT_EQ(-1, Lookup(200)); ASSERT_EQ(301, Lookup(300)); cache_->Release(h); } TEST(CacheTest, UseExceedsCacheSize) { // Overfill the cache, keeping handles on all inserted entries. std::vector<Cache::Handle*> h; for (int i = 0; i < kCacheSize + 100; i++) { h.push_back(InsertAndReturnHandle(1000 + i, 2000 + i)); } // Check that all the entries can be found in the cache. for (int i = 0; i < h.size(); i++) { ASSERT_EQ(2000 + i, Lookup(1000 + i)); } for (int i = 0; i < h.size(); i++) { cache_->Release(h[i]); } } TEST(CacheTest, HeavyEntries) { // Add a bunch of light and heavy entries and then count the combined // size of items still in the cache, which must be approximately the // same as the total capacity. const int kLight = 1; const int kHeavy = 10; int added = 0; int index = 0; while (added < 2 * kCacheSize) { const int weight = (index & 1) ? kLight : kHeavy; Insert(index, 1000 + index, weight); added += weight; index++; } int cached_weight = 0; for (int i = 0; i < index; i++) { const int weight = (i & 1 ? kLight : kHeavy); int r = Lookup(i); if (r >= 0) { cached_weight += weight; ASSERT_EQ(1000 + i, r); } } ASSERT_LE(cached_weight, kCacheSize + kCacheSize / 10); } TEST(CacheTest, NewId) { uint64_t a = cache_->NewId(); uint64_t b = cache_->NewId(); ASSERT_NE(a, b); } TEST(CacheTest, Prune) { Insert(1, 100); Insert(2, 200); Cache::Handle* handle = cache_->Lookup(EncodeKey(1)); ASSERT_TRUE(handle); cache_->Prune(); cache_->Release(handle); ASSERT_EQ(100, Lookup(1)); ASSERT_EQ(-1, Lookup(2)); } TEST(CacheTest, ZeroSizeCache) { delete cache_; cache_ = NewLRUCache(0); Insert(1, 100); ASSERT_EQ(-1, Lookup(1)); } } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/arena.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_UTIL_ARENA_H_ #define STORAGE_LEVELDB_UTIL_ARENA_H_ #include <atomic> #include <cassert> #include <cstddef> #include <cstdint> #include <vector> namespace leveldb { class Arena { public: Arena(); Arena(const Arena&) = delete; Arena& operator=(const Arena&) = delete; ~Arena(); // Return a pointer to a newly allocated memory block of "bytes" bytes. char* Allocate(size_t bytes); // Allocate memory with the normal alignment guarantees provided by malloc. char* AllocateAligned(size_t bytes); // Returns an estimate of the total memory usage of data allocated // by the arena. size_t MemoryUsage() const { return memory_usage_.load(std::memory_order_relaxed); } private: char* AllocateFallback(size_t bytes); char* AllocateNewBlock(size_t block_bytes); // Allocation state char* alloc_ptr_; size_t alloc_bytes_remaining_; // Array of new[] allocated memory blocks std::vector<char*> blocks_; // Total memory usage of the arena. // // TODO(costan): This member is accessed via atomics, but the others are // accessed without any locking. Is this OK? std::atomic<size_t> memory_usage_; }; inline char* Arena::Allocate(size_t bytes) { // The semantics of what to return are a bit messy if we allow // 0-byte allocations, so we disallow them here (we don't need // them for our internal use). assert(bytes > 0); if (bytes <= alloc_bytes_remaining_) { char* result = alloc_ptr_; alloc_ptr_ += bytes; alloc_bytes_remaining_ -= bytes; return result; } return AllocateFallback(bytes); } } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_ARENA_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/comparator.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/comparator.h" #include <algorithm> #include <cstdint> #include <string> #include <type_traits> #include "leveldb/slice.h" #include "util/logging.h" #include "util/no_destructor.h" namespace leveldb { Comparator::~Comparator() = default; namespace { class BytewiseComparatorImpl : public Comparator { public: BytewiseComparatorImpl() = default; const char* Name() const override { return "leveldb.BytewiseComparator"; } int Compare(const Slice& a, const Slice& b) const override { return a.compare(b); } void FindShortestSeparator(std::string* start, const Slice& limit) const override { // Find length of common prefix size_t min_length = std::min(start->size(), limit.size()); size_t diff_index = 0; while ((diff_index < min_length) && ((*start)[diff_index] == limit[diff_index])) { diff_index++; } if (diff_index >= min_length) { // Do not shorten if one string is a prefix of the other } else { uint8_t diff_byte = static_cast<uint8_t>((*start)[diff_index]); if (diff_byte < static_cast<uint8_t>(0xff) && diff_byte + 1 < static_cast<uint8_t>(limit[diff_index])) { (*start)[diff_index]++; start->resize(diff_index + 1); assert(Compare(*start, limit) < 0); } } } void FindShortSuccessor(std::string* key) const override { // Find first character that can be incremented size_t n = key->size(); for (size_t i = 0; i < n; i++) { const uint8_t byte = (*key)[i]; if (byte != static_cast<uint8_t>(0xff)) { (*key)[i] = byte + 1; key->resize(i + 1); return; } } // *key is a run of 0xffs. Leave it alone. } }; } // namespace const Comparator* BytewiseComparator() { static NoDestructor<BytewiseComparatorImpl> singleton; return singleton.get(); } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/env_posix_test_helper.h
// Copyright 2017 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_UTIL_ENV_POSIX_TEST_HELPER_H_ #define STORAGE_LEVELDB_UTIL_ENV_POSIX_TEST_HELPER_H_ namespace leveldb { class EnvPosixTest; // A helper for the POSIX Env to facilitate testing. class EnvPosixTestHelper { private: friend class EnvPosixTest; // Set the maximum number of read-only files that will be opened. // Must be called before creating an Env. static void SetReadOnlyFDLimit(int limit); // Set the maximum number of read-only files that will be mapped via mmap. // Must be called before creating an Env. static void SetReadOnlyMMapLimit(int limit); }; } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_ENV_POSIX_TEST_HELPER_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/coding.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/coding.h" namespace leveldb { void PutFixed32(std::string* dst, uint32_t value) { char buf[sizeof(value)]; EncodeFixed32(buf, value); dst->append(buf, sizeof(buf)); } void PutFixed64(std::string* dst, uint64_t value) { char buf[sizeof(value)]; EncodeFixed64(buf, value); dst->append(buf, sizeof(buf)); } char* EncodeVarint32(char* dst, uint32_t v) { // Operate on characters as unsigneds uint8_t* ptr = reinterpret_cast<uint8_t*>(dst); static const int B = 128; if (v < (1 << 7)) { *(ptr++) = v; } else if (v < (1 << 14)) { *(ptr++) = v | B; *(ptr++) = v >> 7; } else if (v < (1 << 21)) { *(ptr++) = v | B; *(ptr++) = (v >> 7) | B; *(ptr++) = v >> 14; } else if (v < (1 << 28)) { *(ptr++) = v | B; *(ptr++) = (v >> 7) | B; *(ptr++) = (v >> 14) | B; *(ptr++) = v >> 21; } else { *(ptr++) = v | B; *(ptr++) = (v >> 7) | B; *(ptr++) = (v >> 14) | B; *(ptr++) = (v >> 21) | B; *(ptr++) = v >> 28; } return reinterpret_cast<char*>(ptr); } void PutVarint32(std::string* dst, uint32_t v) { char buf[5]; char* ptr = EncodeVarint32(buf, v); dst->append(buf, ptr - buf); } char* EncodeVarint64(char* dst, uint64_t v) { static const int B = 128; uint8_t* ptr = reinterpret_cast<uint8_t*>(dst); while (v >= B) { *(ptr++) = v | B; v >>= 7; } *(ptr++) = static_cast<uint8_t>(v); return reinterpret_cast<char*>(ptr); } void PutVarint64(std::string* dst, uint64_t v) { char buf[10]; char* ptr = EncodeVarint64(buf, v); dst->append(buf, ptr - buf); } void PutLengthPrefixedSlice(std::string* dst, const Slice& value) { PutVarint32(dst, value.size()); dst->append(value.data(), value.size()); } int VarintLength(uint64_t v) { int len = 1; while (v >= 128) { v >>= 7; len++; } return len; } const char* GetVarint32PtrFallback(const char* p, const char* limit, uint32_t* value) { uint32_t result = 0; for (uint32_t shift = 0; shift <= 28 && p < limit; shift += 7) { uint32_t byte = *(reinterpret_cast<const uint8_t*>(p)); p++; if (byte & 128) { // More bytes are present result |= ((byte & 127) << shift); } else { result |= (byte << shift); *value = result; return reinterpret_cast<const char*>(p); } } return nullptr; } bool GetVarint32(Slice* input, uint32_t* value) { const char* p = input->data(); const char* limit = p + input->size(); const char* q = GetVarint32Ptr(p, limit, value); if (q == nullptr) { return false; } else { *input = Slice(q, limit - q); return true; } } const char* GetVarint64Ptr(const char* p, const char* limit, uint64_t* value) { uint64_t result = 0; for (uint32_t shift = 0; shift <= 63 && p < limit; shift += 7) { uint64_t byte = *(reinterpret_cast<const uint8_t*>(p)); p++; if (byte & 128) { // More bytes are present result |= ((byte & 127) << shift); } else { result |= (byte << shift); *value = result; return reinterpret_cast<const char*>(p); } } return nullptr; } bool GetVarint64(Slice* input, uint64_t* value) { const char* p = input->data(); const char* limit = p + input->size(); const char* q = GetVarint64Ptr(p, limit, value); if (q == nullptr) { return false; } else { *input = Slice(q, limit - q); return true; } } const char* GetLengthPrefixedSlice(const char* p, const char* limit, Slice* result) { uint32_t len; p = GetVarint32Ptr(p, limit, &len); if (p == nullptr) return nullptr; if (p + len > limit) return nullptr; *result = Slice(p, len); return p + len; } bool GetLengthPrefixedSlice(Slice* input, Slice* result) { uint32_t len; if (GetVarint32(input, &len) && input->size() >= len) { *result = Slice(input->data(), len); input->remove_prefix(len); return true; } else { return false; } } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/env_posix_test.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include <sys/resource.h> #include <sys/wait.h> #include <unistd.h> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <unordered_set> #include <vector> #include "leveldb/env.h" #include "port/port.h" #include "util/env_posix_test_helper.h" #include "util/testharness.h" #if HAVE_O_CLOEXEC namespace { // Exit codes for the helper process spawned by TestCloseOnExec* tests. // Useful for debugging test failures. constexpr int kTextCloseOnExecHelperExecFailedCode = 61; constexpr int kTextCloseOnExecHelperDup2FailedCode = 62; constexpr int kTextCloseOnExecHelperFoundOpenFdCode = 63; // Global set by main() and read in TestCloseOnExec. // // The argv[0] value is stored in a std::vector instead of a std::string because // std::string does not return a mutable pointer to its buffer until C++17. // // The vector stores the string pointed to by argv[0], plus the trailing null. std::vector<char>* GetArgvZero() { static std::vector<char> program_name; return &program_name; } // Command-line switch used to run this test as the CloseOnExecSwitch helper. static const char kTestCloseOnExecSwitch[] = "--test-close-on-exec-helper"; // Executed in a separate process by TestCloseOnExec* tests. // // main() delegates to this function when the test executable is launched with // a special command-line switch. TestCloseOnExec* tests fork()+exec() the test // executable and pass the special command-line switch. // // main() delegates to this function when the test executable is launched with // a special command-line switch. TestCloseOnExec* tests fork()+exec() the test // executable and pass the special command-line switch. // // When main() delegates to this function, the process probes whether a given // file descriptor is open, and communicates the result via its exit code. int TestCloseOnExecHelperMain(char* pid_arg) { int fd = std::atoi(pid_arg); // When given the same file descriptor twice, dup2() returns -1 if the // file descriptor is closed, or the given file descriptor if it is open. if (::dup2(fd, fd) == fd) { std::fprintf(stderr, "Unexpected open fd %d\n", fd); return kTextCloseOnExecHelperFoundOpenFdCode; } // Double-check that dup2() is saying the file descriptor is closed. if (errno != EBADF) { std::fprintf(stderr, "Unexpected errno after calling dup2 on fd %d: %s\n", fd, std::strerror(errno)); return kTextCloseOnExecHelperDup2FailedCode; } return 0; } // File descriptors are small non-negative integers. // // Returns void so the implementation can use ASSERT_EQ. void GetMaxFileDescriptor(int* result_fd) { // Get the maximum file descriptor number. ::rlimit fd_rlimit; ASSERT_EQ(0, ::getrlimit(RLIMIT_NOFILE, &fd_rlimit)); *result_fd = fd_rlimit.rlim_cur; } // Iterates through all possible FDs and returns the currently open ones. // // Returns void so the implementation can use ASSERT_EQ. void GetOpenFileDescriptors(std::unordered_set<int>* open_fds) { int max_fd = 0; GetMaxFileDescriptor(&max_fd); for (int fd = 0; fd < max_fd; ++fd) { if (::dup2(fd, fd) != fd) { // When given the same file descriptor twice, dup2() returns -1 if the // file descriptor is closed, or the given file descriptor if it is open. // // Double-check that dup2() is saying the fd is closed. ASSERT_EQ(EBADF, errno) << "dup2() should set errno to EBADF on closed file descriptors"; continue; } open_fds->insert(fd); } } // Finds an FD open since a previous call to GetOpenFileDescriptors(). // // |baseline_open_fds| is the result of a previous GetOpenFileDescriptors() // call. Assumes that exactly one FD was opened since that call. // // Returns void so the implementation can use ASSERT_EQ. void GetNewlyOpenedFileDescriptor( const std::unordered_set<int>& baseline_open_fds, int* result_fd) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); for (int fd : baseline_open_fds) { ASSERT_EQ(1, open_fds.count(fd)) << "Previously opened file descriptor was closed during test setup"; open_fds.erase(fd); } ASSERT_EQ(1, open_fds.size()) << "Expected exactly one newly opened file descriptor during test setup"; *result_fd = *open_fds.begin(); } // Check that a fork()+exec()-ed child process does not have an extra open FD. void CheckCloseOnExecDoesNotLeakFDs( const std::unordered_set<int>& baseline_open_fds) { // Prepare the argument list for the child process. // execv() wants mutable buffers. char switch_buffer[sizeof(kTestCloseOnExecSwitch)]; std::memcpy(switch_buffer, kTestCloseOnExecSwitch, sizeof(kTestCloseOnExecSwitch)); int probed_fd; GetNewlyOpenedFileDescriptor(baseline_open_fds, &probed_fd); std::string fd_string = std::to_string(probed_fd); std::vector<char> fd_buffer(fd_string.begin(), fd_string.end()); fd_buffer.emplace_back('\0'); // The helper process is launched with the command below. // env_posix_tests --test-close-on-exec-helper 3 char* child_argv[] = {GetArgvZero()->data(), switch_buffer, fd_buffer.data(), nullptr}; constexpr int kForkInChildProcessReturnValue = 0; int child_pid = fork(); if (child_pid == kForkInChildProcessReturnValue) { ::execv(child_argv[0], child_argv); std::fprintf(stderr, "Error spawning child process: %s\n", strerror(errno)); std::exit(kTextCloseOnExecHelperExecFailedCode); } int child_status = 0; ASSERT_EQ(child_pid, ::waitpid(child_pid, &child_status, 0)); ASSERT_TRUE(WIFEXITED(child_status)) << "The helper process did not exit with an exit code"; ASSERT_EQ(0, WEXITSTATUS(child_status)) << "The helper process encountered an error"; } } // namespace #endif // HAVE_O_CLOEXEC namespace leveldb { static const int kReadOnlyFileLimit = 4; static const int kMMapLimit = 4; class EnvPosixTest { public: static void SetFileLimits(int read_only_file_limit, int mmap_limit) { EnvPosixTestHelper::SetReadOnlyFDLimit(read_only_file_limit); EnvPosixTestHelper::SetReadOnlyMMapLimit(mmap_limit); } EnvPosixTest() : env_(Env::Default()) {} Env* env_; }; TEST(EnvPosixTest, TestOpenOnRead) { // Write some test data to a single file that will be opened |n| times. std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string test_file = test_dir + "/open_on_read.txt"; FILE* f = fopen(test_file.c_str(), "we"); ASSERT_TRUE(f != nullptr); const char kFileData[] = "abcdefghijklmnopqrstuvwxyz"; fputs(kFileData, f); fclose(f); // Open test file some number above the sum of the two limits to force // open-on-read behavior of POSIX Env leveldb::RandomAccessFile. const int kNumFiles = kReadOnlyFileLimit + kMMapLimit + 5; leveldb::RandomAccessFile* files[kNumFiles] = {0}; for (int i = 0; i < kNumFiles; i++) { ASSERT_OK(env_->NewRandomAccessFile(test_file, &files[i])); } char scratch; Slice read_result; for (int i = 0; i < kNumFiles; i++) { ASSERT_OK(files[i]->Read(i, 1, &read_result, &scratch)); ASSERT_EQ(kFileData[i], read_result[0]); } for (int i = 0; i < kNumFiles; i++) { delete files[i]; } ASSERT_OK(env_->DeleteFile(test_file)); } #if HAVE_O_CLOEXEC TEST(EnvPosixTest, TestCloseOnExecSequentialFile) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_sequential.txt"; ASSERT_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::SequentialFile* file = nullptr; ASSERT_OK(env_->NewSequentialFile(file_path, &file)); CheckCloseOnExecDoesNotLeakFDs(open_fds); delete file; ASSERT_OK(env_->DeleteFile(file_path)); } TEST(EnvPosixTest, TestCloseOnExecRandomAccessFile) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_random_access.txt"; ASSERT_OK(WriteStringToFile(env_, "0123456789", file_path)); // Exhaust the RandomAccessFile mmap limit. This way, the test // RandomAccessFile instance below is backed by a file descriptor, not by an // mmap region. leveldb::RandomAccessFile* mmapped_files[kReadOnlyFileLimit] = {nullptr}; for (int i = 0; i < kReadOnlyFileLimit; i++) { ASSERT_OK(env_->NewRandomAccessFile(file_path, &mmapped_files[i])); } leveldb::RandomAccessFile* file = nullptr; ASSERT_OK(env_->NewRandomAccessFile(file_path, &file)); CheckCloseOnExecDoesNotLeakFDs(open_fds); delete file; for (int i = 0; i < kReadOnlyFileLimit; i++) { delete mmapped_files[i]; } ASSERT_OK(env_->DeleteFile(file_path)); } TEST(EnvPosixTest, TestCloseOnExecWritableFile) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_writable.txt"; ASSERT_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::WritableFile* file = nullptr; ASSERT_OK(env_->NewWritableFile(file_path, &file)); CheckCloseOnExecDoesNotLeakFDs(open_fds); delete file; ASSERT_OK(env_->DeleteFile(file_path)); } TEST(EnvPosixTest, TestCloseOnExecAppendableFile) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_appendable.txt"; ASSERT_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::WritableFile* file = nullptr; ASSERT_OK(env_->NewAppendableFile(file_path, &file)); CheckCloseOnExecDoesNotLeakFDs(open_fds); delete file; ASSERT_OK(env_->DeleteFile(file_path)); } TEST(EnvPosixTest, TestCloseOnExecLockFile) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_lock.txt"; ASSERT_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::FileLock* lock = nullptr; ASSERT_OK(env_->LockFile(file_path, &lock)); CheckCloseOnExecDoesNotLeakFDs(open_fds); ASSERT_OK(env_->UnlockFile(lock)); ASSERT_OK(env_->DeleteFile(file_path)); } TEST(EnvPosixTest, TestCloseOnExecLogger) { std::unordered_set<int> open_fds; GetOpenFileDescriptors(&open_fds); std::string test_dir; ASSERT_OK(env_->GetTestDirectory(&test_dir)); std::string file_path = test_dir + "/close_on_exec_logger.txt"; ASSERT_OK(WriteStringToFile(env_, "0123456789", file_path)); leveldb::Logger* file = nullptr; ASSERT_OK(env_->NewLogger(file_path, &file)); CheckCloseOnExecDoesNotLeakFDs(open_fds); delete file; ASSERT_OK(env_->DeleteFile(file_path)); } #endif // HAVE_O_CLOEXEC } // namespace leveldb int main(int argc, char** argv) { #if HAVE_O_CLOEXEC // Check if we're invoked as a helper program, or as the test suite. for (int i = 1; i < argc; ++i) { if (!std::strcmp(argv[i], kTestCloseOnExecSwitch)) { return TestCloseOnExecHelperMain(argv[i + 1]); } } // Save argv[0] early, because googletest may modify argv. GetArgvZero()->assign(argv[0], argv[0] + std::strlen(argv[0]) + 1); #endif // HAVE_O_CLOEXEC // All tests currently run with the same read-only file limits. leveldb::EnvPosixTest::SetFileLimits(leveldb::kReadOnlyFileLimit, leveldb::kMMapLimit); return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/hash.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // Simple hash function used for internal data structures #ifndef STORAGE_LEVELDB_UTIL_HASH_H_ #define STORAGE_LEVELDB_UTIL_HASH_H_ #include <stddef.h> #include <stdint.h> namespace leveldb { uint32_t Hash(const char* data, size_t n, uint32_t seed); } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_HASH_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/windows_logger.h
