Unnamed: 0
int64 0
10k
| repository_name
stringlengths 7
54
| func_path_in_repository
stringlengths 5
223
| func_name
stringlengths 1
134
| whole_func_string
stringlengths 100
30.3k
| language
stringclasses 1
value | func_code_string
stringlengths 100
30.3k
| func_code_tokens
stringlengths 138
33.2k
| func_documentation_string
stringlengths 1
15k
| func_documentation_tokens
stringlengths 5
5.14k
| split_name
stringclasses 1
value | func_code_url
stringlengths 91
315
|
---|---|---|---|---|---|---|---|---|---|---|---|
6,900 | twilio/twilio-python | twilio/rest/api/v2010/account/incoming_phone_number/assigned_add_on/assigned_add_on_extension.py | AssignedAddOnExtensionPage.get_instance | def get_instance(self, payload):
"""
Build an instance of AssignedAddOnExtensionInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance
:rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance
"""
return AssignedAddOnExtensionInstance(
self._version,
payload,
account_sid=self._solution['account_sid'],
resource_sid=self._solution['resource_sid'],
assigned_add_on_sid=self._solution['assigned_add_on_sid'],
) | python | def get_instance(self, payload):
"""
Build an instance of AssignedAddOnExtensionInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance
:rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance
"""
return AssignedAddOnExtensionInstance(
self._version,
payload,
account_sid=self._solution['account_sid'],
resource_sid=self._solution['resource_sid'],
assigned_add_on_sid=self._solution['assigned_add_on_sid'],
) | ['def', 'get_instance', '(', 'self', ',', 'payload', ')', ':', 'return', 'AssignedAddOnExtensionInstance', '(', 'self', '.', '_version', ',', 'payload', ',', 'account_sid', '=', 'self', '.', '_solution', '[', "'account_sid'", ']', ',', 'resource_sid', '=', 'self', '.', '_solution', '[', "'resource_sid'", ']', ',', 'assigned_add_on_sid', '=', 'self', '.', '_solution', '[', "'assigned_add_on_sid'", ']', ',', ')'] | Build an instance of AssignedAddOnExtensionInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance
:rtype: twilio.rest.api.v2010.account.incoming_phone_number.assigned_add_on.assigned_add_on_extension.AssignedAddOnExtensionInstance | ['Build', 'an', 'instance', 'of', 'AssignedAddOnExtensionInstance'] | train | https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/api/v2010/account/incoming_phone_number/assigned_add_on/assigned_add_on_extension.py#L189-L204 |
6,901 | nerdvegas/rez | src/rez/resolved_context.py | ResolvedContext.requested_packages | def requested_packages(self, include_implicit=False):
"""Get packages in the request.
Args:
include_implicit (bool): If True, implicit packages are appended
to the result.
Returns:
List of `PackageRequest` objects.
"""
if include_implicit:
return self._package_requests + self.implicit_packages
else:
return self._package_requests | python | def requested_packages(self, include_implicit=False):
"""Get packages in the request.
Args:
include_implicit (bool): If True, implicit packages are appended
to the result.
Returns:
List of `PackageRequest` objects.
"""
if include_implicit:
return self._package_requests + self.implicit_packages
else:
return self._package_requests | ['def', 'requested_packages', '(', 'self', ',', 'include_implicit', '=', 'False', ')', ':', 'if', 'include_implicit', ':', 'return', 'self', '.', '_package_requests', '+', 'self', '.', 'implicit_packages', 'else', ':', 'return', 'self', '.', '_package_requests'] | Get packages in the request.
Args:
include_implicit (bool): If True, implicit packages are appended
to the result.
Returns:
List of `PackageRequest` objects. | ['Get', 'packages', 'in', 'the', 'request', '.'] | train | https://github.com/nerdvegas/rez/blob/1d3b846d53b5b5404edfe8ddb9083f9ceec8c5e7/src/rez/resolved_context.py#L322-L335 |
6,902 | postlund/pyatv | pyatv/__main__.py | DeviceCommands.auth | async def auth(self):
"""Perform AirPlay device authentication."""
credentials = await self.atv.airplay.generate_credentials()
await self.atv.airplay.load_credentials(credentials)
try:
await self.atv.airplay.start_authentication()
pin = await _read_input(self.loop, 'Enter PIN on screen: ')
await self.atv.airplay.finish_authentication(pin)
print('You may now use these credentials:')
print(credentials)
return 0
except exceptions.DeviceAuthenticationError:
logging.exception('Failed to authenticate - invalid PIN?')
return 1 | python | async def auth(self):
"""Perform AirPlay device authentication."""
credentials = await self.atv.airplay.generate_credentials()
await self.atv.airplay.load_credentials(credentials)
try:
await self.atv.airplay.start_authentication()
pin = await _read_input(self.loop, 'Enter PIN on screen: ')
await self.atv.airplay.finish_authentication(pin)
print('You may now use these credentials:')
print(credentials)
return 0
except exceptions.DeviceAuthenticationError:
logging.exception('Failed to authenticate - invalid PIN?')
return 1 | ['async', 'def', 'auth', '(', 'self', ')', ':', 'credentials', '=', 'await', 'self', '.', 'atv', '.', 'airplay', '.', 'generate_credentials', '(', ')', 'await', 'self', '.', 'atv', '.', 'airplay', '.', 'load_credentials', '(', 'credentials', ')', 'try', ':', 'await', 'self', '.', 'atv', '.', 'airplay', '.', 'start_authentication', '(', ')', 'pin', '=', 'await', '_read_input', '(', 'self', '.', 'loop', ',', "'Enter PIN on screen: '", ')', 'await', 'self', '.', 'atv', '.', 'airplay', '.', 'finish_authentication', '(', 'pin', ')', 'print', '(', "'You may now use these credentials:'", ')', 'print', '(', 'credentials', ')', 'return', '0', 'except', 'exceptions', '.', 'DeviceAuthenticationError', ':', 'logging', '.', 'exception', '(', "'Failed to authenticate - invalid PIN?'", ')', 'return', '1'] | Perform AirPlay device authentication. | ['Perform', 'AirPlay', 'device', 'authentication', '.'] | train | https://github.com/postlund/pyatv/blob/655dfcda4e2f9d1c501540e18da4f480d8bf0e70/pyatv/__main__.py#L138-L154 |
6,903 | kumar303/mohawk | mohawk/sender.py | Sender.accept_response | def accept_response(self,
response_header,
content=EmptyValue,
content_type=EmptyValue,
accept_untrusted_content=False,
localtime_offset_in_seconds=0,
timestamp_skew_in_seconds=default_ts_skew_in_seconds,
**auth_kw):
"""
Accept a response to this request.
:param response_header:
A `Hawk`_ ``Server-Authorization`` header
such as one created by :class:`mohawk.Receiver`.
:type response_header: str
:param content=EmptyValue: Byte string of the response body received.
:type content=EmptyValue: str
:param content_type=EmptyValue:
Content-Type header value of the response received.
:type content_type=EmptyValue: str
:param accept_untrusted_content=False:
When True, allow responses that do not hash their content.
Read :ref:`skipping-content-checks` to learn more.
:type accept_untrusted_content=False: bool
:param localtime_offset_in_seconds=0:
Seconds to add to local time in case it's out of sync.
:type localtime_offset_in_seconds=0: float
:param timestamp_skew_in_seconds=60:
Max seconds until a message expires. Upon expiry,
:class:`mohawk.exc.TokenExpired` is raised.
:type timestamp_skew_in_seconds=60: float
.. _`Hawk`: https://github.com/hueniverse/hawk
"""
log.debug('accepting response {header}'
.format(header=response_header))
parsed_header = parse_authorization_header(response_header)
resource = Resource(ext=parsed_header.get('ext', None),
content=content,
content_type=content_type,
# The following response attributes are
# in reference to the original request,
# not to the reponse header:
timestamp=self.req_resource.timestamp,
nonce=self.req_resource.nonce,
url=self.req_resource.url,
method=self.req_resource.method,
app=self.req_resource.app,
dlg=self.req_resource.dlg,
credentials=self.credentials,
seen_nonce=self.seen_nonce)
self._authorize(
'response', parsed_header, resource,
# Per Node lib, a responder macs the *sender's* timestamp.
# It does not create its own timestamp.
# I suppose a slow response could time out here. Maybe only check
# mac failures, not timeouts?
their_timestamp=resource.timestamp,
timestamp_skew_in_seconds=timestamp_skew_in_seconds,
localtime_offset_in_seconds=localtime_offset_in_seconds,
accept_untrusted_content=accept_untrusted_content,
**auth_kw) | python | def accept_response(self,
response_header,
content=EmptyValue,
content_type=EmptyValue,
accept_untrusted_content=False,
localtime_offset_in_seconds=0,
timestamp_skew_in_seconds=default_ts_skew_in_seconds,
**auth_kw):
"""
Accept a response to this request.