// Copyright (c) 2018 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // Logger implementation for the Windows platform. #ifndef STORAGE_LEVELDB_UTIL_WINDOWS_LOGGER_H_ #define STORAGE_LEVELDB_UTIL_WINDOWS_LOGGER_H_ #include <cassert> #include <cstdarg> #include <cstdio> #include <ctime> #include <sstream> #include <thread> #include "leveldb/env.h" namespace leveldb { class WindowsLogger final : public Logger { public: // Creates a logger that writes to the given file. // // The PosixLogger instance takes ownership of the file handle. explicit WindowsLogger(std::FILE* fp) : fp_(fp) { assert(fp != nullptr); } ~WindowsLogger() override { std::fclose(fp_); } void Logv(const char* format, va_list arguments) override { // Record the time as close to the Logv() call as possible. SYSTEMTIME now_components; ::GetLocalTime(&now_components); // Record the thread ID. constexpr const int kMaxThreadIdSize = 32; std::ostringstream thread_stream; thread_stream << std::this_thread::get_id(); std::string thread_id = thread_stream.str(); if (thread_id.size() > kMaxThreadIdSize) { thread_id.resize(kMaxThreadIdSize); } // We first attempt to print into a stack-allocated buffer. If this attempt // fails, we make a second attempt with a dynamically allocated buffer. constexpr const int kStackBufferSize = 512; char stack_buffer[kStackBufferSize]; static_assert(sizeof(stack_buffer) == static_cast<size_t>(kStackBufferSize), "sizeof(char) is expected to be 1 in C++"); int dynamic_buffer_size = 0; // Computed in the first iteration. for (int iteration = 0; iteration < 2; ++iteration) { const int buffer_size = (iteration == 0) ? kStackBufferSize : dynamic_buffer_size; char* const buffer = (iteration == 0) ? stack_buffer : new char[dynamic_buffer_size]; // Print the header into the buffer. int buffer_offset = snprintf( buffer, buffer_size, "%04d/%02d/%02d-%02d:%02d:%02d.%06d %s ", now_components.wYear, now_components.wMonth, now_components.wDay, now_components.wHour, now_components.wMinute, now_components.wSecond, static_cast<int>(now_components.wMilliseconds * 1000), thread_id.c_str()); // The header can be at most 28 characters (10 date + 15 time + // 3 delimiters) plus the thread ID, which should fit comfortably into the // static buffer. assert(buffer_offset <= 28 + kMaxThreadIdSize); static_assert(28 + kMaxThreadIdSize < kStackBufferSize, "stack-allocated buffer may not fit the message header"); assert(buffer_offset < buffer_size); // Print the message into the buffer. std::va_list arguments_copy; va_copy(arguments_copy, arguments); buffer_offset += std::vsnprintf(buffer + buffer_offset, buffer_size - buffer_offset, format, arguments_copy); va_end(arguments_copy); // The code below may append a newline at the end of the buffer, which // requires an extra character. if (buffer_offset >= buffer_size - 1) { // The message did not fit into the buffer. if (iteration == 0) { // Re-run the loop and use a dynamically-allocated buffer. The buffer // will be large enough for the log message, an extra newline and a // null terminator. dynamic_buffer_size = buffer_offset + 2; continue; } // The dynamically-allocated buffer was incorrectly sized. This should // not happen, assuming a correct implementation of (v)snprintf. Fail // in tests, recover by truncating the log message in production. assert(false); buffer_offset = buffer_size - 1; } // Add a newline if necessary. if (buffer[buffer_offset - 1] != '\n') { buffer[buffer_offset] = '\n'; ++buffer_offset; } assert(buffer_offset <= buffer_size); std::fwrite(buffer, 1, buffer_offset, fp_); std::fflush(fp_); if (iteration != 0) { delete[] buffer; } break; } } private: std::FILE* const fp_; }; } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_WINDOWS_LOGGER_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/random.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_UTIL_RANDOM_H_ #define STORAGE_LEVELDB_UTIL_RANDOM_H_ #include <stdint.h> namespace leveldb { // A very simple random number generator. Not especially good at // generating truly random bits, but good enough for our needs in this // package. class Random { private: uint32_t seed_; public: explicit Random(uint32_t s) : seed_(s & 0x7fffffffu) { // Avoid bad seeds. if (seed_ == 0 || seed_ == 2147483647L) { seed_ = 1; } } uint32_t Next() { static const uint32_t M = 2147483647L; // 2^31-1 static const uint64_t A = 16807; // bits 14, 8, 7, 5, 2, 1, 0 // We are computing // seed_ = (seed_ * A) % M, where M = 2^31-1 // // seed_ must not be zero or M, or else all subsequent computed values // will be zero or M respectively. For all other values, seed_ will end // up cycling through every number in [1,M-1] uint64_t product = seed_ * A; // Compute (product % M) using the fact that ((x << 31) % M) == x. seed_ = static_cast<uint32_t>((product >> 31) + (product & M)); // The first reduction may overflow by 1 bit, so we may need to // repeat. mod == M is not possible; using > allows the faster // sign-bit-based test. if (seed_ > M) { seed_ -= M; } return seed_; } // Returns a uniformly distributed value in the range [0..n-1] // REQUIRES: n > 0 uint32_t Uniform(int n) { return Next() % n; } // Randomly returns true ~"1/n" of the time, and false otherwise. // REQUIRES: n > 0 bool OneIn(int n) { return (Next() % n) == 0; } // Skewed: pick "base" uniformly from range [0,max_log] and then // return "base" random bits. The effect is to pick a number in the // range [0,2^max_log-1] with exponential bias towards smaller numbers. uint32_t Skewed(int max_log) { return Uniform(1 << Uniform(max_log + 1)); } }; } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_RANDOM_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/env_posix.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include <dirent.h> #include <fcntl.h> #include <pthread.h> #include <sys/mman.h> #include <sys/resource.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/types.h> #include <unistd.h> #include <atomic> #include <cerrno> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <limits> #include <queue> #include <set> #include <string> #include <thread> #include <type_traits> #include <utility> #include "leveldb/env.h" #include "leveldb/slice.h" #include "leveldb/status.h" #include "port/port.h" #include "port/thread_annotations.h" #include "util/env_posix_test_helper.h" #include "util/posix_logger.h" namespace leveldb { namespace { // Set by EnvPosixTestHelper::SetReadOnlyMMapLimit() and MaxOpenFiles(). int g_open_read_only_file_limit = -1; // Up to 4096 mmap regions for 64-bit binaries; none for 32-bit. constexpr const int kDefaultMmapLimit = (sizeof(void*) >= 8) ? 4096 : 0; // Can be set using EnvPosixTestHelper::SetReadOnlyMMapLimit(). int g_mmap_limit = kDefaultMmapLimit; // Common flags defined for all posix open operations #if HAVE_O_CLOEXEC constexpr const int kOpenBaseFlags = O_CLOEXEC; #else constexpr const int kOpenBaseFlags = 0; #endif // defined(HAVE_O_CLOEXEC) constexpr const size_t kWritableFileBufferSize = 65536; Status PosixError(const std::string& context, int error_number) { if (error_number == ENOENT) { return Status::NotFound(context, std::strerror(error_number)); } else { return Status::IOError(context, std::strerror(error_number)); } } // Helper class to limit resource usage to avoid exhaustion. // Currently used to limit read-only file descriptors and mmap file usage // so that we do not run out of file descriptors or virtual memory, or run into // kernel performance problems for very large databases. class Limiter { public: // Limit maximum number of resources to |max_acquires|. Limiter(int max_acquires) : acquires_allowed_(max_acquires) {} Limiter(const Limiter&) = delete; Limiter operator=(const Limiter&) = delete; // If another resource is available, acquire it and return true. // Else return false. bool Acquire() { int old_acquires_allowed = acquires_allowed_.fetch_sub(1, std::memory_order_relaxed); if (old_acquires_allowed > 0) return true; acquires_allowed_.fetch_add(1, std::memory_order_relaxed); return false; } // Release a resource acquired by a previous call to Acquire() that returned // true. void Release() { acquires_allowed_.fetch_add(1, std::memory_order_relaxed); } private: // The number of available resources. // // This is a counter and is not tied to the invariants of any other class, so // it can be operated on safely using std::memory_order_relaxed. std::atomic<int> acquires_allowed_; }; // Implements sequential read access in a file using read(). // // Instances of this class are thread-friendly but not thread-safe, as required // by the SequentialFile API. class PosixSequentialFile final : public SequentialFile { public: PosixSequentialFile(std::string filename, int fd) : fd_(fd), filename_(filename) {} ~PosixSequentialFile() override { close(fd_); } Status Read(size_t n, Slice* result, char* scratch) override { Status status; while (true) { ::ssize_t read_size = ::read(fd_, scratch, n); if (read_size < 0) { // Read error. if (errno == EINTR) { continue; // Retry } status = PosixError(filename_, errno); break; } *result = Slice(scratch, read_size); break; } return status; } Status Skip(uint64_t n) override { if (::lseek(fd_, n, SEEK_CUR) == static_cast<off_t>(-1)) { return PosixError(filename_, errno); } return Status::OK(); } virtual std::string GetName() const override { return filename_; } private: const int fd_; const std::string filename_; }; // Implements random read access in a file using pread(). // // Instances of this class are thread-safe, as required by the RandomAccessFile // API. Instances are immutable and Read() only calls thread-safe library // functions. class PosixRandomAccessFile final : public RandomAccessFile { public: // The new instance takes ownership of |fd|. |fd_limiter| must outlive this // instance, and will be used to determine if . PosixRandomAccessFile(std::string filename, int fd, Limiter* fd_limiter) : has_permanent_fd_(fd_limiter->Acquire()), fd_(has_permanent_fd_ ? fd : -1), fd_limiter_(fd_limiter), filename_(std::move(filename)) { if (!has_permanent_fd_) { assert(fd_ == -1); ::close(fd); // The file will be opened on every read. } } ~PosixRandomAccessFile() override { if (has_permanent_fd_) { assert(fd_ != -1); ::close(fd_); fd_limiter_->Release(); } } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { int fd = fd_; if (!has_permanent_fd_) { fd = ::open(filename_.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { return PosixError(filename_, errno); } } assert(fd != -1); Status status; ssize_t read_size = ::pread(fd, scratch, n, static_cast<off_t>(offset)); *result = Slice(scratch, (read_size < 0) ? 0 : read_size); if (read_size < 0) { // An error: return a non-ok status. status = PosixError(filename_, errno); } if (!has_permanent_fd_) { // Close the temporary file descriptor opened earlier. assert(fd != fd_); ::close(fd); } return status; } virtual std::string GetName() const override { return filename_; } private: const bool has_permanent_fd_; // If false, the file is opened on every read. const int fd_; // -1 if has_permanent_fd_ is false. Limiter* const fd_limiter_; const std::string filename_; }; // Implements random read access in a file using mmap(). // // Instances of this class are thread-safe, as required by the RandomAccessFile // API. Instances are immutable and Read() only calls thread-safe library // functions. class PosixMmapReadableFile final : public RandomAccessFile { public: // mmap_base[0, length-1] points to the memory-mapped contents of the file. It // must be the result of a successful call to mmap(). This instances takes // over the ownership of the region. // // |mmap_limiter| must outlive this instance. The caller must have already // aquired the right to use one mmap region, which will be released when this // instance is destroyed. PosixMmapReadableFile(std::string filename, char* mmap_base, size_t length, Limiter* mmap_limiter) : mmap_base_(mmap_base), length_(length), mmap_limiter_(mmap_limiter), filename_(std::move(filename)) {} ~PosixMmapReadableFile() override { ::munmap(static_cast<void*>(mmap_base_), length_); mmap_limiter_->Release(); } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { if (offset + n > length_) { *result = Slice(); return PosixError(filename_, EINVAL); } *result = Slice(mmap_base_ + offset, n); return Status::OK(); } virtual std::string GetName() const override { return filename_; } private: char* const mmap_base_; const size_t length_; Limiter* const mmap_limiter_; const std::string filename_; }; class PosixWritableFile final : public WritableFile { public: PosixWritableFile(std::string filename, int fd) : pos_(0), fd_(fd), is_manifest_(IsManifest(filename)), filename_(std::move(filename)), dirname_(Dirname(filename_)) {} ~PosixWritableFile() override { if (fd_ >= 0) { // Ignoring any potential errors Close(); } } Status Append(const Slice& data) override { size_t write_size = data.size(); const char* write_data = data.data(); // Fit as much as possible into buffer. size_t copy_size = std::min(write_size, kWritableFileBufferSize - pos_); std::memcpy(buf_ + pos_, write_data, copy_size); write_data += copy_size; write_size -= copy_size; pos_ += copy_size; if (write_size == 0) { return Status::OK(); } // Can't fit in buffer, so need to do at least one write. Status status = FlushBuffer(); if (!status.ok()) { return status; } // Small writes go to buffer, large writes are written directly. if (write_size < kWritableFileBufferSize) { std::memcpy(buf_, write_data, write_size); pos_ = write_size; return Status::OK(); } return WriteUnbuffered(write_data, write_size); } Status Close() override { Status status = FlushBuffer(); const int close_result = ::close(fd_); if (close_result < 0 && status.ok()) { status = PosixError(filename_, errno); } fd_ = -1; return status; } Status Flush() override { return FlushBuffer(); } Status Sync() override { // Ensure new files referred to by the manifest are in the filesystem. // // This needs to happen before the manifest file is flushed to disk, to // avoid crashing in a state where the manifest refers to files that are not // yet on disk. Status status = SyncDirIfManifest(); if (!status.ok()) { return status; } status = FlushBuffer(); if (!status.ok()) { return status; } return SyncFd(fd_, filename_, false); } private: Status FlushBuffer() { Status status = WriteUnbuffered(buf_, pos_); pos_ = 0; return status; } Status WriteUnbuffered(const char* data, size_t size) { while (size > 0) { ssize_t write_result = ::write(fd_, data, size); if (write_result < 0) { if (errno == EINTR) { continue; // Retry } return PosixError(filename_, errno); } data += write_result; size -= write_result; } return Status::OK(); } Status SyncDirIfManifest() { Status status; if (!is_manifest_) { return status; } int fd = ::open(dirname_.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { status = PosixError(dirname_, errno); } else { status = SyncFd(fd, dirname_, true); ::close(fd); } return status; } // Ensures that all the caches associated with the given file descriptor's // data are flushed all the way to durable media, and can withstand power // failures. // // The path argument is only used to populate the description string in the // returned Status if an error occurs. static Status SyncFd(int fd, const std::string& fd_path, bool syncing_dir) { #if HAVE_FULLFSYNC // On macOS and iOS, fsync() doesn't guarantee durability past power // failures. fcntl(F_FULLFSYNC) is required for that purpose. Some // filesystems don't support fcntl(F_FULLFSYNC), and require a fallback to // fsync(). if (::fcntl(fd, F_FULLFSYNC) == 0) { return Status::OK(); } #endif // HAVE_FULLFSYNC #if HAVE_FDATASYNC bool sync_success = ::fdatasync(fd) == 0; #else bool sync_success = ::fsync(fd) == 0; #endif // HAVE_FDATASYNC if (sync_success) { return Status::OK(); } // Do not crash if filesystem can't fsync directories // (see https://github.com/bitcoin/bitcoin/pull/10000) if (syncing_dir && errno == EINVAL) { return Status::OK(); } return PosixError(fd_path, errno); } // Returns the directory name in a path pointing to a file. // // Returns "." if the path does not contain any directory separator. static std::string Dirname(const std::string& filename) { std::string::size_type separator_pos = filename.rfind('/'); if (separator_pos == std::string::npos) { return std::string("."); } // The filename component should not contain a path separator. If it does, // the splitting was done incorrectly. assert(filename.find('/', separator_pos + 1) == std::string::npos); return filename.substr(0, separator_pos); } // Extracts the file name from a path pointing to a file. // // The returned Slice points to |filename|'s data buffer, so it is only valid // while |filename| is alive and unchanged. static Slice Basename(const std::string& filename) { std::string::size_type separator_pos = filename.rfind('/'); if (separator_pos == std::string::npos) { return Slice(filename); } // The filename component should not contain a path separator. If it does, // the splitting was done incorrectly. assert(filename.find('/', separator_pos + 1) == std::string::npos); return Slice(filename.data() + separator_pos + 1, filename.length() - separator_pos - 1); } // True if the given file is a manifest file. static bool IsManifest(const std::string& filename) { return Basename(filename).starts_with("MANIFEST"); } virtual std::string GetName() const override { return filename_; } // buf_[0, pos_ - 1] contains data to be written to fd_. char buf_[kWritableFileBufferSize]; size_t pos_; int fd_; const bool is_manifest_; // True if the file's name starts with MANIFEST. const std::string filename_; const std::string dirname_; // The directory of filename_. }; int LockOrUnlock(int fd, bool lock) { errno = 0; struct ::flock file_lock_info; std::memset(&file_lock_info, 0, sizeof(file_lock_info)); file_lock_info.l_type = (lock ? F_WRLCK : F_UNLCK); file_lock_info.l_whence = SEEK_SET; file_lock_info.l_start = 0; file_lock_info.l_len = 0; // Lock/unlock entire file. return ::fcntl(fd, F_SETLK, &file_lock_info); } // Instances are thread-safe because they are immutable. class PosixFileLock : public FileLock { public: PosixFileLock(int fd, std::string filename) : fd_(fd), filename_(std::move(filename)) {} int fd() const { return fd_; } const std::string& filename() const { return filename_; } private: const int fd_; const std::string filename_; }; // Tracks the files locked by PosixEnv::LockFile(). // // We maintain a separate set instead of relying on fcntl(F_SETLK) because // fcntl(F_SETLK) does not provide any protection against multiple uses from the // same process. // // Instances are thread-safe because all member data is guarded by a mutex. class PosixLockTable { public: bool Insert(const std::string& fname) LOCKS_EXCLUDED(mu_) { mu_.Lock(); bool succeeded = locked_files_.insert(fname).second; mu_.Unlock(); return succeeded; } void Remove(const std::string& fname) LOCKS_EXCLUDED(mu_) { mu_.Lock(); locked_files_.erase(fname); mu_.Unlock(); } private: port::Mutex mu_; std::set<std::string> locked_files_ GUARDED_BY(mu_); }; class PosixEnv : public Env { public: PosixEnv(); ~PosixEnv() override { static const char msg[] = "PosixEnv singleton destroyed. Unsupported behavior!\n"; std::fwrite(msg, 1, sizeof(msg), stderr); std::abort(); } Status NewSequentialFile(const std::string& filename, SequentialFile** result) override { int fd = ::open(filename.