:param response_header:
A `Hawk`_ ``Server-Authorization`` header
such as one created by :class:`mohawk.Receiver`.
:type response_header: str
:param content=EmptyValue: Byte string of the response body received.
:type content=EmptyValue: str
:param content_type=EmptyValue:
Content-Type header value of the response received.
:type content_type=EmptyValue: str
:param accept_untrusted_content=False:
When True, allow responses that do not hash their content.
Read :ref:`skipping-content-checks` to learn more.
:type accept_untrusted_content=False: bool
:param localtime_offset_in_seconds=0:
Seconds to add to local time in case it's out of sync.
:type localtime_offset_in_seconds=0: float
:param timestamp_skew_in_seconds=60:
Max seconds until a message expires. Upon expiry,
:class:`mohawk.exc.TokenExpired` is raised.
:type timestamp_skew_in_seconds=60: float
.. _`Hawk`: https://github.com/hueniverse/hawk
"""
log.debug('accepting response {header}'
.format(header=response_header))
parsed_header = parse_authorization_header(response_header)
resource = Resource(ext=parsed_header.get('ext', None),
content=content,
content_type=content_type,
# The following response attributes are
# in reference to the original request,
# not to the reponse header:
timestamp=self.req_resource.timestamp,
nonce=self.req_resource.nonce,
url=self.req_resource.url,
method=self.req_resource.method,
app=self.req_resource.app,
dlg=self.req_resource.dlg,
credentials=self.credentials,
seen_nonce=self.seen_nonce)
self._authorize(
'response', parsed_header, resource,
# Per Node lib, a responder macs the *sender's* timestamp.
# It does not create its own timestamp.
# I suppose a slow response could time out here. Maybe only check
# mac failures, not timeouts?
their_timestamp=resource.timestamp,
timestamp_skew_in_seconds=timestamp_skew_in_seconds,
localtime_offset_in_seconds=localtime_offset_in_seconds,
accept_untrusted_content=accept_untrusted_content,
**auth_kw) | ['def', 'accept_response', '(', 'self', ',', 'response_header', ',', 'content', '=', 'EmptyValue', ',', 'content_type', '=', 'EmptyValue', ',', 'accept_untrusted_content', '=', 'False', ',', 'localtime_offset_in_seconds', '=', '0', ',', 'timestamp_skew_in_seconds', '=', 'default_ts_skew_in_seconds', ',', '*', '*', 'auth_kw', ')', ':', 'log', '.', 'debug', '(', "'accepting response {header}'", '.', 'format', '(', 'header', '=', 'response_header', ')', ')', 'parsed_header', '=', 'parse_authorization_header', '(', 'response_header', ')', 'resource', '=', 'Resource', '(', 'ext', '=', 'parsed_header', '.', 'get', '(', "'ext'", ',', 'None', ')', ',', 'content', '=', 'content', ',', 'content_type', '=', 'content_type', ',', '# The following response attributes are', '# in reference to the original request,', '# not to the reponse header:', 'timestamp', '=', 'self', '.', 'req_resource', '.', 'timestamp', ',', 'nonce', '=', 'self', '.', 'req_resource', '.', 'nonce', ',', 'url', '=', 'self', '.', 'req_resource', '.', 'url', ',', 'method', '=', 'self', '.', 'req_resource', '.', 'method', ',', 'app', '=', 'self', '.', 'req_resource', '.', 'app', ',', 'dlg', '=', 'self', '.', 'req_resource', '.', 'dlg', ',', 'credentials', '=', 'self', '.', 'credentials', ',', 'seen_nonce', '=', 'self', '.', 'seen_nonce', ')', 'self', '.', '_authorize', '(', "'response'", ',', 'parsed_header', ',', 'resource', ',', "# Per Node lib, a responder macs the *sender's* timestamp.", '# It does not create its own timestamp.', '# I suppose a slow response could time out here. Maybe only check', '# mac failures, not timeouts?', 'their_timestamp', '=', 'resource', '.', 'timestamp', ',', 'timestamp_skew_in_seconds', '=', 'timestamp_skew_in_seconds', ',', 'localtime_offset_in_seconds', '=', 'localtime_offset_in_seconds', ',', 'accept_untrusted_content', '=', 'accept_untrusted_content', ',', '*', '*', 'auth_kw', ')'] | Accept a response to this request.
:param response_header:
A `Hawk`_ ``Server-Authorization`` header
such as one created by :class:`mohawk.Receiver`.
:type response_header: str
:param content=EmptyValue: Byte string of the response body received.
:type content=EmptyValue: str
:param content_type=EmptyValue:
Content-Type header value of the response received.