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } *result = new PosixSequentialFile(filename, fd); return Status::OK(); } Status NewRandomAccessFile(const std::string& filename, RandomAccessFile** result) override { *result = nullptr; int fd = ::open(filename.c_str(), O_RDONLY | kOpenBaseFlags); if (fd < 0) { return PosixError(filename, errno); } if (!mmap_limiter_.Acquire()) { *result = new PosixRandomAccessFile(filename, fd, &fd_limiter_); return Status::OK(); } uint64_t file_size; Status status = GetFileSize(filename, &file_size); if (status.ok()) { void* mmap_base = ::mmap(/*addr=*/nullptr, file_size, PROT_READ, MAP_SHARED, fd, 0); if (mmap_base != MAP_FAILED) { *result = new PosixMmapReadableFile(filename, reinterpret_cast<char*>(mmap_base), file_size, &mmap_limiter_); } else { status = PosixError(filename, errno); } } ::close(fd); if (!status.ok()) { mmap_limiter_.Release(); } return status; } Status NewWritableFile(const std::string& filename, WritableFile** result) override { int fd = ::open(filename.c_str(), O_TRUNC | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } *result = new PosixWritableFile(filename, fd); return Status::OK(); } Status NewAppendableFile(const std::string& filename, WritableFile** result) override { int fd = ::open(filename.c_str(), O_APPEND | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } *result = new PosixWritableFile(filename, fd); return Status::OK(); } bool FileExists(const std::string& filename) override { return ::access(filename.c_str(), F_OK) == 0; } Status GetChildren(const std::string& directory_path, std::vector<std::string>* result) override { result->clear(); ::DIR* dir = ::opendir(directory_path.c_str()); if (dir == nullptr) { return PosixError(directory_path, errno); } struct ::dirent* entry; while ((entry = ::readdir(dir)) != nullptr) { result->emplace_back(entry->d_name); } ::closedir(dir); return Status::OK(); } Status DeleteFile(const std::string& filename) override { if (::unlink(filename.c_str()) != 0) { return PosixError(filename, errno); } return Status::OK(); } Status CreateDir(const std::string& dirname) override { if (::mkdir(dirname.c_str(), 0755) != 0) { return PosixError(dirname, errno); } return Status::OK(); } Status DeleteDir(const std::string& dirname) override { if (::rmdir(dirname.c_str()) != 0) { return PosixError(dirname, errno); } return Status::OK(); } Status GetFileSize(const std::string& filename, uint64_t* size) override { struct ::stat file_stat; if (::stat(filename.c_str(), &file_stat) != 0) { *size = 0; return PosixError(filename, errno); } *size = file_stat.st_size; return Status::OK(); } Status RenameFile(const std::string& from, const std::string& to) override { if (std::rename(from.c_str(), to.c_str()) != 0) { return PosixError(from, errno); } return Status::OK(); } Status LockFile(const std::string& filename, FileLock** lock) override { *lock = nullptr; int fd = ::open(filename.c_str(), O_RDWR | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { return PosixError(filename, errno); } if (!locks_.Insert(filename)) { ::close(fd); return Status::IOError("lock " + filename, "already held by process"); } if (LockOrUnlock(fd, true) == -1) { int lock_errno = errno; ::close(fd); locks_.Remove(filename); return PosixError("lock " + filename, lock_errno); } *lock = new PosixFileLock(fd, filename); return Status::OK(); } Status UnlockFile(FileLock* lock) override { PosixFileLock* posix_file_lock = static_cast<PosixFileLock*>(lock); if (LockOrUnlock(posix_file_lock->fd(), false) == -1) { return PosixError("unlock " + posix_file_lock->filename(), errno); } locks_.Remove(posix_file_lock->filename()); ::close(posix_file_lock->fd()); delete posix_file_lock; return Status::OK(); } void Schedule(void (*background_work_function)(void* background_work_arg), void* background_work_arg) override; void StartThread(void (*thread_main)(void* thread_main_arg), void* thread_main_arg) override { std::thread new_thread(thread_main, thread_main_arg); new_thread.detach(); } Status GetTestDirectory(std::string* result) override { const char* env = std::getenv("TEST_TMPDIR"); if (env && env[0] != '\0') { *result = env; } else { char buf[100]; std::snprintf(buf, sizeof(buf), "/tmp/leveldbtest-%d", static_cast<int>(::geteuid())); *result = buf; } // The CreateDir status is ignored because the directory may already exist. CreateDir(*result); return Status::OK(); } Status NewLogger(const std::string& filename, Logger** result) override { int fd = ::open(filename.c_str(), O_APPEND | O_WRONLY | O_CREAT | kOpenBaseFlags, 0644); if (fd < 0) { *result = nullptr; return PosixError(filename, errno); } std::FILE* fp = ::fdopen(fd, "w"); if (fp == nullptr) { ::close(fd); *result = nullptr; return PosixError(filename, errno); } else { *result = new PosixLogger(fp); return Status::OK(); } } uint64_t NowMicros() override { static constexpr uint64_t kUsecondsPerSecond = 1000000; struct ::timeval tv; ::gettimeofday(&tv, nullptr); return static_cast<uint64_t>(tv.tv_sec) * kUsecondsPerSecond + tv.tv_usec; } void SleepForMicroseconds(int micros) override { std::this_thread::sleep_for(std::chrono::microseconds(micros)); } private: void BackgroundThreadMain(); static void BackgroundThreadEntryPoint(PosixEnv* env) { env->BackgroundThreadMain(); } // Stores the work item data in a Schedule() call. // // Instances are constructed on the thread calling Schedule() and used on the // background thread. // // This structure is thread-safe beacuse it is immutable. struct BackgroundWorkItem { explicit BackgroundWorkItem(void (*function)(void* arg), void* arg) : function(function), arg(arg) {} void (*const function)(void*); void* const arg; }; port::Mutex background_work_mutex_; port::CondVar background_work_cv_ GUARDED_BY(background_work_mutex_); bool started_background_thread_ GUARDED_BY(background_work_mutex_); std::queue<BackgroundWorkItem> background_work_queue_ GUARDED_BY(background_work_mutex_); PosixLockTable locks_; // Thread-safe. Limiter mmap_limiter_; // Thread-safe. Limiter fd_limiter_; // Thread-safe. }; // Return the maximum number of concurrent mmaps. int MaxMmaps() { return g_mmap_limit; } // Return the maximum number of read-only files to keep open. int MaxOpenFiles() { if (g_open_read_only_file_limit >= 0) { return g_open_read_only_file_limit; } struct ::rlimit rlim; if (::getrlimit(RLIMIT_NOFILE, &rlim)) { // getrlimit failed, fallback to hard-coded default. g_open_read_only_file_limit = 50; } else if (rlim.rlim_cur == RLIM_INFINITY) { g_open_read_only_file_limit = std::numeric_limits<int>::max(); } else { // Allow use of 20% of available file descriptors for read-only files. g_open_read_only_file_limit = rlim.rlim_cur / 5; } return g_open_read_only_file_limit; } } // namespace PosixEnv::PosixEnv() : background_work_cv_(&background_work_mutex_), started_background_thread_(false), mmap_limiter_(MaxMmaps()), fd_limiter_(MaxOpenFiles()) {} void PosixEnv::Schedule( void (*background_work_function)(void* background_work_arg), void* background_work_arg) { background_work_mutex_.Lock(); // Start the background thread, if we haven't done so already. if (!started_background_thread_) { started_background_thread_ = true; std::thread background_thread(PosixEnv::BackgroundThreadEntryPoint, this); background_thread.detach(); } // If the queue is empty, the background thread may be waiting for work. if (background_work_queue_.empty()) { background_work_cv_.Signal(); } background_work_queue_.emplace(background_work_function, background_work_arg); background_work_mutex_.Unlock(); } void PosixEnv::BackgroundThreadMain() { while (true) { background_work_mutex_.Lock(); // Wait until there is work to be done. while (background_work_queue_.empty()) { background_work_cv_.Wait(); } assert(!background_work_queue_.empty()); auto background_work_function = background_work_queue_.front().function; void* background_work_arg = background_work_queue_.front().arg; background_work_queue_.pop(); background_work_mutex_.Unlock(); background_work_function(background_work_arg); } } namespace { // Wraps an Env instance whose destructor is never created. // // Intended usage: // using PlatformSingletonEnv = SingletonEnv<PlatformEnv>; // void ConfigurePosixEnv(int param) { // PlatformSingletonEnv::AssertEnvNotInitialized(); // // set global configuration flags. // } // Env* Env::Default() { // static PlatformSingletonEnv default_env; // return default_env.env(); // } template <typename EnvType> class SingletonEnv { public: SingletonEnv() { #if !defined(NDEBUG) env_initialized_.store(true, std::memory_order_relaxed); #endif // !defined(NDEBUG) static_assert(sizeof(env_storage_) >= sizeof(EnvType), "env_storage_ will not fit the Env"); static_assert(alignof(decltype(env_storage_)) >= alignof(EnvType), "env_storage_ does not meet the Env's alignment needs"); new (&env_storage_) EnvType(); } ~SingletonEnv() = default; SingletonEnv(const SingletonEnv&) = delete; SingletonEnv& operator=(const SingletonEnv&) = delete; Env* env() { return reinterpret_cast<Env*>(&env_storage_); } static void AssertEnvNotInitialized() { #if !defined(NDEBUG) assert(!env_initialized_.load(std::memory_order_relaxed)); #endif // !defined(NDEBUG) } private: typename std::aligned_storage<sizeof(EnvType), alignof(EnvType)>::type env_storage_; #if !defined(NDEBUG) static std::atomic<bool> env_initialized_; #endif // !defined(NDEBUG) }; #if !defined(NDEBUG) template <typename EnvType> std::atomic<bool> SingletonEnv<EnvType>::env_initialized_; #endif // !defined(NDEBUG) using PosixDefaultEnv = SingletonEnv<PosixEnv>; } // namespace void EnvPosixTestHelper::SetReadOnlyFDLimit(int limit) { PosixDefaultEnv::AssertEnvNotInitialized(); g_open_read_only_file_limit = limit; } void EnvPosixTestHelper::SetReadOnlyMMapLimit(int limit) { PosixDefaultEnv::AssertEnvNotInitialized(); g_mmap_limit = limit; } Env* Env::Default() { static PosixDefaultEnv env_container; return env_container.env(); } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/testutil.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_UTIL_TESTUTIL_H_ #define STORAGE_LEVELDB_UTIL_TESTUTIL_H_ #include "helpers/memenv/memenv.h" #include "leveldb/env.h" #include "leveldb/slice.h" #include "util/random.h" namespace leveldb { namespace test { // Store in *dst a random string of length "len" and return a Slice that // references the generated data. Slice RandomString(Random* rnd, int len, std::string* dst); // Return a random key with the specified length that may contain interesting // characters (e.g. \x00, \xff, etc.). std::string RandomKey(Random* rnd, int len); // Store in *dst a string of length "len" that will compress to // "N*compressed_fraction" bytes and return a Slice that references // the generated data. Slice CompressibleString(Random* rnd, double compressed_fraction, size_t len, std::string* dst); // A wrapper that allows injection of errors. class ErrorEnv : public EnvWrapper { public: bool writable_file_error_; int num_writable_file_errors_; ErrorEnv() : EnvWrapper(NewMemEnv(Env::Default())), writable_file_error_(false), num_writable_file_errors_(0) {} ~ErrorEnv() override { delete target(); } Status NewWritableFile(const std::string& fname, WritableFile** result) override { if (writable_file_error_) { ++num_writable_file_errors_; *result = nullptr; return Status::IOError(fname, "fake error"); } return target()->NewWritableFile(fname, result); } Status NewAppendableFile(const std::string& fname, WritableFile** result) override { if (writable_file_error_) { ++num_writable_file_errors_; *result = nullptr; return Status::IOError(fname, "fake error"); } return target()->NewAppendableFile(fname, result); } }; } // namespace test } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_TESTUTIL_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/no_destructor.h
// Copyright (c) 2018 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_UTIL_NO_DESTRUCTOR_H_ #define STORAGE_LEVELDB_UTIL_NO_DESTRUCTOR_H_ #include <type_traits> #include <utility> namespace leveldb { // Wraps an instance whose destructor is never called. // // This is intended for use with function-level static variables. template <typename InstanceType> class NoDestructor { public: template <typename... ConstructorArgTypes> explicit NoDestructor(ConstructorArgTypes&&... constructor_args) { static_assert(sizeof(instance_storage_) >= sizeof(InstanceType), "instance_storage_ is not large enough to hold the instance"); static_assert( alignof(decltype(instance_storage_)) >= alignof(InstanceType), "instance_storage_ does not meet the instance's alignment requirement"); new (&instance_storage_) InstanceType(std::forward<ConstructorArgTypes>(constructor_args)...); } ~NoDestructor() = default; NoDestructor(const NoDestructor&) = delete; NoDestructor& operator=(const NoDestructor&) = delete; InstanceType* get() { return reinterpret_cast<InstanceType*>(&instance_storage_); } private: typename std::aligned_storage<sizeof(InstanceType), alignof(InstanceType)>::type instance_storage_; }; } // namespace leveldb #endif // STORAGE_LEVELDB_UTIL_NO_DESTRUCTOR_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/env.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/env.h" namespace leveldb { Env::~Env() = default; Status Env::NewAppendableFile(const std::string& fname, WritableFile** result) { return Status::NotSupported("NewAppendableFile", fname); } SequentialFile::~SequentialFile() = default; RandomAccessFile::~RandomAccessFile() = default; WritableFile::~WritableFile() = default; Logger::~Logger() = default; FileLock::~FileLock() = default; void Log(Logger* info_log, const char* format, ...) { if (info_log != nullptr) { va_list ap; va_start(ap, format); info_log->Logv(format, ap); va_end(ap); } } static Status DoWriteStringToFile(Env* env, const Slice& data, const std::string& fname, bool should_sync) { WritableFile* file; Status s = env->NewWritableFile(fname, &file); if (!s.ok()) { return s; } s = file->Append(data); if (s.ok() && should_sync) { s = file->Sync(); } if (s.ok()) { s = file->Close(); } delete file; // Will auto-close if we did not close above if (!s.ok()) { env->DeleteFile(fname); } return s; } Status WriteStringToFile(Env* env, const Slice& data, const std::string& fname) { return DoWriteStringToFile(env, data, fname, false); } Status WriteStringToFileSync(Env* env, const Slice& data, const std::string& fname) { return DoWriteStringToFile(env, data, fname, true); } Status ReadFileToString(Env* env, const std::string& fname, std::string* data) { data->clear(); SequentialFile* file; Status s = env->NewSequentialFile(fname, &file); if (!s.ok()) { return s; } static const int kBufferSize = 8192; char* space = new char[kBufferSize]; while (true) { Slice fragment; s = file->Read(kBufferSize, &fragment, space); if (!s.ok()) { break; } data->append(fragment.data(), fragment.size()); if (fragment.empty()) { break; } } delete[] space; delete file; return s; } EnvWrapper::~EnvWrapper() {} } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/util/no_destructor_test.cc
// Copyright (c) 2018 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include <cstdint> #include <cstdlib> #include <utility> #include "util/no_destructor.h" #include "util/testharness.h" namespace leveldb { namespace { struct DoNotDestruct { public: DoNotDestruct(uint32_t a, uint64_t b) : a(a), b(b) {} ~DoNotDestruct() { std::abort(); } // Used to check constructor argument forwarding. uint32_t a; uint64_t b; }; constexpr const uint32_t kGoldenA = 0xdeadbeef; constexpr const uint64_t kGoldenB = 0xaabbccddeeffaabb; } // namespace class NoDestructorTest {}; TEST(NoDestructorTest, StackInstance) { NoDestructor<DoNotDestruct> instance(kGoldenA, kGoldenB); ASSERT_EQ(kGoldenA, instance.get()->a); ASSERT_EQ(kGoldenB, instance.get()->b); } TEST(NoDestructorTest, StaticInstance) { static NoDestructor<DoNotDestruct> instance(kGoldenA, kGoldenB); ASSERT_EQ(kGoldenA, instance.get()->a); ASSERT_EQ(kGoldenB, instance.get()->b); } } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/env.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // An Env is an interface used by the leveldb implementation to access // operating system functionality like the filesystem etc. Callers // may wish to provide a custom Env object when opening a database to // get fine gain control; e.g., to rate limit file system operations. // // All Env implementations are safe for concurrent access from // multiple threads without any external synchronization. #ifndef STORAGE_LEVELDB_INCLUDE_ENV_H_ #define STORAGE_LEVELDB_INCLUDE_ENV_H_ #include <stdarg.h> #include <stdint.h> #include <string> #include <vector> #include "leveldb/export.h" #include "leveldb/status.h" #if defined(_WIN32) // The leveldb::Env class below contains a DeleteFile method. // At the same time, <windows.h>, a fairly popular header // file for Windows applications, defines a DeleteFile macro. // // Without any intervention on our part, the result of this // unfortunate coincidence is that the name of the // leveldb::Env::DeleteFile method seen by the compiler depends on // whether <windows.h> was included before or after the LevelDB // headers. // // To avoid headaches, we undefined DeleteFile (if defined) and // redefine it at the bottom of this file. This way <windows.h> // can be included before this file (or not at all) and the // exported method will always be leveldb::Env::DeleteFile. #if defined(DeleteFile) #undef DeleteFile #define LEVELDB_DELETEFILE_UNDEFINED #endif // defined(DeleteFile) #endif // defined(_WIN32) namespace leveldb { class FileLock; class Logger; class RandomAccessFile; class SequentialFile; class Slice; class WritableFile; class LEVELDB_EXPORT Env { public: Env() = default; Env(const Env&) = delete; Env& operator=(const Env&) = delete; virtual ~Env(); // Return a default environment suitable for the current operating // system. Sophisticated users may wish to provide their own Env // implementation instead of relying on this default environment. // // The result of Default() belongs to leveldb and must never be deleted. static Env* Default(); // Create an object that sequentially reads the file with the specified name. // On success, stores a pointer to the new file in *result and returns OK. // On failure stores nullptr in *result and returns non-OK. If the file does // not exist, returns a non-OK status. Implementations should return a // NotFound status when the file does not exist. // // The returned file will only be accessed by one thread at a time. virtual Status NewSequentialFile(const std::string& fname, SequentialFile** result) = 0; // Create an object supporting random-access reads from the file with the // specified name. On success, stores a pointer to the new file in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. If the file does not exist, returns a non-OK // status. Implementations should return a NotFound status when the file does // not exist. // // The returned file may be concurrently accessed by multiple threads. virtual Status NewRandomAccessFile(const std::string& fname, RandomAccessFile** result) = 0; // Create an object that writes to a new file with the specified // name. Deletes any existing file with the same name and creates a // new file. On success, stores a pointer to the new file in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. // // The returned file will only be accessed by one thread at a time. virtual Status NewWritableFile(const std::string& fname, WritableFile** result) = 0; // Create an object that either appends to an existing file, or // writes to a new file (if the file does not exist to begin with). // On success, stores a pointer to the new file in *result and // returns OK. On failure stores nullptr in *result and returns // non-OK. // // The returned file will only be accessed by one thread at a time. // // May return an IsNotSupportedError error if this Env does // not allow appending to an existing file. Users of Env (including // the leveldb implementation) must be prepared to deal with // an Env that does not support appending. virtual Status NewAppendableFile(const std::string& fname, WritableFile** result); // Returns true iff the named file exists. virtual bool FileExists(const std::string& fname) = 0; // Store in *result the names of the children of the specified directory. // The names are relative to "dir". // Original contents of *results are dropped. virtual Status GetChildren(const std::string& dir, std::vector<std::string>* result) = 0; // Delete the named file. virtual Status DeleteFile(const std::string& fname) = 0; // Create the specified directory. virtual Status CreateDir(const std::string& dirname) = 0; // Delete the specified directory. virtual Status DeleteDir(const std::string& dirname) = 0; // Store the size of fname in *file_size. virtual Status GetFileSize(const std::string& fname, uint64_t* file_size) = 0; // Rename file src to target. virtual Status RenameFile(const std::string& src, const std::string& target) = 0; // Lock the specified file. Used to prevent concurrent access to // the same db by multiple processes. On failure, stores nullptr in // *lock and returns non-OK. // // On success, stores a pointer to the object that represents the // acquired lock in *lock and returns OK. The caller should call // UnlockFile(*lock) to release the lock. If the process exits, // the lock will be automatically released. // // If somebody else already holds the lock, finishes immediately // with a failure. I.e., this call does not wait for existing locks // to go away. // // May create the named file if it does not already exist. virtual Status LockFile(const std::string& fname, FileLock** lock) = 0; // Release the lock acquired by a previous successful call to LockFile. // REQUIRES: lock was returned by a successful LockFile() call // REQUIRES: lock has not already been unlocked. virtual Status UnlockFile(FileLock* lock) = 0; // Arrange to run "(*function)(arg)" once in a background thread. // // "function" may run in an unspecified thread. Multiple functions // added to the same Env may run concurrently in different threads. // I.e., the caller may not assume that background work items are // serialized. virtual void Schedule(void (*function)(void* arg), void* arg) = 0; // Start a new thread, invoking "function(arg)" within the new thread. // When "function(arg)" returns, the thread will be destroyed. virtual void StartThread(void (*function)(void* arg), void* arg) = 0; // *path is set to a temporary directory that can be used for testing. It may // or may not have just been created. The directory may or may not differ // between runs of the same process, but subsequent calls will return the // same directory. virtual Status GetTestDirectory(std::string* path) = 0; // Create and return a log file for storing informational messages. virtual Status NewLogger(const std::string& fname, Logger** result) = 0; // Returns the number of micro-seconds since some fixed point in time. Only // useful for computing deltas of time. virtual uint64_t NowMicros() = 0; // Sleep/delay the thread for the prescribed number of micro-seconds. virtual void SleepForMicroseconds(int micros) = 0; }; // A file abstraction for reading sequentially through a file class LEVELDB_EXPORT SequentialFile { public: SequentialFile() = default; SequentialFile(const SequentialFile&) = delete; SequentialFile& operator=(const SequentialFile&) = delete; virtual ~SequentialFile(); // Read up to "n" bytes from the file. "scratch[0..n-1]" may be // written by this routine. Sets "*result" to the data that was // read (including if fewer than "n" bytes were successfully read). // May set "*result" to point at data in "scratch[0..n-1]", so // "scratch[0..n-1]" must be live when "*result" is used. // If an error was encountered, returns a non-OK status. // // REQUIRES: External synchronization virtual Status Read(size_t n, Slice* result, char* scratch) = 0; // Skip "n" bytes from the file. This is guaranteed to be no // slower that reading the same data, but may be faster. // // If end of file is reached, skipping will stop at the end of the // file, and Skip will return OK. // // REQUIRES: External synchronization virtual Status Skip(uint64_t n) = 0; // Get a name for the file, only for error reporting virtual std::string GetName() const = 0; }; // A file abstraction for randomly reading the contents of a file. class LEVELDB_EXPORT RandomAccessFile { public: RandomAccessFile() = default; RandomAccessFile(const RandomAccessFile&) = delete; RandomAccessFile& operator=(const RandomAccessFile&) = delete; virtual ~RandomAccessFile(); // Read up to "n" bytes from the file starting at "offset". // "scratch[0..n-1]" may be written by this routine. Sets "*result" // to the data that was read (including if fewer than "n" bytes were // successfully read). May set "*result" to point at data in // "scratch[0..n-1]", so "scratch[0..n-1]" must be live when // "*result" is used. If an error was encountered, returns a non-OK // status. // // Safe for concurrent use by multiple threads. virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const = 0; // Get a name for the file, only for error reporting virtual std::string GetName() const = 0; }; // A file abstraction for sequential writing. The implementation // must provide buffering since callers may append small fragments // at a time to the file. class LEVELDB_EXPORT WritableFile { public: WritableFile() = default; WritableFile(const WritableFile&) = delete; WritableFile& operator=(const WritableFile&) = delete; virtual ~WritableFile(); virtual Status Append(const Slice& data) = 0; virtual Status Close() = 0; virtual Status Flush() = 0; virtual Status Sync() = 0; // Get a name for the file, only for error reporting virtual std::string GetName() const = 0; }; // An interface for writing log messages. class LEVELDB_EXPORT Logger { public: Logger() = default; Logger(const Logger&) = delete; Logger& operator=(const Logger&) = delete; virtual ~Logger(); // Write an entry to the log file with the specified format. virtual void Logv(const char* format, va_list ap) = 0; }; // Identifies a locked file. class LEVELDB_EXPORT FileLock { public: FileLock() = default; FileLock(const FileLock&) = delete; FileLock& operator=(const FileLock&) = delete; virtual ~FileLock(); }; // Log the specified data to *info_log if info_log is non-null. void Log(Logger* info_log, const char* format, ...) #if defined(__GNUC__) || defined(__clang__) __attribute__((__format__(__printf__, 2, 3))) #endif ; // A utility routine: write "data" to the named file. LEVELDB_EXPORT Status WriteStringToFile(Env* env, const Slice& data, const std::string& fname); // A utility routine: read contents of named file into *data LEVELDB_EXPORT Status ReadFileToString(Env* env, const std::string& fname, std::string* data); // An implementation of Env that forwards all calls to another Env. // May be useful to clients who wish to override just part of the // functionality of another Env. class LEVELDB_EXPORT EnvWrapper : public Env { public: // Initialize an EnvWrapper that delegates all calls to *t. explicit EnvWrapper(Env* t) : target_(t) {} virtual ~EnvWrapper(); // Return the target to which this Env forwards all calls. Env* target() const { return target_; } // The following text is boilerplate that forwards all methods to target(). Status NewSequentialFile(const std::string& f, SequentialFile** r) override { return target_->NewSequentialFile(f, r); } Status NewRandomAccessFile(const std::string& f, RandomAccessFile** r) override { return target_->NewRandomAccessFile(f, r); } Status NewWritableFile(const std::string& f, WritableFile** r) override { return target_->NewWritableFile(f, r); } Status NewAppendableFile(const std::string& f, WritableFile** r) override { return target_->NewAppendableFile(f, r); } bool FileExists(const std::string& f) override { return target_->FileExists(f); } Status GetChildren(const std::string& dir, std::vector<std::string>* r) override { return target_->GetChildren(dir, r); } Status DeleteFile(const std::string& f) override { return target_->DeleteFile(f); } Status CreateDir(const std::string& d) override { return target_->CreateDir(d); } Status DeleteDir(const std::string& d) override { return target_->DeleteDir(d); } Status GetFileSize(const std::string& f, uint64_t* s) override { return target_->GetFileSize(f, s); } Status RenameFile(const std::string& s, const std::string& t) override { return target_->RenameFile(s, t); } Status LockFile(const std::string& f, FileLock** l) override { return target_->LockFile(f, l); } Status UnlockFile(FileLock* l) override { return target_->UnlockFile(l); } void Schedule(void (*f)(void*), void* a) override { return target_->Schedule(f, a); } void StartThread(void (*f)(void*), void* a) override { return target_->StartThread(f, a); } Status GetTestDirectory(std::string* path) override { return target_->GetTestDirectory(path); } Status NewLogger(const std::string& fname, Logger** result) override { return target_->NewLogger(fname, result); } uint64_t NowMicros() override { return target_->NowMicros(); } void SleepForMicroseconds(int micros) override { target_->SleepForMicroseconds(micros); } private: Env* target_; }; } // namespace leveldb // Redefine DeleteFile if necessary. #if defined(_WIN32) && defined(LEVELDB_DELETEFILE_UNDEFINED) #if defined(UNICODE) #define DeleteFile DeleteFileW #else #define DeleteFile DeleteFileA #endif // defined(UNICODE) #endif // defined(_WIN32) && defined(LEVELDB_DELETEFILE_UNDEFINED) #endif // STORAGE_LEVELDB_INCLUDE_ENV_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/export.h
// Copyright (c) 2017 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_INCLUDE_EXPORT_H_ #define STORAGE_LEVELDB_INCLUDE_EXPORT_H_ #if !defined(LEVELDB_EXPORT) #if defined(LEVELDB_SHARED_LIBRARY) #if defined(_WIN32) #if defined(LEVELDB_COMPILE_LIBRARY) #define LEVELDB_EXPORT __declspec(dllexport) #else #define LEVELDB_EXPORT __declspec(dllimport) #endif // defined(LEVELDB_COMPILE_LIBRARY) #else // defined(_WIN32) #if defined(LEVELDB_COMPILE_LIBRARY) #define LEVELDB_EXPORT __attribute__((visibility("default"))) #else #define LEVELDB_EXPORT #endif #endif // defined(_WIN32) #else // defined(LEVELDB_SHARED_LIBRARY) #define LEVELDB_EXPORT #endif #endif // !defined(LEVELDB_EXPORT) #endif // STORAGE_LEVELDB_INCLUDE_EXPORT_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/status.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // A Status encapsulates the result of an operation. It may indicate success, // or it may indicate an error with an associated error message. // // Multiple threads can invoke const methods on a Status without // external synchronization, but if any of the threads may call a // non-const method, all threads accessing the same Status must use // external synchronization. #ifndef STORAGE_LEVELDB_INCLUDE_STATUS_H_ #define STORAGE_LEVELDB_INCLUDE_STATUS_H_ #include <algorithm> #include <string> #include "leveldb/export.h" #include "leveldb/slice.h" namespace leveldb { class LEVELDB_EXPORT Status { public: // Create a success status. Status() noexcept : state_(nullptr) {} ~Status() { delete[] state_; } Status(const Status& rhs); Status& operator=(const Status& rhs); Status(Status&& rhs) noexcept : state_(rhs.state_) { rhs.state_ = nullptr; } Status& operator=(Status&& rhs) noexcept; // Return a success status. static Status OK() { return Status(); } // Return error status of an appropriate type. static Status NotFound(const Slice& msg, const Slice& msg2 = Slice()) { return Status(kNotFound, msg, msg2); } static Status Corruption(const Slice& msg, const Slice& msg2 = Slice()) { return Status(kCorruption, msg, msg2); } static Status NotSupported(const Slice& msg, const Slice& msg2 = Slice()) { return Status(kNotSupported, msg, msg2); } static Status InvalidArgument(const Slice& msg, const Slice& msg2 = Slice()) { return Status(kInvalidArgument, msg, msg2); } static Status IOError(const Slice& msg, const Slice& msg2 = Slice()) { return Status(kIOError, msg, msg2); } // Returns true iff the status indicates success. bool ok() const { return (state_ == nullptr); } // Returns true iff the status indicates a NotFound error. bool IsNotFound() const { return code() == kNotFound; } // Returns true iff the status indicates a Corruption error. bool IsCorruption() const { return code() == kCorruption; } // Returns true iff the status indicates an IOError. bool IsIOError() const { return code() == kIOError; } // Returns true iff the status indicates a NotSupportedError. bool IsNotSupportedError() const { return code() == kNotSupported; } // Returns true iff the status indicates an InvalidArgument. bool IsInvalidArgument() const { return code() == kInvalidArgument; } // Return a string representation of this status suitable for printing. // Returns the string "OK" for success. std::string ToString() const; private: enum Code { kOk = 0, kNotFound = 1, kCorruption = 2, kNotSupported = 3, kInvalidArgument = 4, kIOError = 5 }; Code code() const { return (state_ == nullptr) ? kOk : static_cast<Code>(state_[4]); } Status(Code code, const Slice& msg, const Slice& msg2); static const char* CopyState(const char* s); // OK status has a null state_. Otherwise, state_ is a new[] array // of the following form: // state_[0..3] == length of message // state_[4] == code // state_[5..] == message const char* state_; }; inline Status::Status(const Status& rhs) { state_ = (rhs.state_ == nullptr) ? nullptr : CopyState(rhs.state_); } inline Status& Status::operator=(const Status& rhs) { // The following condition catches both aliasing (when this == &rhs), // and the common case where both rhs and *this are ok. if (state_ != rhs.state_) { delete[] state_; state_ = (rhs.state_ == nullptr) ? nullptr : CopyState(rhs.state_); } return *this; } inline Status& Status::operator=(Status&& rhs) noexcept { std::swap(state_, rhs.state_); return *this; } } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_STATUS_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/db.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_INCLUDE_DB_H_ #define STORAGE_LEVELDB_INCLUDE_DB_H_ #include <stdint.h> #include <stdio.h> #include "leveldb/export.h" #include "leveldb/iterator.h" #include "leveldb/options.h" namespace leveldb { // Update CMakeLists.txt if you change these static const int kMajorVersion = 1; static const int kMinorVersion = 22; struct Options; struct ReadOptions; struct WriteOptions; class WriteBatch; // Abstract handle to particular state of a DB. // A Snapshot is an immutable object and can therefore be safely // accessed from multiple threads without any external synchronization. class LEVELDB_EXPORT Snapshot { protected: virtual ~Snapshot(); }; // A range of keys struct LEVELDB_EXPORT Range { Range() = default; Range(const Slice& s, const Slice& l) : start(s), limit(l) {} Slice start; // Included in the range Slice limit; // Not included in the range }; // A DB is a persistent ordered map from keys to values. // A DB is safe for concurrent access from multiple threads without // any external synchronization. class LEVELDB_EXPORT DB { public: // Open the database with the specified "name". // Stores a pointer to a heap-allocated database in *dbptr and returns // OK on success. // Stores nullptr in *dbptr and returns a non-OK status on error. // Caller should delete *dbptr when it is no longer needed. static Status Open(const Options& options, const std::string& name, DB** dbptr); DB() = default; DB(const DB&) = delete; DB& operator=(const DB&) = delete; virtual ~DB(); // Set the database entry for "key" to "value". Returns OK on success, // and a non-OK status on error. // Note: consider setting options.sync = true. virtual Status Put(const WriteOptions& options, const Slice& key, const Slice& value) = 0; // Remove the database entry (if any) for "key". Returns OK on // success, and a non-OK status on error. It is not an error if "key" // did not exist in the database. // Note: consider setting options.sync = true. virtual Status Delete(const WriteOptions& options, const Slice& key) = 0; // Apply the specified updates to the database. // Returns OK on success, non-OK on failure. // Note: consider setting options.sync = true. virtual Status Write(const WriteOptions& options, WriteBatch* updates) = 0; // If the database contains an entry for "key" store the // corresponding value in *value and return OK. // // If there is no entry for "key" leave *value unchanged and return // a status for which Status::IsNotFound() returns true. // // May return some other Status on an error. virtual Status Get(const ReadOptions& options, const Slice& key, std::string* value) = 0; // Return a heap-allocated iterator over the contents of the database. // The result of NewIterator() is initially invalid (caller must // call one of the Seek methods on the iterator before using it). // // Caller should delete the iterator when it is no longer needed. // The returned iterator should be deleted before this db is deleted. virtual Iterator* NewIterator(const ReadOptions& options) = 0; // Return a handle to the current DB state. Iterators created with // this handle will all observe a stable snapshot of the current DB // state. The caller must call ReleaseSnapshot(result) when the // snapshot is no longer needed. virtual const Snapshot* GetSnapshot() = 0; // Release a previously acquired snapshot. The caller must not // use "snapshot" after this call. virtual void ReleaseSnapshot(const Snapshot* snapshot) = 0; // DB implementations can export properties about their state // via this method. If "property" is a valid property understood by this // DB implementation, fills "*value" with its current value and returns // true. Otherwise returns false. // // // Valid property names include: // // "leveldb.num-files-at-level<N>" - return the number of files at level <N>, // where <N> is an ASCII representation of a level number (e.g. "0"). // "leveldb.stats" - returns a multi-line string that describes statistics // about the internal operation of the DB. // "leveldb.sstables" - returns a multi-line string that describes all // of the sstables that make up the db contents. // "leveldb.approximate-memory-usage" - returns the approximate number of // bytes of memory in use by the DB. virtual bool GetProperty(const Slice& property, std::string* value) = 0; // For each i in [0,n-1], store in "sizes[i]", the approximate // file system space used by keys in "[range[i].start .. range[i].limit)". // // Note that the returned sizes measure file system space usage, so // if the user data compresses by a factor of ten, the returned // sizes will be one-tenth the size of the corresponding user data size. // // The results may not include the sizes of recently written data. virtual void GetApproximateSizes(const Range* range, int n, uint64_t* sizes) = 0; // Compact the underlying storage for the key range [*begin,*end]. // In particular, deleted and overwritten versions are discarded, // and the data is rearranged to reduce the cost of operations // needed to access the data. This operation should typically only // be invoked by users who understand the underlying implementation. // // begin==nullptr is treated as a key before all keys in the database. // end==nullptr is treated as a key after all keys in the database. // Therefore the following call will compact the entire database: // db->CompactRange(nullptr, nullptr); virtual void CompactRange(const Slice* begin, const Slice* end) = 0; }; // Destroy the contents of the specified database. // Be very careful using this method. // // Note: For backwards compatibility, if DestroyDB is unable to list the // database files, Status::OK() will still be returned masking this failure. LEVELDB_EXPORT Status DestroyDB(const std::string& name, const Options& options); // If a DB cannot be opened, you may attempt to call this method to // resurrect as much of the contents of the database as possible. // Some data may be lost, so be careful when calling this function // on a database that contains important information. LEVELDB_EXPORT Status RepairDB(const std::string& dbname, const Options& options); } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_DB_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/slice.