:type content_type=EmptyValue: str
:param accept_untrusted_content=False:
When True, allow responses that do not hash their content.
Read :ref:`skipping-content-checks` to learn more.
:type accept_untrusted_content=False: bool
:param localtime_offset_in_seconds=0:
Seconds to add to local time in case it's out of sync.
:type localtime_offset_in_seconds=0: float
:param timestamp_skew_in_seconds=60:
Max seconds until a message expires. Upon expiry,
:class:`mohawk.exc.TokenExpired` is raised.
:type timestamp_skew_in_seconds=60: float
.. _`Hawk`: https://github.com/hueniverse/hawk | ['Accept', 'a', 'response', 'to', 'this', 'request', '.'] | train | https://github.com/kumar303/mohawk/blob/037be67ccf50ae704705e67add44e02737a65d21/mohawk/sender.py#L106-L175 |
6,904 | redcanari/canari3 | src/canari/entrypoints.py | generate_entities | def generate_entities(ctx, output_path, mtz_file, exclude_namespace, namespace, maltego_entities, append, entity):
"""Converts Maltego entity definition files to Canari python classes.
Excludes Maltego built-in entities by default."""
from canari.commands.generate_entities import generate_entities
generate_entities(
ctx.project, output_path, mtz_file, exclude_namespace, namespace, maltego_entities, append, entity) | python | def generate_entities(ctx, output_path, mtz_file, exclude_namespace, namespace, maltego_entities, append, entity):
"""Converts Maltego entity definition files to Canari python classes.
Excludes Maltego built-in entities by default."""
from canari.commands.generate_entities import generate_entities
generate_entities(
ctx.project, output_path, mtz_file, exclude_namespace, namespace, maltego_entities, append, entity) | ['def', 'generate_entities', '(', 'ctx', ',', 'output_path', ',', 'mtz_file', ',', 'exclude_namespace', ',', 'namespace', ',', 'maltego_entities', ',', 'append', ',', 'entity', ')', ':', 'from', 'canari', '.', 'commands', '.', 'generate_entities', 'import', 'generate_entities', 'generate_entities', '(', 'ctx', '.', 'project', ',', 'output_path', ',', 'mtz_file', ',', 'exclude_namespace', ',', 'namespace', ',', 'maltego_entities', ',', 'append', ',', 'entity', ')'] | Converts Maltego entity definition files to Canari python classes.
Excludes Maltego built-in entities by default. | ['Converts', 'Maltego', 'entity', 'definition', 'files', 'to', 'Canari', 'python', 'classes', '.', 'Excludes', 'Maltego', 'built', '-', 'in', 'entities', 'by', 'default', '.'] | train | https://github.com/redcanari/canari3/blob/322d2bae4b49ac728229f418b786b51fcc227352/src/canari/entrypoints.py#L146-L151 |
6,905 | brentp/cruzdb | cruzdb/__init__.py | Genome.load_file | def load_file(self, fname, table=None, sep="\t", bins=False, indexes=None):
"""
use some of the machinery in pandas to load a file into a table
Parameters
----------
fname : str
filename or filehandle to load
table : str
table to load the file to
sep : str
CSV separator
bins : bool
add a "bin" column for efficient spatial queries.