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // Slice is a simple structure containing a pointer into some external // storage and a size. The user of a Slice must ensure that the slice // is not used after the corresponding external storage has been // deallocated. // // Multiple threads can invoke const methods on a Slice without // external synchronization, but if any of the threads may call a // non-const method, all threads accessing the same Slice must use // external synchronization. #ifndef STORAGE_LEVELDB_INCLUDE_SLICE_H_ #define STORAGE_LEVELDB_INCLUDE_SLICE_H_ #include <assert.h> #include <stddef.h> #include <string.h> #include <string> #include "leveldb/export.h" namespace leveldb { class LEVELDB_EXPORT Slice { public: // Create an empty slice. Slice() : data_(""), size_(0) {} // Create a slice that refers to d[0,n-1]. Slice(const char* d, size_t n) : data_(d), size_(n) {} // Create a slice that refers to the contents of "s" Slice(const std::string& s) : data_(s.data()), size_(s.size()) {} // Create a slice that refers to s[0,strlen(s)-1] Slice(const char* s) : data_(s), size_(strlen(s)) {} // Intentionally copyable. Slice(const Slice&) = default; Slice& operator=(const Slice&) = default; // Return a pointer to the beginning of the referenced data const char* data() const { return data_; } // Return the length (in bytes) of the referenced data size_t size() const { return size_; } // Return true iff the length of the referenced data is zero bool empty() const { return size_ == 0; } // Return the ith byte in the referenced data. // REQUIRES: n < size() char operator[](size_t n) const { assert(n < size()); return data_[n]; } // Change this slice to refer to an empty array void clear() { data_ = ""; size_ = 0; } // Drop the first "n" bytes from this slice. void remove_prefix(size_t n) { assert(n <= size()); data_ += n; size_ -= n; } // Return a string that contains the copy of the referenced data. std::string ToString() const { return std::string(data_, size_); } // Three-way comparison. Returns value: // < 0 iff "*this" < "b", // == 0 iff "*this" == "b", // > 0 iff "*this" > "b" int compare(const Slice& b) const; // Return true iff "x" is a prefix of "*this" bool starts_with(const Slice& x) const { return ((size_ >= x.size_) && (memcmp(data_, x.data_, x.size_) == 0)); } private: const char* data_; size_t size_; }; inline bool operator==(const Slice& x, const Slice& y) { return ((x.size() == y.size()) && (memcmp(x.data(), y.data(), x.size()) == 0)); } inline bool operator!=(const Slice& x, const Slice& y) { return !(x == y); } inline int Slice::compare(const Slice& b) const { const size_t min_len = (size_ < b.size_) ? size_ : b.size_; int r = memcmp(data_, b.data_, min_len); if (r == 0) { if (size_ < b.size_) r = -1; else if (size_ > b.size_) r = +1; } return r; } } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_SLICE_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/cache.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // A Cache is an interface that maps keys to values. It has internal // synchronization and may be safely accessed concurrently from // multiple threads. It may automatically evict entries to make room // for new entries. Values have a specified charge against the cache // capacity. For example, a cache where the values are variable // length strings, may use the length of the string as the charge for // the string. // // A builtin cache implementation with a least-recently-used eviction // policy is provided. Clients may use their own implementations if // they want something more sophisticated (like scan-resistance, a // custom eviction policy, variable cache sizing, etc.) #ifndef STORAGE_LEVELDB_INCLUDE_CACHE_H_ #define STORAGE_LEVELDB_INCLUDE_CACHE_H_ #include <stdint.h> #include "leveldb/export.h" #include "leveldb/slice.h" namespace leveldb { class LEVELDB_EXPORT Cache; // Create a new cache with a fixed size capacity. This implementation // of Cache uses a least-recently-used eviction policy. LEVELDB_EXPORT Cache* NewLRUCache(size_t capacity); class LEVELDB_EXPORT Cache { public: Cache() = default; Cache(const Cache&) = delete; Cache& operator=(const Cache&) = delete; // Destroys all existing entries by calling the "deleter" // function that was passed to the constructor. virtual ~Cache(); // Opaque handle to an entry stored in the cache. struct Handle {}; // Insert a mapping from key->value into the cache and assign it // the specified charge against the total cache capacity. // // Returns a handle that corresponds to the mapping. The caller // must call this->Release(handle) when the returned mapping is no // longer needed. // // When the inserted entry is no longer needed, the key and // value will be passed to "deleter". virtual Handle* Insert(const Slice& key, void* value, size_t charge, void (*deleter)(const Slice& key, void* value)) = 0; // If the cache has no mapping for "key", returns nullptr. // // Else return a handle that corresponds to the mapping. The caller // must call this->Release(handle) when the returned mapping is no // longer needed. virtual Handle* Lookup(const Slice& key) = 0; // Release a mapping returned by a previous Lookup(). // REQUIRES: handle must not have been released yet. // REQUIRES: handle must have been returned by a method on *this. virtual void Release(Handle* handle) = 0; // Return the value encapsulated in a handle returned by a // successful Lookup(). // REQUIRES: handle must not have been released yet. // REQUIRES: handle must have been returned by a method on *this. virtual void* Value(Handle* handle) = 0; // If the cache contains entry for key, erase it. Note that the // underlying entry will be kept around until all existing handles // to it have been released. virtual void Erase(const Slice& key) = 0; // Return a new numeric id. May be used by multiple clients who are // sharing the same cache to partition the key space. Typically the // client will allocate a new id at startup and prepend the id to // its cache keys. virtual uint64_t NewId() = 0; // Remove all cache entries that are not actively in use. Memory-constrained // applications may wish to call this method to reduce memory usage. // Default implementation of Prune() does nothing. Subclasses are strongly // encouraged to override the default implementation. A future release of // leveldb may change Prune() to a pure abstract method. virtual void Prune() {} // Return an estimate of the combined charges of all elements stored in the // cache. virtual size_t TotalCharge() const = 0; private: void LRU_Remove(Handle* e); void LRU_Append(Handle* e); void Unref(Handle* e); struct Rep; Rep* rep_; }; } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_CACHE_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/write_batch.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // WriteBatch holds a collection of updates to apply atomically to a DB. // // The updates are applied in the order in which they are added // to the WriteBatch. For example, the value of "key" will be "v3" // after the following batch is written: // // batch.Put("key", "v1"); // batch.Delete("key"); // batch.Put("key", "v2"); // batch.Put("key", "v3"); // // Multiple threads can invoke const methods on a WriteBatch without // external synchronization, but if any of the threads may call a // non-const method, all threads accessing the same WriteBatch must use // external synchronization. #ifndef STORAGE_LEVELDB_INCLUDE_WRITE_BATCH_H_ #define STORAGE_LEVELDB_INCLUDE_WRITE_BATCH_H_ #include <string> #include "leveldb/export.h" #include "leveldb/status.h" namespace leveldb { class Slice; class LEVELDB_EXPORT WriteBatch { public: class LEVELDB_EXPORT Handler { public: virtual ~Handler(); virtual void Put(const Slice& key, const Slice& value) = 0; virtual void Delete(const Slice& key) = 0; }; WriteBatch(); // Intentionally copyable. WriteBatch(const WriteBatch&) = default; WriteBatch& operator=(const WriteBatch&) = default; ~WriteBatch(); // Store the mapping "key->value" in the database. void Put(const Slice& key, const Slice& value); // If the database contains a mapping for "key", erase it. Else do nothing. void Delete(const Slice& key); // Clear all updates buffered in this batch. void Clear(); // The size of the database changes caused by this batch. // // This number is tied to implementation details, and may change across // releases. It is intended for LevelDB usage metrics. size_t ApproximateSize() const; // Copies the operations in "source" to this batch. // // This runs in O(source size) time. However, the constant factor is better // than calling Iterate() over the source batch with a Handler that replicates // the operations into this batch. void Append(const WriteBatch& source); // Support for iterating over the contents of a batch. Status Iterate(Handler* handler) const; private: friend class WriteBatchInternal; std::string rep_; // See comment in write_batch.cc for the format of rep_ }; } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_WRITE_BATCH_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/options.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_INCLUDE_OPTIONS_H_ #define STORAGE_LEVELDB_INCLUDE_OPTIONS_H_ #include <stddef.h> #include "leveldb/export.h" namespace leveldb { class Cache; class Comparator; class Env; class FilterPolicy; class Logger; class Snapshot; // DB contents are stored in a set of blocks, each of which holds a // sequence of key,value pairs. Each block may be compressed before // being stored in a file. The following enum describes which // compression method (if any) is used to compress a block. enum CompressionType { // NOTE: do not change the values of existing entries, as these are // part of the persistent format on disk. kNoCompression = 0x0, kSnappyCompression = 0x1 }; // Options to control the behavior of a database (passed to DB::Open) struct LEVELDB_EXPORT Options { // Create an Options object with default values for all fields. Options(); // ------------------- // Parameters that affect behavior // Comparator used to define the order of keys in the table. // Default: a comparator that uses lexicographic byte-wise ordering // // REQUIRES: The client must ensure that the comparator supplied // here has the same name and orders keys *exactly* the same as the // comparator provided to previous open calls on the same DB. const Comparator* comparator; // If true, the database will be created if it is missing. bool create_if_missing = false; // If true, an error is raised if the database already exists. bool error_if_exists = false; // If true, the implementation will do aggressive checking of the // data it is processing and will stop early if it detects any // errors. This may have unforeseen ramifications: for example, a // corruption of one DB entry may cause a large number of entries to // become unreadable or for the entire DB to become unopenable. bool paranoid_checks = false; // Use the specified object to interact with the environment, // e.g. to read/write files, schedule background work, etc. // Default: Env::Default() Env* env; // Any internal progress/error information generated by the db will // be written to info_log if it is non-null, or to a file stored // in the same directory as the DB contents if info_log is null. Logger* info_log = nullptr; // ------------------- // Parameters that affect performance // Amount of data to build up in memory (backed by an unsorted log // on disk) before converting to a sorted on-disk file. // // Larger values increase performance, especially during bulk loads. // Up to two write buffers may be held in memory at the same time, // so you may wish to adjust this parameter to control memory usage. // Also, a larger write buffer will result in a longer recovery time // the next time the database is opened. size_t write_buffer_size = 4 * 1024 * 1024; // Number of open files that can be used by the DB. You may need to // increase this if your database has a large working set (budget // one open file per 2MB of working set). int max_open_files = 1000; // Control over blocks (user data is stored in a set of blocks, and // a block is the unit of reading from disk). // If non-null, use the specified cache for blocks. // If null, leveldb will automatically create and use an 8MB internal cache. Cache* block_cache = nullptr; // Approximate size of user data packed per block. Note that the // block size specified here corresponds to uncompressed data. The // actual size of the unit read from disk may be smaller if // compression is enabled. This parameter can be changed dynamically. size_t block_size = 4 * 1024; // Number of keys between restart points for delta encoding of keys. // This parameter can be changed dynamically. Most clients should // leave this parameter alone. int block_restart_interval = 16; // Leveldb will write up to this amount of bytes to a file before // switching to a new one. // Most clients should leave this parameter alone. However if your // filesystem is more efficient with larger files, you could // consider increasing the value. The downside will be longer // compactions and hence longer latency/performance hiccups. // Another reason to increase this parameter might be when you are // initially populating a large database. size_t max_file_size = 2 * 1024 * 1024; // Compress blocks using the specified compression algorithm. This // parameter can be changed dynamically. // // Default: kSnappyCompression, which gives lightweight but fast // compression. // // Typical speeds of kSnappyCompression on an Intel(R) Core(TM)2 2.4GHz: // ~200-500MB/s compression // ~400-800MB/s decompression // Note that these speeds are significantly faster than most // persistent storage speeds, and therefore it is typically never // worth switching to kNoCompression. Even if the input data is // incompressible, the kSnappyCompression implementation will // efficiently detect that and will switch to uncompressed mode. CompressionType compression = kSnappyCompression; // EXPERIMENTAL: If true, append to existing MANIFEST and log files // when a database is opened. This can significantly speed up open. // // Default: currently false, but may become true later. bool reuse_logs = false; // If non-null, use the specified filter policy to reduce disk reads. // Many applications will benefit from passing the result of // NewBloomFilterPolicy() here. const FilterPolicy* filter_policy = nullptr; }; // Options that control read operations struct LEVELDB_EXPORT ReadOptions { ReadOptions() = default; // If true, all data read from underlying storage will be // verified against corresponding checksums. bool verify_checksums = false; // Should the data read for this iteration be cached in memory? // Callers may wish to set this field to false for bulk scans. bool fill_cache = true; // If "snapshot" is non-null, read as of the supplied snapshot // (which must belong to the DB that is being read and which must // not have been released). If "snapshot" is null, use an implicit // snapshot of the state at the beginning of this read operation. const Snapshot* snapshot = nullptr; }; // Options that control write operations struct LEVELDB_EXPORT WriteOptions { WriteOptions() = default; // If true, the write will be flushed from the operating system // buffer cache (by calling WritableFile::Sync()) before the write // is considered complete. If this flag is true, writes will be // slower. // // If this flag is false, and the machine crashes, some recent // writes may be lost. Note that if it is just the process that // crashes (i.e., the machine does not reboot), no writes will be // lost even if sync==false. // // In other words, a DB write with sync==false has similar // crash semantics as the "write()" system call. A DB write // with sync==true has similar crash semantics to a "write()" // system call followed by "fsync()". bool sync = false; }; } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_OPTIONS_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/dumpfile.h
// Copyright (c) 2014 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_INCLUDE_DUMPFILE_H_ #define STORAGE_LEVELDB_INCLUDE_DUMPFILE_H_ #include <string> #include "leveldb/env.h" #include "leveldb/export.h" #include "leveldb/status.h" namespace leveldb { // Dump the contents of the file named by fname in text format to // *dst. Makes a sequence of dst->Append() calls; each call is passed // the newline-terminated text corresponding to a single item found // in the file. // // Returns a non-OK result if fname does not name a leveldb storage // file, or if the file cannot be read. LEVELDB_EXPORT Status DumpFile(Env* env, const std::string& fname, WritableFile* dst); } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_DUMPFILE_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/c.h
/* Copyright (c) 2011 The LevelDB Authors. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. See the AUTHORS file for names of contributors. C bindings for leveldb. May be useful as a stable ABI that can be used by programs that keep leveldb in a shared library, or for a JNI api. Does not support: . getters for the option types . custom comparators that implement key shortening . custom iter, db, env, cache implementations using just the C bindings Some conventions: (1) We expose just opaque struct pointers and functions to clients. This allows us to change internal representations without having to recompile clients. (2) For simplicity, there is no equivalent to the Slice type. Instead, the caller has to pass the pointer and length as separate arguments. (3) Errors are represented by a null-terminated c string. NULL means no error. All operations that can raise an error are passed a "char** errptr" as the last argument. One of the following must be true on entry: *errptr == NULL *errptr points to a malloc()ed null-terminated error message (On Windows, *errptr must have been malloc()-ed by this library.) On success, a leveldb routine leaves *errptr unchanged. On failure, leveldb frees the old value of *errptr and set *errptr to a malloc()ed error message. (4) Bools have the type uint8_t (0 == false; rest == true) (5) All of the pointer arguments must be non-NULL. */ #ifndef STORAGE_LEVELDB_INCLUDE_C_H_ #define STORAGE_LEVELDB_INCLUDE_C_H_ #ifdef __cplusplus extern "C" { #endif #include <stdarg.h> #include <stddef.h> #include <stdint.h> #include "leveldb/export.h" /* Exported types */ typedef struct leveldb_t leveldb_t; typedef struct leveldb_cache_t leveldb_cache_t; typedef struct leveldb_comparator_t leveldb_comparator_t; typedef struct leveldb_env_t leveldb_env_t; typedef struct leveldb_filelock_t leveldb_filelock_t; typedef struct leveldb_filterpolicy_t leveldb_filterpolicy_t; typedef struct leveldb_iterator_t leveldb_iterator_t; typedef struct leveldb_logger_t leveldb_logger_t; typedef struct leveldb_options_t leveldb_options_t; typedef struct leveldb_randomfile_t leveldb_randomfile_t; typedef struct leveldb_readoptions_t leveldb_readoptions_t; typedef struct leveldb_seqfile_t leveldb_seqfile_t; typedef struct leveldb_snapshot_t leveldb_snapshot_t; typedef struct leveldb_writablefile_t leveldb_writablefile_t; typedef struct leveldb_writebatch_t leveldb_writebatch_t; typedef struct leveldb_writeoptions_t leveldb_writeoptions_t; /* DB operations */ LEVELDB_EXPORT leveldb_t* leveldb_open(const leveldb_options_t* options, const char* name, char** errptr); LEVELDB_EXPORT void leveldb_close(leveldb_t* db); LEVELDB_EXPORT void leveldb_put(leveldb_t* db, const leveldb_writeoptions_t* options, const char* key, size_t keylen, const char* val, size_t vallen, char** errptr); LEVELDB_EXPORT void leveldb_delete(leveldb_t* db, const leveldb_writeoptions_t* options, const char* key, size_t keylen, char** errptr); LEVELDB_EXPORT void leveldb_write(leveldb_t* db, const leveldb_writeoptions_t* options, leveldb_writebatch_t* batch, char** errptr); /* Returns NULL if not found. A malloc()ed array otherwise. Stores the length of the array in *vallen. */ LEVELDB_EXPORT char* leveldb_get(leveldb_t* db, const leveldb_readoptions_t* options, const char* key, size_t keylen, size_t* vallen, char** errptr); LEVELDB_EXPORT leveldb_iterator_t* leveldb_create_iterator( leveldb_t* db, const leveldb_readoptions_t* options); LEVELDB_EXPORT const leveldb_snapshot_t* leveldb_create_snapshot(leveldb_t* db); LEVELDB_EXPORT void leveldb_release_snapshot( leveldb_t* db, const leveldb_snapshot_t* snapshot); /* Returns NULL if property name is unknown. Else returns a pointer to a malloc()-ed null-terminated value. */ LEVELDB_EXPORT char* leveldb_property_value(leveldb_t* db, const char* propname); LEVELDB_EXPORT void leveldb_approximate_sizes( leveldb_t* db, int num_ranges, const char* const* range_start_key, const size_t* range_start_key_len, const char* const* range_limit_key, const size_t* range_limit_key_len, uint64_t* sizes); LEVELDB_EXPORT void leveldb_compact_range(leveldb_t* db, const char* start_key, size_t start_key_len, const char* limit_key, size_t limit_key_len); /* Management operations */ LEVELDB_EXPORT void leveldb_destroy_db(const leveldb_options_t* options, const char* name, char** errptr); LEVELDB_EXPORT void leveldb_repair_db(const leveldb_options_t* options, const char* name, char** errptr); /* Iterator */ LEVELDB_EXPORT void leveldb_iter_destroy(leveldb_iterator_t*); LEVELDB_EXPORT uint8_t leveldb_iter_valid(const leveldb_iterator_t*); LEVELDB_EXPORT void leveldb_iter_seek_to_first(leveldb_iterator_t*); LEVELDB_EXPORT void leveldb_iter_seek_to_last(leveldb_iterator_t*); LEVELDB_EXPORT void leveldb_iter_seek(leveldb_iterator_t*, const char* k, size_t klen); LEVELDB_EXPORT void leveldb_iter_next(leveldb_iterator_t*); LEVELDB_EXPORT void leveldb_iter_prev(leveldb_iterator_t*); LEVELDB_EXPORT const char* leveldb_iter_key(const leveldb_iterator_t*, size_t* klen); LEVELDB_EXPORT const char* leveldb_iter_value(const leveldb_iterator_t*, size_t* vlen); LEVELDB_EXPORT void leveldb_iter_get_error(const leveldb_iterator_t*, char** errptr); /* Write batch */ LEVELDB_EXPORT leveldb_writebatch_t* leveldb_writebatch_create(void); LEVELDB_EXPORT void leveldb_writebatch_destroy(leveldb_writebatch_t*); LEVELDB_EXPORT void leveldb_writebatch_clear(leveldb_writebatch_t*); LEVELDB_EXPORT void leveldb_writebatch_put(leveldb_writebatch_t*, const char* key, size_t klen, const char* val, size_t vlen); LEVELDB_EXPORT void leveldb_writebatch_delete(leveldb_writebatch_t*, const char* key, size_t klen); LEVELDB_EXPORT void leveldb_writebatch_iterate( const leveldb_writebatch_t*, void* state, void (*put)(void*, const char* k, size_t klen, const char* v, size_t vlen), void (*deleted)(void*, const char* k, size_t klen)); LEVELDB_EXPORT void leveldb_writebatch_append( leveldb_writebatch_t* destination, const leveldb_writebatch_t* source); /* Options */ LEVELDB_EXPORT leveldb_options_t* leveldb_options_create(void); LEVELDB_EXPORT void leveldb_options_destroy(leveldb_options_t*); LEVELDB_EXPORT void leveldb_options_set_comparator(leveldb_options_t*, leveldb_comparator_t*); LEVELDB_EXPORT void leveldb_options_set_filter_policy(leveldb_options_t*, leveldb_filterpolicy_t*); LEVELDB_EXPORT void leveldb_options_set_create_if_missing(leveldb_options_t*, uint8_t); LEVELDB_EXPORT void leveldb_options_set_error_if_exists(leveldb_options_t*, uint8_t); LEVELDB_EXPORT void leveldb_options_set_paranoid_checks(leveldb_options_t*, uint8_t); LEVELDB_EXPORT void leveldb_options_set_env(leveldb_options_t*, leveldb_env_t*); LEVELDB_EXPORT void leveldb_options_set_info_log(leveldb_options_t*, leveldb_logger_t*); LEVELDB_EXPORT void leveldb_options_set_write_buffer_size(leveldb_options_t*, size_t); LEVELDB_EXPORT void leveldb_options_set_max_open_files(leveldb_options_t*, int); LEVELDB_EXPORT void leveldb_options_set_cache(leveldb_options_t*, leveldb_cache_t*); LEVELDB_EXPORT void leveldb_options_set_block_size(leveldb_options_t*, size_t); LEVELDB_EXPORT void leveldb_options_set_block_restart_interval( leveldb_options_t*, int); LEVELDB_EXPORT void leveldb_options_set_max_file_size(leveldb_options_t*, size_t); enum { leveldb_no_compression = 0, leveldb_snappy_compression = 1 }; LEVELDB_EXPORT void leveldb_options_set_compression(leveldb_options_t*, int); /* Comparator */ LEVELDB_EXPORT leveldb_comparator_t* leveldb_comparator_create( void* state, void (*destructor)(void*), int (*compare)(void*, const char* a, size_t alen, const char* b, size_t blen), const char* (*name)(void*)); LEVELDB_EXPORT void leveldb_comparator_destroy(leveldb_comparator_t*); /* Filter policy */ LEVELDB_EXPORT leveldb_filterpolicy_t* leveldb_filterpolicy_create( void* state, void (*destructor)(void*), char* (*create_filter)(void*, const char* const* key_array, const size_t* key_length_array, int num_keys, size_t* filter_length), uint8_t (*key_may_match)(void*, const char* key, size_t length, const char* filter, size_t filter_length), const char* (*name)(void*)); LEVELDB_EXPORT void leveldb_filterpolicy_destroy(leveldb_filterpolicy_t*); LEVELDB_EXPORT leveldb_filterpolicy_t* leveldb_filterpolicy_create_bloom( int bits_per_key); /* Read options */ LEVELDB_EXPORT leveldb_readoptions_t* leveldb_readoptions_create(void); LEVELDB_EXPORT void leveldb_readoptions_destroy(leveldb_readoptions_t*); LEVELDB_EXPORT void leveldb_readoptions_set_verify_checksums( leveldb_readoptions_t*, uint8_t); LEVELDB_EXPORT void leveldb_readoptions_set_fill_cache(leveldb_readoptions_t*, uint8_t); LEVELDB_EXPORT void leveldb_readoptions_set_snapshot(leveldb_readoptions_t*, const leveldb_snapshot_t*); /* Write options */ LEVELDB_EXPORT leveldb_writeoptions_t* leveldb_writeoptions_create(void); LEVELDB_EXPORT void leveldb_writeoptions_destroy(leveldb_writeoptions_t*); LEVELDB_EXPORT void leveldb_writeoptions_set_sync(leveldb_writeoptions_t*, uint8_t); /* Cache */ LEVELDB_EXPORT leveldb_cache_t* leveldb_cache_create_lru(size_t capacity); LEVELDB_EXPORT void leveldb_cache_destroy(leveldb_cache_t* cache); /* Env */ LEVELDB_EXPORT leveldb_env_t* leveldb_create_default_env(void); LEVELDB_EXPORT void leveldb_env_destroy(leveldb_env_t*); /* If not NULL, the returned buffer must be released using leveldb_free(). */ LEVELDB_EXPORT char* leveldb_env_get_test_directory(leveldb_env_t*); /* Utility */ /* Calls free(ptr). REQUIRES: ptr was malloc()-ed and returned by one of the routines in this file. Note that in certain cases (typically on Windows), you may need to call this routine instead of free(ptr) to dispose of malloc()-ed memory returned by this library. */ LEVELDB_EXPORT void leveldb_free(void* ptr); /* Return the major version number for this release. */ LEVELDB_EXPORT int leveldb_major_version(void); /* Return the minor version number for this release. */ LEVELDB_EXPORT int leveldb_minor_version(void); #ifdef __cplusplus } /* end extern "C" */ #endif #endif /* STORAGE_LEVELDB_INCLUDE_C_H_ */
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/filter_policy.h
// Copyright (c) 2012 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // A database can be configured with a custom FilterPolicy object. // This object is responsible for creating a small filter from a set // of keys. These filters are stored in leveldb and are consulted // automatically by leveldb to decide whether or not to read some // information from disk. In many cases, a filter can cut down the // number of disk seeks form a handful to a single disk seek per // DB::Get() call. // // Most people will want to use the builtin bloom filter support (see // NewBloomFilterPolicy() below). #ifndef STORAGE_LEVELDB_INCLUDE_FILTER_POLICY_H_ #define STORAGE_LEVELDB_INCLUDE_FILTER_POLICY_H_ #include <string> #include "leveldb/export.h" namespace leveldb { class Slice; class LEVELDB_EXPORT FilterPolicy { public: virtual ~FilterPolicy(); // Return the name of this policy. Note that if the filter encoding // changes in an incompatible way, the name returned by this method // must be changed. Otherwise, old incompatible filters may be // passed to methods of this type. virtual const char* Name() const = 0; // keys[0,n-1] contains a list of keys (potentially with duplicates) // that are ordered according to the user supplied comparator. // Append a filter that summarizes keys[0,n-1] to *dst. // // Warning: do not change the initial contents of *dst. Instead, // append the newly constructed filter to *dst. virtual void CreateFilter(const Slice* keys, int n, std::string* dst) const = 0; // "filter" contains the data appended by a preceding call to // CreateFilter() on this class. This method must return true if // the key was in the list of keys passed to CreateFilter(). // This method may return true or false if the key was not on the // list, but it should aim to return false with a high probability. virtual bool KeyMayMatch(const Slice& key, const Slice& filter) const = 0; }; // Return a new filter policy that uses a bloom filter with approximately // the specified number of bits per key. A good value for bits_per_key // is 10, which yields a filter with ~ 1% false positive rate. // // Callers must delete the result after any database that is using the // result has been closed. // // Note: if you are using a custom comparator that ignores some parts // of the keys being compared, you must not use NewBloomFilterPolicy() // and must provide your own FilterPolicy that also ignores the // corresponding parts of the keys. For example, if the comparator // ignores trailing spaces, it would be incorrect to use a // FilterPolicy (like NewBloomFilterPolicy) that does not ignore // trailing spaces in keys. LEVELDB_EXPORT const FilterPolicy* NewBloomFilterPolicy(int bits_per_key); } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_FILTER_POLICY_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/comparator.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_INCLUDE_COMPARATOR_H_ #define STORAGE_LEVELDB_INCLUDE_COMPARATOR_H_ #include <string> #include "leveldb/export.h" namespace leveldb { class Slice; // A Comparator object provides a total order across slices that are // used as keys in an sstable or a database. A Comparator implementation // must be thread-safe since leveldb may invoke its methods concurrently // from multiple threads. class LEVELDB_EXPORT Comparator { public: virtual ~Comparator(); // Three-way comparison. Returns value: // < 0 iff "a" < "b", // == 0 iff "a" == "b", // > 0 iff "a" > "b" virtual int Compare(const Slice& a, const Slice& b) const = 0; // The name of the comparator. Used to check for comparator // mismatches (i.e., a DB created with one comparator is // accessed using a different comparator. // // The client of this package should switch to a new name whenever // the comparator implementation changes in a way that will cause // the relative ordering of any two keys to change. // // Names starting with "leveldb." are reserved and should not be used // by any clients of this package. virtual const char* Name() const = 0; // Advanced functions: these are used to reduce the space requirements // for internal data structures like index blocks. // If *start < limit, changes *start to a short string in [start,limit). // Simple comparator implementations may return with *start unchanged, // i.e., an implementation of this method that does nothing is correct. virtual void FindShortestSeparator(std::string* start, const Slice& limit) const = 0; // Changes *key to a short string >= *key. // Simple comparator implementations may return with *key unchanged, // i.e., an implementation of this method that does nothing is correct. virtual void FindShortSuccessor(std::string* key) const = 0; }; // Return a builtin comparator that uses lexicographic byte-wise // ordering. The result remains the property of this module and // must not be deleted. LEVELDB_EXPORT const Comparator* BytewiseComparator(); } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_COMPARATOR_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/table.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_INCLUDE_TABLE_H_ #define STORAGE_LEVELDB_INCLUDE_TABLE_H_ #include <stdint.h> #include "leveldb/export.h" #include "leveldb/iterator.h" namespace leveldb { class Block; class BlockHandle; class Footer; struct Options; class RandomAccessFile; struct ReadOptions; class TableCache; // A Table is a sorted map from strings to strings. Tables are // immutable and persistent. A Table may be safely accessed from // multiple threads without external synchronization. class LEVELDB_EXPORT Table { public: // Attempt to open the table that is stored in bytes [0..file_size) // of "file", and read the metadata entries necessary to allow // retrieving data from the table. // // If successful, returns ok and sets "*table" to the newly opened // table. The client should delete "*table" when no longer needed. // If there was an error while initializing the table, sets "*table" // to nullptr and returns a non-ok status. Does not take ownership of // "*source", but the client must ensure that "source" remains live // for the duration of the returned table's lifetime. // // *file must remain live while this Table is in use. static Status Open(const Options& options, RandomAccessFile* file, uint64_t file_size, Table** table); Table(const Table&) = delete; Table& operator=(const Table&) = delete; ~Table(); // Returns a new iterator over the table contents. // The result of NewIterator() is initially invalid (caller must // call one of the Seek methods on the iterator before using it). Iterator* NewIterator(const ReadOptions&) const; // Given a key, return an approximate byte offset in the file where // the data for that key begins (or would begin if the key were // present in the file). The returned value is in terms of file // bytes, and so includes effects like compression of the underlying data. // E.g., the approximate offset of the last key in the table will // be close to the file length. uint64_t ApproximateOffsetOf(const Slice& key) const; private: friend class TableCache; struct Rep; static Iterator* BlockReader(void*, const ReadOptions&, const Slice&); explicit Table(Rep* rep) : rep_(rep) {} // Calls (*handle_result)(arg, ...) with the entry found after a call // to Seek(key). May not make such a call if filter policy says // that key is not present. Status InternalGet(const ReadOptions&, const Slice& key, void* arg, void (*handle_result)(void* arg, const Slice& k, const Slice& v)); void ReadMeta(const Footer& footer); void ReadFilter(const Slice& filter_handle_value); Rep* const rep_; }; } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_TABLE_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/table_builder.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // TableBuilder provides the interface used to build a Table // (an immutable and sorted map from keys to values). // // Multiple threads can invoke const methods on a TableBuilder without // external synchronization, but if any of the threads may call a // non-const method, all threads accessing the same TableBuilder must use // external synchronization. #ifndef STORAGE_LEVELDB_INCLUDE_TABLE_BUILDER_H_ #define STORAGE_LEVELDB_INCLUDE_TABLE_BUILDER_H_ #include <stdint.h> #include "leveldb/export.h" #include "leveldb/options.h" #include "leveldb/status.h" namespace leveldb { class BlockBuilder; class BlockHandle; class WritableFile; class LEVELDB_EXPORT TableBuilder { public: // Create a builder that will store the contents of the table it is // building in *file. Does not close the file. It is up to the // caller to close the file after calling Finish(). TableBuilder(const Options& options, WritableFile* file); TableBuilder(const TableBuilder&) = delete; TableBuilder& operator=(const TableBuilder&) = delete; // REQUIRES: Either Finish() or Abandon() has been called. ~TableBuilder(); // Change the options used by this builder. Note: only some of the // option fields can be changed after construction. If a field is // not allowed to change dynamically and its value in the structure // passed to the constructor is different from its value in the // structure passed to this method, this method will return an error // without changing any fields. Status ChangeOptions(const Options& options); // Add key,value to the table being constructed. // REQUIRES: key is after any previously added key according to comparator. // REQUIRES: Finish(), Abandon() have not been called void Add(const Slice& key, const Slice& value); // Advanced operation: flush any buffered key/value pairs to file. // Can be used to ensure that two adjacent entries never live in // the same data block. Most clients should not need to use this method. // REQUIRES: Finish(), Abandon() have not been called void Flush(); // Return non-ok iff some error has been detected. Status status() const; // Finish building the table. Stops using the file passed to the // constructor after this function returns. // REQUIRES: Finish(), Abandon() have not been called Status Finish(); // Indicate that the contents of this builder should be abandoned. Stops // using the file passed to the constructor after this function returns. // If the caller is not going to call Finish(), it must call Abandon() // before destroying this builder. // REQUIRES: Finish(), Abandon() have not been called void Abandon(); // Number of calls to Add() so far. uint64_t NumEntries() const; // Size of the file generated so far. If invoked after a successful // Finish() call, returns the size of the final generated file. uint64_t FileSize() const; private: bool ok() const { return status().ok(); } void WriteBlock(BlockBuilder* block, BlockHandle* handle); void WriteRawBlock(const Slice& data, CompressionType, BlockHandle* handle); struct Rep; Rep* rep_; }; } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_TABLE_BUILDER_H_
0
bitcoin/src/leveldb/include