indexes : list[str]
list of columns to index
"""
convs = {"#chr": "chrom", "start": "txStart", "end": "txEnd", "chr":
"chrom", "pos": "start", "POS": "start", "chromStart": "txStart",
"chromEnd": "txEnd"}
if table is None:
import os.path as op
table = op.basename(op.splitext(fname)[0]).replace(".", "_")
print("writing to:", table, file=sys.stderr)
from pandas.io import sql
import pandas as pa
from toolshed import nopen
needs_name = False
for i, chunk in enumerate(pa.read_csv(nopen(fname), iterator=True,
chunksize=100000, sep=sep, encoding="latin-1")):
chunk.columns = [convs.get(k, k) for k in chunk.columns]
if not "name" in chunk.columns:
needs_name = True
chunk['name'] = chunk.get('chrom', chunk[chunk.columns[0]])
if bins:
chunk['bin'] = 1
if i == 0 and not table in self.tables:
flavor = self.url.split(":")[0]
schema = sql.get_schema(chunk, table, flavor)
print(schema)
self.engine.execute(schema)
elif i == 0:
print >>sys.stderr,\
"""adding to existing table, you may want to drop first"""
tbl = getattr(self, table)._table
cols = chunk.columns
data = list(dict(zip(cols, x)) for x in chunk.values)
if needs_name:
for d in data:
d['name'] = "%s:%s" % (d.get("chrom"), d.get("txStart", d.get("chromStart")))
if bins:
for d in data:
d['bin'] = max(Genome.bins(int(d["txStart"]), int(d["txEnd"])))
self.engine.execute(tbl.insert(), data)
self.session.commit()
if i > 0:
print >>sys.stderr, "writing row:", i * 100000
if "txStart" in chunk.columns:
if "chrom" in chunk.columns:
ssql = """CREATE INDEX "%s.chrom_txStart" ON "%s" (chrom, txStart)""" % (table, table)
else:
ssql = """CREATE INDEX "%s.txStart" ON "%s" (txStart)""" % (table, table)
self.engine.execute(ssql)
for index in (indexes or []):
ssql = """CREATE INDEX "%s.%s" ON "%s" (%s)""" % (table,
index, table, index)
self.engine.execute(ssql)
if bins:
ssql = """CREATE INDEX "%s.chrom_bin" ON "%s" (chrom, bin)""" % (table, table)
self.engine.execute(ssql)
self.session.commit() | python | def load_file(self, fname, table=None, sep="\t", bins=False, indexes=None):
"""
use some of the machinery in pandas to load a file into a table
Parameters
----------
fname : str
filename or filehandle to load
table : str
table to load the file to
sep : str
CSV separator
bins : bool
add a "bin" column for efficient spatial queries.
indexes : list[str]
list of columns to index
"""
convs = {"#chr": "chrom", "start": "txStart", "end": "txEnd", "chr":
"chrom", "pos": "start", "POS": "start", "chromStart": "txStart",
"chromEnd": "txEnd"}
if table is None:
import os.path as op
table = op.basename(op.splitext(fname)[0]).replace(".", "_")
print("writing to:", table, file=sys.stderr)
from pandas.io import sql
import pandas as pa
from toolshed import nopen
needs_name = False
for i, chunk in enumerate(pa.read_csv(nopen(fname), iterator=True,
chunksize=100000, sep=sep, encoding="latin-1")):
chunk.columns = [convs.get(k, k) for k in chunk.columns]
if not "name" in chunk.columns:
needs_name = True
chunk['name'] = chunk.get('chrom', chunk[chunk.columns[0]])
if bins:
chunk['bin'] = 1
if i == 0 and not table in self.tables:
flavor = self.url.split(":")[0]
schema = sql.get_schema(chunk, table, flavor)
print(schema)
self.engine.execute(schema)
elif i == 0:
print >>sys.stderr,\
"""adding to existing table, you may want to drop first"""
tbl = getattr(self, table)._table
cols = chunk.columns
data = list(dict(zip(cols, x)) for x in chunk.values)
if needs_name:
for d in data:
d['name'] = "%s:%s" % (d.get("chrom"), d.get("txStart", d.get("chromStart")))
if bins:
for d in data:
d['bin'] = max(Genome.bins(int(d["txStart"]), int(d["txEnd"])))
self.engine.execute(tbl.insert(), data)
self.session.commit()
if i > 0:
print >>sys.stderr, "writing row:", i * 100000
if "txStart" in chunk.columns:
if "chrom" in chunk.columns:
ssql = """CREATE INDEX "%s.chrom_txStart" ON "%s" (chrom, txStart)""" % (table, table)
else:
ssql = """CREATE INDEX "%s.txStart" ON "%s" (txStart)""" % (table, table)
self.engine.execute(ssql)
for index in (indexes or []):
ssql = """CREATE INDEX "%s.%s" ON "%s" (%s)""" % (table,
index, table, index)
self.engine.execute(ssql)
if bins:
ssql = """CREATE INDEX "%s.chrom_bin" ON "%s" (chrom, bin)""" % (table, table)
self.engine.execute(ssql)
self.session.commit() | ['def', 'load_file', '(', 'self', ',', 'fname', ',', 'table', '=', 'None', ',', 'sep', '=', '"\\t"', ',', 'bins', '=', 'False', ',', 'indexes', '=', 'None', ')', ':', 'convs', '=', '{', '"#chr"', ':', '"chrom"', ',', '"start"', ':', '"txStart"', ',', '"end"', ':', '"txEnd"', ',', '"chr"', ':', '"chrom"', ',', '"pos"', ':', '"start"', ',', '"POS"', ':', '"start"', ',', '"chromStart"', ':', '"txStart"', ',', '"chromEnd"', ':', '"txEnd"', '}', 'if', 'table', 'is', 'None', ':', 'import', 'os', '.', 'path', 'as', 'op', 'table', '=', 'op', '.', 'basename', '(', 'op', '.', 'splitext', '(', 'fname', ')', '[', '0', ']', ')', '.', 'replace', '(', '"."', ',', '"_"', ')', 'print', '(', '"writing to:"', ',', 'table', ',', 'file', '=', 'sys', '.', 'stderr', ')', 'from', 'pandas', '.', 'io', 'import', 'sql', 'import', 'pandas', 'as', 'pa', 'from', 'toolshed', 'import', 'nopen', 'needs_name', '=', 'False', 'for', 'i', ',', 'chunk', 'in', 'enumerate', '(', 'pa', '.', 'read_csv', '(', 'nopen', '(', 'fname', ')', ',', 'iterator', '=', 'True', ',', 'chunksize', '=', '100000', ',', 'sep', '=', 'sep', ',', 'encoding', '=', '"latin-1"', ')', ')', ':', 'chunk', '.', 'columns', '=', '[', 'convs', '.', 'get', '(', 'k', ',', 'k', ')', 'for', 'k', 'in', 'chunk', '.', 'columns', ']', 'if', 'not', '"name"', 'in', 'chunk', '.', 'columns', ':', 'needs_name', '=', 'True', 'chunk', '[', "'name'", ']', '=', 'chunk', '.', 'get', '(', "'chrom'", ',', 'chunk', '[', 'chunk', '.', 'columns', '[', '0', ']', ']', ')', 'if', 'bins', ':', 'chunk', '[', "'bin'", ']', '=', '1', 'if', 'i', '==', '0', 'and', 'not', 'table', 'in', 'self', '.', 'tables', ':', 'flavor', '=', 'self', '.', 'url', '.', 'split', '(', '":"', ')', '[', '0', ']', 'schema', '=', 'sql', '.', 'get_schema', '(', 'chunk', ',', 'table', ',', 'flavor', ')', 'print', '(', 'schema', ')', 'self', '.', 'engine', '.', 'execute', '(', 'schema', ')', 'elif', 'i', '==', '0', ':', 'print', '>>', 'sys', '.', 'stderr', ',', '"""adding to existing table, you may want to drop first"""', 'tbl', '=', 'getattr', '(', 'self', ',', 'table', ')', '.', '_table', 'cols', '=', 'chunk', '.', 'columns', 'data', '=', 'list', '(', 'dict', '(', 'zip', '(', 'cols', ',', 'x', ')', ')', 'for', 'x', 'in', 'chunk', '.', 'values', ')', 'if', 'needs_name', ':', 'for', 'd', 'in', 'data', ':', 'd', '[', "'name'", ']', '=', '"%s:%s"', '%', '(', 'd', '.', 'get', '(', '"chrom"', ')', ',', 'd', '.', 'get', '(', '"txStart"', ',', 'd', '.', 'get', '(', '"chromStart"', ')', ')', ')', 'if', 'bins', ':', 'for', 'd', 'in', 'data', ':', 'd', '[', "'bin'", ']', '=', 'max', '(', 'Genome', '.', 'bins', '(', 'int', '(', 'd', '[', '"txStart"', ']', ')', ',', 'int', '(', 'd', '[', '"txEnd"', ']', ')', ')', ')', 'self', '.', 'engine', '.', 'execute', '(', 'tbl', '.', 'insert', '(', ')', ',', 'data', ')', 'self', '.', 'session', '.', 'commit', '(', ')', 'if', 'i', '>', '0', ':', 'print', '>>', 'sys', '.', 'stderr', ',', '"writing row:"', ',', 'i', '*', '100000', 'if', '"txStart"', 'in', 'chunk', '.', 'columns', ':', 'if', '"chrom"', 'in', 'chunk', '.', 'columns', ':', 'ssql', '=', '"""CREATE INDEX "%s.chrom_txStart" ON "%s" (chrom, txStart)"""', '%', '(', 'table', ',', 'table', ')', 'else', ':', 'ssql', '=', '"""CREATE INDEX "%s.txStart" ON "%s" (txStart)"""', '%', '(', 'table', ',', 'table', ')', 'self', '.', 'engine', '.', 'execute', '(', 'ssql', ')', 'for', 'index', 'in', '(', 'indexes', 'or', '[', ']', ')', ':', 'ssql', '=', '"""CREATE INDEX "%s.%s" ON "%s" (%s)"""', '%', '(', 'table', ',', 'index', ',', 'table', ',', 'index', ')', 'self', '.', 'engine', '.', 'execute', '(', 'ssql', ')', 'if', 'bins', ':', 'ssql', '=', '"""CREATE INDEX "%s.chrom_bin" ON "%s" (chrom, bin)"""', '%', '(', 'table', ',', 'table', ')', 'self', '.', 'engine', '.', 'execute', '(', 'ssql', ')', 'self', '.', 'session', '.', 'commit', '(', ')'] | use some of the machinery in pandas to load a file into a table
Parameters
----------
fname : str
filename or filehandle to load
table : str
table to load the file to
sep : str
CSV separator
bins : bool
add a "bin" column for efficient spatial queries.