bitcoin/src/leveldb/include/leveldb/iterator.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // An iterator yields a sequence of key/value pairs from a source. // The following class defines the interface. Multiple implementations // are provided by this library. In particular, iterators are provided // to access the contents of a Table or a DB. // // Multiple threads can invoke const methods on an Iterator without // external synchronization, but if any of the threads may call a // non-const method, all threads accessing the same Iterator must use // external synchronization. #ifndef STORAGE_LEVELDB_INCLUDE_ITERATOR_H_ #define STORAGE_LEVELDB_INCLUDE_ITERATOR_H_ #include "leveldb/export.h" #include "leveldb/slice.h" #include "leveldb/status.h" namespace leveldb { class LEVELDB_EXPORT Iterator { public: Iterator(); Iterator(const Iterator&) = delete; Iterator& operator=(const Iterator&) = delete; virtual ~Iterator(); // An iterator is either positioned at a key/value pair, or // not valid. This method returns true iff the iterator is valid. virtual bool Valid() const = 0; // Position at the first key in the source. The iterator is Valid() // after this call iff the source is not empty. virtual void SeekToFirst() = 0; // Position at the last key in the source. The iterator is // Valid() after this call iff the source is not empty. virtual void SeekToLast() = 0; // Position at the first key in the source that is at or past target. // The iterator is Valid() after this call iff the source contains // an entry that comes at or past target. virtual void Seek(const Slice& target) = 0; // Moves to the next entry in the source. After this call, Valid() is // true iff the iterator was not positioned at the last entry in the source. // REQUIRES: Valid() virtual void Next() = 0; // Moves to the previous entry in the source. After this call, Valid() is // true iff the iterator was not positioned at the first entry in source. // REQUIRES: Valid() virtual void Prev() = 0; // Return the key for the current entry. The underlying storage for // the returned slice is valid only until the next modification of // the iterator. // REQUIRES: Valid() virtual Slice key() const = 0; // Return the value for the current entry. The underlying storage for // the returned slice is valid only until the next modification of // the iterator. // REQUIRES: Valid() virtual Slice value() const = 0; // If an error has occurred, return it. Else return an ok status. virtual Status status() const = 0; // Clients are allowed to register function/arg1/arg2 triples that // will be invoked when this iterator is destroyed. // // Note that unlike all of the preceding methods, this method is // not abstract and therefore clients should not override it. using CleanupFunction = void (*)(void* arg1, void* arg2); void RegisterCleanup(CleanupFunction function, void* arg1, void* arg2); private: // Cleanup functions are stored in a single-linked list. // The list's head node is inlined in the iterator. struct CleanupNode { // True if the node is not used. Only head nodes might be unused. bool IsEmpty() const { return function == nullptr; } // Invokes the cleanup function. void Run() { assert(function != nullptr); (*function)(arg1, arg2); } // The head node is used if the function pointer is not null. CleanupFunction function; void* arg1; void* arg2; CleanupNode* next; }; CleanupNode cleanup_head_; }; // Return an empty iterator (yields nothing). LEVELDB_EXPORT Iterator* NewEmptyIterator(); // Return an empty iterator with the specified status. LEVELDB_EXPORT Iterator* NewErrorIterator(const Status& status); } // namespace leveldb #endif // STORAGE_LEVELDB_INCLUDE_ITERATOR_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/table/table.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/table.h" #include "leveldb/cache.h" #include "leveldb/comparator.h" #include "leveldb/env.h" #include "leveldb/filter_policy.h" #include "leveldb/options.h" #include "table/block.h" #include "table/filter_block.h" #include "table/format.h" #include "table/two_level_iterator.h" #include "util/coding.h" namespace leveldb { struct Table::Rep { ~Rep() { delete filter; delete[] filter_data; delete index_block; } Options options; Status status; RandomAccessFile* file; uint64_t cache_id; FilterBlockReader* filter; const char* filter_data; BlockHandle metaindex_handle; // Handle to metaindex_block: saved from footer Block* index_block; }; Status Table::Open(const Options& options, RandomAccessFile* file, uint64_t size, Table** table) { *table = nullptr; if (size < Footer::kEncodedLength) { return Status::Corruption("file is too short to be an sstable"); } char footer_space[Footer::kEncodedLength]; Slice footer_input; Status s = file->Read(size - Footer::kEncodedLength, Footer::kEncodedLength, &footer_input, footer_space); if (!s.ok()) return s; Footer footer; s = footer.DecodeFrom(&footer_input); if (!s.ok()) return s; // Read the index block BlockContents index_block_contents; if (s.ok()) { ReadOptions opt; if (options.paranoid_checks) { opt.verify_checksums = true; } s = ReadBlock(file, opt, footer.index_handle(), &index_block_contents); } if (s.ok()) { // We've successfully read the footer and the index block: we're // ready to serve requests. Block* index_block = new Block(index_block_contents); Rep* rep = new Table::Rep; rep->options = options; rep->file = file; rep->metaindex_handle = footer.metaindex_handle(); rep->index_block = index_block; rep->cache_id = (options.block_cache ? options.block_cache->NewId() : 0); rep->filter_data = nullptr; rep->filter = nullptr; *table = new Table(rep); (*table)->ReadMeta(footer); } return s; } void Table::ReadMeta(const Footer& footer) { if (rep_->options.filter_policy == nullptr) { return; // Do not need any metadata } // TODO(sanjay): Skip this if footer.metaindex_handle() size indicates // it is an empty block. ReadOptions opt; if (rep_->options.paranoid_checks) { opt.verify_checksums = true; } BlockContents contents; if (!ReadBlock(rep_->file, opt, footer.metaindex_handle(), &contents).ok()) { // Do not propagate errors since meta info is not needed for operation return; } Block* meta = new Block(contents); Iterator* iter = meta->NewIterator(BytewiseComparator()); std::string key = "filter."; key.append(rep_->options.filter_policy->Name()); iter->Seek(key); if (iter->Valid() && iter->key() == Slice(key)) { ReadFilter(iter->value()); } delete iter; delete meta; } void Table::ReadFilter(const Slice& filter_handle_value) { Slice v = filter_handle_value; BlockHandle filter_handle; if (!filter_handle.DecodeFrom(&v).ok()) { return; } // We might want to unify with ReadBlock() if we start // requiring checksum verification in Table::Open. ReadOptions opt; if (rep_->options.paranoid_checks) { opt.verify_checksums = true; } BlockContents block; if (!ReadBlock(rep_->file, opt, filter_handle, &block).ok()) { return; } if (block.heap_allocated) { rep_->filter_data = block.data.data(); // Will need to delete later } rep_->filter = new FilterBlockReader(rep_->options.filter_policy, block.data); } Table::~Table() { delete rep_; } static void DeleteBlock(void* arg, void* ignored) { delete reinterpret_cast<Block*>(arg); } static void DeleteCachedBlock(const Slice& key, void* value) { Block* block = reinterpret_cast<Block*>(value); delete block; } static void ReleaseBlock(void* arg, void* h) { Cache* cache = reinterpret_cast<Cache*>(arg); Cache::Handle* handle = reinterpret_cast<Cache::Handle*>(h); cache->Release(handle); } // Convert an index iterator value (i.e., an encoded BlockHandle) // into an iterator over the contents of the corresponding block. Iterator* Table::BlockReader(void* arg, const ReadOptions& options, const Slice& index_value) { Table* table = reinterpret_cast<Table*>(arg); Cache* block_cache = table->rep_->options.block_cache; Block* block = nullptr; Cache::Handle* cache_handle = nullptr; BlockHandle handle; Slice input = index_value; Status s = handle.DecodeFrom(&input); // We intentionally allow extra stuff in index_value so that we // can add more features in the future. if (s.ok()) { BlockContents contents; if (block_cache != nullptr) { char cache_key_buffer[16]; EncodeFixed64(cache_key_buffer, table->rep_->cache_id); EncodeFixed64(cache_key_buffer + 8, handle.offset()); Slice key(cache_key_buffer, sizeof(cache_key_buffer)); cache_handle = block_cache->Lookup(key); if (cache_handle != nullptr) { block = reinterpret_cast<Block*>(block_cache->Value(cache_handle)); } else { s = ReadBlock(table->rep_->file, options, handle, &contents); if (s.ok()) { block = new Block(contents); if (contents.cachable && options.fill_cache) { cache_handle = block_cache->Insert(key, block, block->size(), &DeleteCachedBlock); } } } } else { s = ReadBlock(table->rep_->file, options, handle, &contents); if (s.ok()) { block = new Block(contents); } } } Iterator* iter; if (block != nullptr) { iter = block->NewIterator(table->rep_->options.comparator); if (cache_handle == nullptr) { iter->RegisterCleanup(&DeleteBlock, block, nullptr); } else { iter->RegisterCleanup(&ReleaseBlock, block_cache, cache_handle); } } else { iter = NewErrorIterator(s); } return iter; } Iterator* Table::NewIterator(const ReadOptions& options) const { return NewTwoLevelIterator( rep_->index_block->NewIterator(rep_->options.comparator), &Table::BlockReader, const_cast<Table*>(this), options); } Status Table::InternalGet(const ReadOptions& options, const Slice& k, void* arg, void (*handle_result)(void*, const Slice&, const Slice&)) { Status s; Iterator* iiter = rep_->index_block->NewIterator(rep_->options.comparator); iiter->Seek(k); if (iiter->Valid()) { Slice handle_value = iiter->value(); FilterBlockReader* filter = rep_->filter; BlockHandle handle; if (filter != nullptr && handle.DecodeFrom(&handle_value).ok() && !filter->KeyMayMatch(handle.offset(), k)) { // Not found } else { Iterator* block_iter = BlockReader(this, options, iiter->value()); block_iter->Seek(k); if (block_iter->Valid()) { (*handle_result)(arg, block_iter->key(), block_iter->value()); } s = block_iter->status(); delete block_iter; } } if (s.ok()) { s = iiter->status(); } delete iiter; return s; } uint64_t Table::ApproximateOffsetOf(const Slice& key) const { Iterator* index_iter = rep_->index_block->NewIterator(rep_->options.comparator); index_iter->Seek(key); uint64_t result; if (index_iter->Valid()) { BlockHandle handle; Slice input = index_iter->value(); Status s = handle.DecodeFrom(&input); if (s.ok()) { result = handle.offset(); } else { // Strange: we can't decode the block handle in the index block. // We'll just return the offset of the metaindex block, which is // close to the whole file size for this case. result = rep_->metaindex_handle.offset(); } } else { // key is past the last key in the file. Approximate the offset // by returning the offset of the metaindex block (which is // right near the end of the file). result = rep_->metaindex_handle.offset(); } delete index_iter; return result; } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/table/block.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // Decodes the blocks generated by block_builder.cc. #include "table/block.h" #include <algorithm> #include <cstdint> #include <vector> #include "leveldb/comparator.h" #include "table/format.h" #include "util/coding.h" #include "util/logging.h" namespace leveldb { inline uint32_t Block::NumRestarts() const { assert(size_ >= sizeof(uint32_t)); return DecodeFixed32(data_ + size_ - sizeof(uint32_t)); } Block::Block(const BlockContents& contents) : data_(contents.data.data()), size_(contents.data.size()), owned_(contents.heap_allocated) { if (size_ < sizeof(uint32_t)) { size_ = 0; // Error marker } else { size_t max_restarts_allowed = (size_ - sizeof(uint32_t)) / sizeof(uint32_t); if (NumRestarts() > max_restarts_allowed) { // The size is too small for NumRestarts() size_ = 0; } else { restart_offset_ = size_ - (1 + NumRestarts()) * sizeof(uint32_t); } } } Block::~Block() { if (owned_) { delete[] data_; } } // Helper routine: decode the next block entry starting at "p", // storing the number of shared key bytes, non_shared key bytes, // and the length of the value in "*shared", "*non_shared", and // "*value_length", respectively. Will not dereference past "limit". // // If any errors are detected, returns nullptr. Otherwise, returns a // pointer to the key delta (just past the three decoded values). static inline const char* DecodeEntry(const char* p, const char* limit, uint32_t* shared, uint32_t* non_shared, uint32_t* value_length) { if (limit - p < 3) return nullptr; *shared = reinterpret_cast<const uint8_t*>(p)[0]; *non_shared = reinterpret_cast<const uint8_t*>(p)[1]; *value_length = reinterpret_cast<const uint8_t*>(p)[2]; if ((*shared | *non_shared | *value_length) < 128) { // Fast path: all three values are encoded in one byte each p += 3; } else { if ((p = GetVarint32Ptr(p, limit, shared)) == nullptr) return nullptr; if ((p = GetVarint32Ptr(p, limit, non_shared)) == nullptr) return nullptr; if ((p = GetVarint32Ptr(p, limit, value_length)) == nullptr) return nullptr; } if (static_cast<uint32_t>(limit - p) < (*non_shared + *value_length)) { return nullptr; } return p; } class Block::Iter : public Iterator { private: const Comparator* const comparator_; const char* const data_; // underlying block contents uint32_t const restarts_; // Offset of restart array (list of fixed32) uint32_t const num_restarts_; // Number of uint32_t entries in restart array // current_ is offset in data_ of current entry. >= restarts_ if !Valid uint32_t current_; uint32_t restart_index_; // Index of restart block in which current_ falls std::string key_; Slice value_; Status status_; inline int Compare(const Slice& a, const Slice& b) const { return comparator_->Compare(a, b); } // Return the offset in data_ just past the end of the current entry. inline uint32_t NextEntryOffset() const { return (value_.data() + value_.size()) - data_; } uint32_t GetRestartPoint(uint32_t index) { assert(index < num_restarts_); return DecodeFixed32(data_ + restarts_ + index * sizeof(uint32_t)); } void SeekToRestartPoint(uint32_t index) { key_.clear(); restart_index_ = index; // current_ will be fixed by ParseNextKey(); // ParseNextKey() starts at the end of value_, so set value_ accordingly uint32_t offset = GetRestartPoint(index); value_ = Slice(data_ + offset, 0); } public: Iter(const Comparator* comparator, const char* data, uint32_t restarts, uint32_t num_restarts) : comparator_(comparator), data_(data), restarts_(restarts), num_restarts_(num_restarts), current_(restarts_), restart_index_(num_restarts_) { assert(num_restarts_ > 0); } bool Valid() const override { return current_ < restarts_; } Status status() const override { return status_; } Slice key() const override { assert(Valid()); return key_; } Slice value() const override { assert(Valid()); return value_; } void Next() override { assert(Valid()); ParseNextKey(); } void Prev() override { assert(Valid()); // Scan backwards to a restart point before current_ const uint32_t original = current_; while (GetRestartPoint(restart_index_) >= original) { if (restart_index_ == 0) { // No more entries current_ = restarts_; restart_index_ = num_restarts_; return; } restart_index_--; } SeekToRestartPoint(restart_index_); do { // Loop until end of current entry hits the start of original entry } while (ParseNextKey() && NextEntryOffset() < original); } void Seek(const Slice& target) override { // Binary search in restart array to find the last restart point // with a key < target uint32_t left = 0; uint32_t right = num_restarts_ - 1; while (left < right) { uint32_t mid = (left + right + 1) / 2; uint32_t region_offset = GetRestartPoint(mid); uint32_t shared, non_shared, value_length; const char* key_ptr = DecodeEntry(data_ + region_offset, data_ + restarts_, &shared, &non_shared, &value_length); if (key_ptr == nullptr || (shared != 0)) { CorruptionError(); return; } Slice mid_key(key_ptr, non_shared); if (Compare(mid_key, target) < 0) { // Key at "mid" is smaller than "target". Therefore all // blocks before "mid" are uninteresting. left = mid; } else { // Key at "mid" is >= "target". Therefore all blocks at or // after "mid" are uninteresting. right = mid - 1; } } // Linear search (within restart block) for first key >= target SeekToRestartPoint(left); while (true) { if (!ParseNextKey()) { return; } if (Compare(key_, target) >= 0) { return; } } } void SeekToFirst() override { SeekToRestartPoint(0); ParseNextKey(); } void SeekToLast() override { SeekToRestartPoint(num_restarts_ - 1); while (ParseNextKey() && NextEntryOffset() < restarts_) { // Keep skipping } } private: void CorruptionError() { current_ = restarts_; restart_index_ = num_restarts_; status_ = Status::Corruption("bad entry in block"); key_.clear(); value_.clear(); } bool ParseNextKey() { current_ = NextEntryOffset(); const char* p = data_ + current_; const char* limit = data_ + restarts_; // Restarts come right after data if (p >= limit) { // No more entries to return. Mark as invalid. current_ = restarts_; restart_index_ = num_restarts_; return false; } // Decode next entry uint32_t shared, non_shared, value_length; p = DecodeEntry(p, limit, &shared, &non_shared, &value_length); if (p == nullptr || key_.size() < shared) { CorruptionError(); return false; } else { key_.resize(shared); key_.append(p, non_shared); value_ = Slice(p + non_shared, value_length); while (restart_index_ + 1 < num_restarts_ && GetRestartPoint(restart_index_ + 1) < current_) { ++restart_index_; } return true; } } }; Iterator* Block::NewIterator(const Comparator* comparator) { if (size_ < sizeof(uint32_t)) { return NewErrorIterator(Status::Corruption("bad block contents")); } const uint32_t num_restarts = NumRestarts(); if (num_restarts == 0) { return NewEmptyIterator(); } else { return new Iter(comparator, data_, restart_offset_, num_restarts); } } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/table/merger.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/merger.h" #include "leveldb/comparator.h" #include "leveldb/iterator.h" #include "table/iterator_wrapper.h" namespace leveldb { namespace { class MergingIterator : public Iterator { public: MergingIterator(const Comparator* comparator, Iterator** children, int n) : comparator_(comparator), children_(new IteratorWrapper[n]), n_(n), current_(nullptr), direction_(kForward) { for (int i = 0; i < n; i++) { children_[i].Set(children[i]); } } ~MergingIterator() override { delete[] children_; } bool Valid() const override { return (current_ != nullptr); } void SeekToFirst() override { for (int i = 0; i < n_; i++) { children_[i].SeekToFirst(); } FindSmallest(); direction_ = kForward; } void SeekToLast() override { for (int i = 0; i < n_; i++) { children_[i].SeekToLast(); } FindLargest(); direction_ = kReverse; } void Seek(const Slice& target) override { for (int i = 0; i < n_; i++) { children_[i].Seek(target); } FindSmallest(); direction_ = kForward; } void Next() override { assert(Valid()); // Ensure that all children are positioned after key(). // If we are moving in the forward direction, it is already // true for all of the non-current_ children since current_ is // the smallest child and key() == current_->key(). Otherwise, // we explicitly position the non-current_ children. if (direction_ != kForward) { for (int i = 0; i < n_; i++) { IteratorWrapper* child = &children_[i]; if (child != current_) { child->Seek(key()); if (child->Valid() && comparator_->Compare(key(), child->key()) == 0) { child->Next(); } } } direction_ = kForward; } current_->Next(); FindSmallest(); } void Prev() override { assert(Valid()); // Ensure that all children are positioned before key(). // If we are moving in the reverse direction, it is already // true for all of the non-current_ children since current_ is // the largest child and key() == current_->key(). Otherwise, // we explicitly position the non-current_ children. if (direction_ != kReverse) { for (int i = 0; i < n_; i++) { IteratorWrapper* child = &children_[i]; if (child != current_) { child->Seek(key()); if (child->Valid()) { // Child is at first entry >= key(). Step back one to be < key() child->Prev(); } else { // Child has no entries >= key(). Position at last entry. child->SeekToLast(); } } } direction_ = kReverse; } current_->Prev(); FindLargest(); } Slice key() const override { assert(Valid()); return current_->key(); } Slice value() const override { assert(Valid()); return current_->value(); } Status status() const override { Status status; for (int i = 0; i < n_; i++) { status = children_[i].status(); if (!status.ok()) { break; } } return status; } private: // Which direction is the iterator moving? enum Direction { kForward, kReverse }; void FindSmallest(); void FindLargest(); // We might want to use a heap in case there are lots of children. // For now we use a simple array since we expect a very small number // of children in leveldb. const Comparator* comparator_; IteratorWrapper* children_; int n_; IteratorWrapper* current_; Direction direction_; }; void MergingIterator::FindSmallest() { IteratorWrapper* smallest = nullptr; for (int i = 0; i < n_; i++) { IteratorWrapper* child = &children_[i]; if (child->Valid()) { if (smallest == nullptr) { smallest = child; } else if (comparator_->Compare(child->key(), smallest->key()) < 0) { smallest = child; } } } current_ = smallest; } void MergingIterator::FindLargest() { IteratorWrapper* largest = nullptr; for (int i = n_ - 1; i >= 0; i--) { IteratorWrapper* child = &children_[i]; if (child->Valid()) { if (largest == nullptr) { largest = child; } else if (comparator_->Compare(child->key(), largest->key()) > 0) { largest = child; } } } current_ = largest; } } // namespace Iterator* NewMergingIterator(const Comparator* comparator, Iterator** children, int n) { assert(n >= 0); if (n == 0) { return NewEmptyIterator(); } else if (n == 1) { return children[0]; } else { return new MergingIterator(comparator, children, n); } } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/table/iterator.