indexes : list[str]
list of columns to index | ['use', 'some', 'of', 'the', 'machinery', 'in', 'pandas', 'to', 'load', 'a', 'file', 'into', 'a', 'table'] | train | https://github.com/brentp/cruzdb/blob/9068d46e25952f4a929dde0242beb31fa4c7e89a/cruzdb/__init__.py#L146-L228 |
6,906 | jeffh/rpi_courses | rpi_courses/sis_parser/course_catalog.py | CourseCatalog.find_course_by_crn | def find_course_by_crn(self, crn):
"""Searches all courses by CRNs. Not particularly efficient.
Returns None if not found.
"""
for name, course in self.courses.iteritems():
if crn in course:
return course
return None | python | def find_course_by_crn(self, crn):
"""Searches all courses by CRNs. Not particularly efficient.
Returns None if not found.
"""
for name, course in self.courses.iteritems():
if crn in course:
return course
return None | ['def', 'find_course_by_crn', '(', 'self', ',', 'crn', ')', ':', 'for', 'name', ',', 'course', 'in', 'self', '.', 'courses', '.', 'iteritems', '(', ')', ':', 'if', 'crn', 'in', 'course', ':', 'return', 'course', 'return', 'None'] | Searches all courses by CRNs. Not particularly efficient.
Returns None if not found. | ['Searches', 'all', 'courses', 'by', 'CRNs', '.', 'Not', 'particularly', 'efficient', '.', 'Returns', 'None', 'if', 'not', 'found', '.'] | train | https://github.com/jeffh/rpi_courses/blob/c97176f73f866f112c785910ebf3ff8a790e8e9a/rpi_courses/sis_parser/course_catalog.py#L99-L106 |
6,907 | theSage21/lanchat | lanchat/chat.py | Node.__make_client | def __make_client(self):
"Make this node a client"
notice('Making client, getting server connection', self.color)
self.mode = 'c'
addr = utils.get_existing_server_addr()
sock = utils.get_client_sock(addr)
self.__s = sock
with self.__client_list_lock:
self.clients = deque()
self.threads = deque() | python | def __make_client(self):
"Make this node a client"
notice('Making client, getting server connection', self.color)
self.mode = 'c'
addr = utils.get_existing_server_addr()
sock = utils.get_client_sock(addr)
self.__s = sock
with self.__client_list_lock:
self.clients = deque()
self.threads = deque() | ['def', '__make_client', '(', 'self', ')', ':', 'notice', '(', "'Making client, getting server connection'", ',', 'self', '.', 'color', ')', 'self', '.', 'mode', '=', "'c'", 'addr', '=', 'utils', '.', 'get_existing_server_addr', '(', ')', 'sock', '=', 'utils', '.', 'get_client_sock', '(', 'addr', ')', 'self', '.', '__s', '=', 'sock', 'with', 'self', '.', '__client_list_lock', ':', 'self', '.', 'clients', '=', 'deque', '(', ')', 'self', '.', 'threads', '=', 'deque', '(', ')'] | Make this node a client | ['Make', 'this', 'node', 'a', 'client'] | train | https://github.com/theSage21/lanchat/blob/66f5dcead67fef815347b956b1d3e149a7e13b29/lanchat/chat.py#L194-L203 |
6,908 | kpdyer/regex2dfa | third_party/re2/lib/codereview/codereview.py | GetRpcServer | def GetRpcServer(options):
"""Returns an instance of an AbstractRpcServer.
Returns:
A new AbstractRpcServer, on which RPC calls can be made.
"""
rpc_server_class = HttpRpcServer
def GetUserCredentials():
"""Prompts the user for a username and password."""