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/iterator.h" namespace leveldb { Iterator::Iterator() { cleanup_head_.function = nullptr; cleanup_head_.next = nullptr; } Iterator::~Iterator() { if (!cleanup_head_.IsEmpty()) { cleanup_head_.Run(); for (CleanupNode* node = cleanup_head_.next; node != nullptr;) { node->Run(); CleanupNode* next_node = node->next; delete node; node = next_node; } } } void Iterator::RegisterCleanup(CleanupFunction func, void* arg1, void* arg2) { assert(func != nullptr); CleanupNode* node; if (cleanup_head_.IsEmpty()) { node = &cleanup_head_; } else { node = new CleanupNode(); node->next = cleanup_head_.next; cleanup_head_.next = node; } node->function = func; node->arg1 = arg1; node->arg2 = arg2; } namespace { class EmptyIterator : public Iterator { public: EmptyIterator(const Status& s) : status_(s) {} ~EmptyIterator() override = default; bool Valid() const override { return false; } void Seek(const Slice& target) override {} void SeekToFirst() override {} void SeekToLast() override {} void Next() override { assert(false); } void Prev() override { assert(false); } Slice key() const override { assert(false); return Slice(); } Slice value() const override { assert(false); return Slice(); } Status status() const override { return status_; } private: Status status_; }; } // anonymous namespace Iterator* NewEmptyIterator() { return new EmptyIterator(Status::OK()); } Iterator* NewErrorIterator(const Status& status) { return new EmptyIterator(status); } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/table/block_builder.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // BlockBuilder generates blocks where keys are prefix-compressed: // // When we store a key, we drop the prefix shared with the previous // string. This helps reduce the space requirement significantly. // Furthermore, once every K keys, we do not apply the prefix // compression and store the entire key. We call this a "restart // point". The tail end of the block stores the offsets of all of the // restart points, and can be used to do a binary search when looking // for a particular key. Values are stored as-is (without compression) // immediately following the corresponding key. // // An entry for a particular key-value pair has the form: // shared_bytes: varint32 // unshared_bytes: varint32 // value_length: varint32 // key_delta: char[unshared_bytes] // value: char[value_length] // shared_bytes == 0 for restart points. // // The trailer of the block has the form: // restarts: uint32[num_restarts] // num_restarts: uint32 // restarts[i] contains the offset within the block of the ith restart point. #include "table/block_builder.h" #include <assert.h> #include <algorithm> #include "leveldb/comparator.h" #include "leveldb/options.h" #include "util/coding.h" namespace leveldb { BlockBuilder::BlockBuilder(const Options* options) : options_(options), restarts_(), counter_(0), finished_(false) { assert(options->block_restart_interval >= 1); restarts_.push_back(0); // First restart point is at offset 0 } void BlockBuilder::Reset() { buffer_.clear(); restarts_.clear(); restarts_.push_back(0); // First restart point is at offset 0 counter_ = 0; finished_ = false; last_key_.clear(); } size_t BlockBuilder::CurrentSizeEstimate() const { return (buffer_.size() + // Raw data buffer restarts_.size() * sizeof(uint32_t) + // Restart array sizeof(uint32_t)); // Restart array length } Slice BlockBuilder::Finish() { // Append restart array for (size_t i = 0; i < restarts_.size(); i++) { PutFixed32(&buffer_, restarts_[i]); } PutFixed32(&buffer_, restarts_.size()); finished_ = true; return Slice(buffer_); } void BlockBuilder::Add(const Slice& key, const Slice& value) { Slice last_key_piece(last_key_); assert(!finished_); assert(counter_ <= options_->block_restart_interval); assert(buffer_.empty() // No values yet? || options_->comparator->Compare(key, last_key_piece) > 0); size_t shared = 0; if (counter_ < options_->block_restart_interval) { // See how much sharing to do with previous string const size_t min_length = std::min(last_key_piece.size(), key.size()); while ((shared < min_length) && (last_key_piece[shared] == key[shared])) { shared++; } } else { // Restart compression restarts_.push_back(buffer_.size()); counter_ = 0; } const size_t non_shared = key.size() - shared; // Add "<shared><non_shared><value_size>" to buffer_ PutVarint32(&buffer_, shared); PutVarint32(&buffer_, non_shared); PutVarint32(&buffer_, value.size()); // Add string delta to buffer_ followed by value buffer_.append(key.data() + shared, non_shared); buffer_.append(value.data(), value.size()); // Update state last_key_.resize(shared); last_key_.append(key.data() + shared, non_shared); assert(Slice(last_key_) == key); counter_++; } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/table/iterator_wrapper.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_TABLE_ITERATOR_WRAPPER_H_ #define STORAGE_LEVELDB_TABLE_ITERATOR_WRAPPER_H_ #include "leveldb/iterator.h" #include "leveldb/slice.h" namespace leveldb { // A internal wrapper class with an interface similar to Iterator that // caches the valid() and key() results for an underlying iterator. // This can help avoid virtual function calls and also gives better // cache locality. class IteratorWrapper { public: IteratorWrapper() : iter_(nullptr), valid_(false) {} explicit IteratorWrapper(Iterator* iter) : iter_(nullptr) { Set(iter); } ~IteratorWrapper() { delete iter_; } Iterator* iter() const { return iter_; } // Takes ownership of "iter" and will delete it when destroyed, or // when Set() is invoked again. void Set(Iterator* iter) { delete iter_; iter_ = iter; if (iter_ == nullptr) { valid_ = false; } else { Update(); } } // Iterator interface methods bool Valid() const { return valid_; } Slice key() const { assert(Valid()); return key_; } Slice value() const { assert(Valid()); return iter_->value(); } // Methods below require iter() != nullptr Status status() const { assert(iter_); return iter_->status(); } void Next() { assert(iter_); iter_->Next(); Update(); } void Prev() { assert(iter_); iter_->Prev(); Update(); } void Seek(const Slice& k) { assert(iter_); iter_->Seek(k); Update(); } void SeekToFirst() { assert(iter_); iter_->SeekToFirst(); Update(); } void SeekToLast() { assert(iter_); iter_->SeekToLast(); Update(); } private: void Update() { valid_ = iter_->Valid(); if (valid_) { key_ = iter_->key(); } } Iterator* iter_; bool valid_; Slice key_; }; } // namespace leveldb #endif // STORAGE_LEVELDB_TABLE_ITERATOR_WRAPPER_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/table/merger.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_TABLE_MERGER_H_ #define STORAGE_LEVELDB_TABLE_MERGER_H_ namespace leveldb { class Comparator; class Iterator; // Return an iterator that provided the union of the data in // children[0,n-1]. Takes ownership of the child iterators and // will delete them when the result iterator is deleted. // // The result does no duplicate suppression. I.e., if a particular // key is present in K child iterators, it will be yielded K times. // // REQUIRES: n >= 0 Iterator* NewMergingIterator(const Comparator* comparator, Iterator** children, int n); } // namespace leveldb #endif // STORAGE_LEVELDB_TABLE_MERGER_H_
0
bitcoin/src/leveldb
bitcoin/src/leveldb/table/table_builder.cc
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "leveldb/table_builder.h" #include <assert.h> #include "leveldb/comparator.h" #include "leveldb/env.h" #include "leveldb/filter_policy.h" #include "leveldb/options.h" #include "table/block_builder.h" #include "table/filter_block.h" #include "table/format.h" #include "util/coding.h" #include "util/crc32c.h" namespace leveldb { struct TableBuilder::Rep { Rep(const Options& opt, WritableFile* f) : options(opt), index_block_options(opt), file(f), offset(0), data_block(&options), index_block(&index_block_options), num_entries(0), closed(false), filter_block(opt.filter_policy == nullptr ? nullptr : new FilterBlockBuilder(opt.filter_policy)), pending_index_entry(false) { index_block_options.block_restart_interval = 1; } Options options; Options index_block_options; WritableFile* file; uint64_t offset; Status status; BlockBuilder data_block; BlockBuilder index_block; std::string last_key; int64_t num_entries; bool closed; // Either Finish() or Abandon() has been called. FilterBlockBuilder* filter_block; // We do not emit the index entry for a block until we have seen the // first key for the next data block. This allows us to use shorter // keys in the index block. For example, consider a block boundary // between the keys "the quick brown fox" and "the who". We can use // "the r" as the key for the index block entry since it is >= all // entries in the first block and < all entries in subsequent // blocks. // // Invariant: r->pending_index_entry is true only if data_block is empty. bool pending_index_entry; BlockHandle pending_handle; // Handle to add to index block std::string compressed_output; }; TableBuilder::TableBuilder(const Options& options, WritableFile* file) : rep_(new Rep(options, file)) { if (rep_->filter_block != nullptr) { rep_->filter_block->StartBlock(0); } } TableBuilder::~TableBuilder() { assert(rep_->closed); // Catch errors where caller forgot to call Finish() delete rep_->filter_block; delete rep_; } Status TableBuilder::ChangeOptions(const Options& options) { // Note: if more fields are added to Options, update // this function to catch changes that should not be allowed to // change in the middle of building a Table. if (options.comparator != rep_->options.comparator) { return Status::InvalidArgument("changing comparator while building table"); } // Note that any live BlockBuilders point to rep_->options and therefore // will automatically pick up the updated options. rep_->options = options; rep_->index_block_options = options; rep_->index_block_options.block_restart_interval = 1; return Status::OK(); } void TableBuilder::Add(const Slice& key, const Slice& value) { Rep* r = rep_; assert(!r->closed); if (!ok()) return; if (r->num_entries > 0) { assert(r->options.comparator->Compare(key, Slice(r->last_key)) > 0); } if (r->pending_index_entry) { assert(r->data_block.empty()); r->options.comparator->FindShortestSeparator(&r->last_key, key); std::string handle_encoding; r->pending_handle.EncodeTo(&handle_encoding); r->index_block.Add(r->last_key, Slice(handle_encoding)); r->pending_index_entry = false; } if (r->filter_block != nullptr) { r->filter_block->AddKey(key); } r->last_key.assign(key.data(), key.size()); r->num_entries++; r->data_block.Add(key, value); const size_t estimated_block_size = r->data_block.CurrentSizeEstimate(); if (estimated_block_size >= r->options.block_size) { Flush(); } } void TableBuilder::Flush() { Rep* r = rep_; assert(!r->closed); if (!ok()) return; if (r->data_block.empty()) return; assert(!r->pending_index_entry); WriteBlock(&r->data_block, &r->pending_handle); if (ok()) { r->pending_index_entry = true; r->status = r->file->Flush(); } if (r->filter_block != nullptr) { r->filter_block->StartBlock(r->offset); } } void TableBuilder::WriteBlock(BlockBuilder* block, BlockHandle* handle) { // File format contains a sequence of blocks where each block has: // block_data: uint8[n] // type: uint8 // crc: uint32 assert(ok()); Rep* r = rep_; Slice raw = block->Finish(); Slice block_contents; CompressionType type = r->options.compression; // TODO(postrelease): Support more compression options: zlib? switch (type) { case kNoCompression: block_contents = raw; break; case kSnappyCompression: { std::string* compressed = &r->compressed_output; if (port::Snappy_Compress(raw.data(), raw.size(), compressed) && compressed->size() < raw.size() - (raw.size() / 8u)) { block_contents = *compressed; } else { // Snappy not supported, or compressed less than 12.5%, so just // store uncompressed form block_contents = raw; type = kNoCompression; } break; } } WriteRawBlock(block_contents, type, handle); r->compressed_output.clear(); block->Reset(); } void TableBuilder::WriteRawBlock(const Slice& block_contents, CompressionType type, BlockHandle* handle) { Rep* r = rep_; handle->set_offset(r->offset); handle->set_size(block_contents.size()); r->status = r->file->Append(block_contents); if (r->status.ok()) { char trailer[kBlockTrailerSize]; trailer[0] = type; uint32_t crc = crc32c::Value(block_contents.data(), block_contents.size()); crc = crc32c::Extend(crc, trailer, 1); // Extend crc to cover block type EncodeFixed32(trailer + 1, crc32c::Mask(crc)); r->status = r->file->Append(Slice(trailer, kBlockTrailerSize)); if (r->status.ok()) { r->offset += block_contents.size() + kBlockTrailerSize; } } } Status TableBuilder::status() const { return rep_->status; } Status TableBuilder::Finish() { Rep* r = rep_; Flush(); assert(!r->closed); r->closed = true; BlockHandle filter_block_handle, metaindex_block_handle, index_block_handle; // Write filter block if (ok() && r->filter_block != nullptr) { WriteRawBlock(r->filter_block->Finish(), kNoCompression, &filter_block_handle); } // Write metaindex block if (ok()) { BlockBuilder meta_index_block(&r->options); if (r->filter_block != nullptr) { // Add mapping from "filter.Name" to location of filter data std::string key = "filter."; key.append(r->options.filter_policy->Name()); std::string handle_encoding; filter_block_handle.EncodeTo(&handle_encoding); meta_index_block.Add(key, handle_encoding); } // TODO(postrelease): Add stats and other meta blocks WriteBlock(&meta_index_block, &metaindex_block_handle); } // Write index block if (ok()) { if (r->pending_index_entry) { r->options.comparator->FindShortSuccessor(&r->last_key); std::string handle_encoding; r->pending_handle.EncodeTo(&handle_encoding); r->index_block.Add(r->last_key, Slice(handle_encoding)); r->pending_index_entry = false; } WriteBlock(&r->index_block, &index_block_handle); } // Write footer if (ok()) { Footer footer; footer.set_metaindex_handle(metaindex_block_handle); footer.set_index_handle(index_block_handle); std::string footer_encoding; footer.EncodeTo(&footer_encoding); r->status = r->file->Append(footer_encoding); if (r->status.ok()) { r->offset += footer_encoding.size(); } } return r->status; } void TableBuilder::Abandon() { Rep* r = rep_; assert(!r->closed); r->closed = true; } uint64_t TableBuilder::NumEntries() const { return rep_->num_entries; } uint64_t TableBuilder::FileSize() const { return rep_->offset; } } // namespace leveldb
0
bitcoin/src/leveldb
bitcoin/src/leveldb/table/filter_block_test.cc
// Copyright (c) 2012 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/filter_block.h" #include "leveldb/filter_policy.h" #include "util/coding.h" #include "util/hash.h" #include "util/logging.h" #include "util/testharness.h" #include "util/testutil.h" namespace leveldb { // For testing: emit an array with one hash value per key class TestHashFilter : public FilterPolicy { public: const char* Name() const override { return "TestHashFilter"; } void CreateFilter(const Slice* keys, int n, std::string* dst) const override { for (int i = 0; i < n; i++) { uint32_t h = Hash(keys[i].data(), keys[i].size(), 1); PutFixed32(dst, h); } } bool KeyMayMatch(const Slice& key, const Slice& filter) const override { uint32_t h = Hash(key.data(), key.size(), 1); for (size_t i = 0; i + 4 <= filter.size(); i += 4) { if (h == DecodeFixed32(filter.data() + i)) { return true; } } return false; } }; class FilterBlockTest { public: TestHashFilter policy_; }; TEST(FilterBlockTest, EmptyBuilder) { FilterBlockBuilder builder(&policy_); Slice block = builder.Finish(); ASSERT_EQ("\\x00\\x00\\x00\\x00\\x0b", EscapeString(block)); FilterBlockReader reader(&policy_, block); ASSERT_TRUE(reader.KeyMayMatch(0, "foo")); ASSERT_TRUE(reader.KeyMayMatch(100000, "foo")); } TEST(FilterBlockTest, SingleChunk) { FilterBlockBuilder builder(&policy_); builder.StartBlock(100); builder.AddKey("foo"); builder.AddKey("bar"); builder.AddKey("box"); builder.StartBlock(200); builder.AddKey("box"); builder.StartBlock(300); builder.AddKey("hello"); Slice block = builder.Finish(); FilterBlockReader reader(&policy_, block); ASSERT_TRUE(reader.KeyMayMatch(100, "foo")); ASSERT_TRUE(reader.KeyMayMatch(100, "bar")); ASSERT_TRUE(reader.KeyMayMatch(100, "box")); ASSERT_TRUE(reader.KeyMayMatch(100, "hello")); ASSERT_TRUE(reader.KeyMayMatch(100, "foo")); ASSERT_TRUE(!reader.KeyMayMatch(100, "missing")); ASSERT_TRUE(!reader.KeyMayMatch(100, "other")); } TEST(FilterBlockTest, MultiChunk) { FilterBlockBuilder builder(&policy_); // First filter builder.StartBlock(0); builder.AddKey("foo"); builder.StartBlock(2000); builder.AddKey("bar"); // Second filter builder.StartBlock(3100); builder.AddKey("box"); // Third filter is empty // Last filter builder.StartBlock(9000); builder.AddKey("box"); builder.AddKey("hello"); Slice block = builder.Finish(); FilterBlockReader reader(&policy_, block); // Check first filter ASSERT_TRUE(reader.KeyMayMatch(0, "foo")); ASSERT_TRUE(reader.KeyMayMatch(2000, "bar")); ASSERT_TRUE(!reader.KeyMayMatch(0, "box")); ASSERT_TRUE(!reader.KeyMayMatch(0, "hello")); // Check second filter ASSERT_TRUE(reader.KeyMayMatch(3100, "box")); ASSERT_TRUE(!reader.KeyMayMatch(3100, "foo")); ASSERT_TRUE(!reader.KeyMayMatch(3100, "bar")); ASSERT_TRUE(!reader.KeyMayMatch(3100, "hello")); // Check third filter (empty) ASSERT_TRUE(!reader.KeyMayMatch(4100, "foo")); ASSERT_TRUE(!reader.KeyMayMatch(4100, "bar")); ASSERT_TRUE(!reader.KeyMayMatch(4100, "box")); ASSERT_TRUE(!reader.KeyMayMatch(4100, "hello")); // Check last filter ASSERT_TRUE(reader.KeyMayMatch(9000, "box")); ASSERT_TRUE(reader.KeyMayMatch(9000, "hello")); ASSERT_TRUE(!reader.KeyMayMatch(9000, "foo")); ASSERT_TRUE(!reader.KeyMayMatch(9000, "bar")); } } // namespace leveldb int main(int argc, char** argv) { return leveldb::test::RunAllTests(); }
0
bitcoin/src/leveldb
bitcoin/src/leveldb/table/block_builder.h
// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef STORAGE_LEVELDB_TABLE_BLOCK_BUILDER_H_ #define STORAGE_LEVELDB_TABLE_BLOCK_BUILDER_H_ #include <stdint.h> #include <vector> #include "leveldb/slice.h" namespace leveldb { struct Options; class BlockBuilder { public: explicit BlockBuilder(const Options* options); BlockBuilder(const BlockBuilder&) = delete; BlockBuilder& operator=(const BlockBuilder&) = delete; // Reset the contents as if the BlockBuilder was just constructed. void Reset(); // REQUIRES: Finish() has not been called since the last call to Reset(). // REQUIRES: key is larger than any previously added key void Add(const Slice& key, const Slice& value); // Finish building the block and return a slice that refers to the // block contents. The returned slice will remain valid for the // lifetime of this builder or until Reset() is called. Slice Finish(); // Returns an estimate of the current (uncompressed) size of the block // we are building. size_t CurrentSizeEstimate() const; // Return true iff no entries have been added since the last Reset() bool empty() const { return buffer_.empty(); } private: const Options* options_; std::string buffer_; // Destination buffer std::vector<uint32_t> restarts_; // Restart points int counter_; // Number of entries emitted since restart bool finished_; // Has Finish() been called? std::string last_key_; }; } // namespace leveldb #endif // STORAGE_LEVELDB_TABLE_BLOCK_BUILDER_H_
0