# Disable status prints so they don't obscure the password prompt.
global global_status
st = global_status
global_status = None
email = options.email
if email is None:
email = GetEmail("Email (login for uploading to %s)" % options.server)
password = getpass.getpass("Password for %s: " % email)
# Put status back.
global_status = st
return (email, password)
# If this is the dev_appserver, use fake authentication.
host = (options.host or options.server).lower()
if host == "localhost" or host.startswith("localhost:"):
email = options.email
if email is None:
email = "[email protected]"
logging.info("Using debug user %s. Override with --email" % email)
server = rpc_server_class(
options.server,
lambda: (email, "password"),
host_override=options.host,
extra_headers={"Cookie": 'dev_appserver_login="%s:False"' % email},
save_cookies=options.save_cookies)
# Don't try to talk to ClientLogin.
server.authenticated = True
return server
return rpc_server_class(options.server, GetUserCredentials,
host_override=options.host, save_cookies=options.save_cookies) | python | def GetRpcServer(options):
"""Returns an instance of an AbstractRpcServer.
Returns:
A new AbstractRpcServer, on which RPC calls can be made.
"""
rpc_server_class = HttpRpcServer
def GetUserCredentials():
"""Prompts the user for a username and password."""
# Disable status prints so they don't obscure the password prompt.
global global_status
st = global_status
global_status = None
email = options.email
if email is None:
email = GetEmail("Email (login for uploading to %s)" % options.server)
password = getpass.getpass("Password for %s: " % email)
# Put status back.
global_status = st
return (email, password)
# If this is the dev_appserver, use fake authentication.
host = (options.host or options.server).lower()
if host == "localhost" or host.startswith("localhost:"):
email = options.email
if email is None:
email = "[email protected]"
logging.info("Using debug user %s. Override with --email" % email)
server = rpc_server_class(
options.server,
lambda: (email, "password"),
host_override=options.host,
extra_headers={"Cookie": 'dev_appserver_login="%s:False"' % email},
save_cookies=options.save_cookies)
# Don't try to talk to ClientLogin.
server.authenticated = True
return server
return rpc_server_class(options.server, GetUserCredentials,
host_override=options.host, save_cookies=options.save_cookies) | ['def', 'GetRpcServer', '(', 'options', ')', ':', 'rpc_server_class', '=', 'HttpRpcServer', 'def', 'GetUserCredentials', '(', ')', ':', '"""Prompts the user for a username and password."""', "# Disable status prints so they don't obscure the password prompt.", 'global', 'global_status', 'st', '=', 'global_status', 'global_status', '=', 'None', 'email', '=', 'options', '.', 'email', 'if', 'email', 'is', 'None', ':', 'email', '=', 'GetEmail', '(', '"Email (login for uploading to %s)"', '%', 'options', '.', 'server', ')', 'password', '=', 'getpass', '.', 'getpass', '(', '"Password for %s: "', '%', 'email', ')', '# Put status back.', 'global_status', '=', 'st', 'return', '(', 'email', ',', 'password', ')', '# If this is the dev_appserver, use fake authentication.', 'host', '=', '(', 'options', '.', 'host', 'or', 'options', '.', 'server', ')', '.', 'lower', '(', ')', 'if', 'host', '==', '"localhost"', 'or', 'host', '.', 'startswith', '(', '"localhost:"', ')', ':', 'email', '=', 'options', '.', 'email', 'if', 'email', 'is', 'None', ':', 'email', '=', '"[email protected]"', 'logging', '.', 'info', '(', '"Using debug user %s. Override with --email"', '%', 'email', ')', 'server', '=', 'rpc_server_class', '(', 'options', '.', 'server', ',', 'lambda', ':', '(', 'email', ',', '"password"', ')', ',', 'host_override', '=', 'options', '.', 'host', ',', 'extra_headers', '=', '{', '"Cookie"', ':', '\'dev_appserver_login="%s:False"\'', '%', 'email', '}', ',', 'save_cookies', '=', 'options', '.', 'save_cookies', ')', "# Don't try to talk to ClientLogin.", 'server', '.', 'authenticated', '=', 'True', 'return', 'server', 'return', 'rpc_server_class', '(', 'options', '.', 'server', ',', 'GetUserCredentials', ',', 'host_override', '=', 'options', '.', 'host', ',', 'save_cookies', '=', 'options', '.', 'save_cookies', ')'] | Returns an instance of an AbstractRpcServer.
Returns:
A new AbstractRpcServer, on which RPC calls can be made. | ['Returns', 'an', 'instance', 'of', 'an', 'AbstractRpcServer', '.'] | train | https://github.com/kpdyer/regex2dfa/blob/109f877e60ef0dfcb430f11516d215930b7b9936/third_party/re2/lib/codereview/codereview.py#L3048-L3091 |
6,909 | tipsi/tipsi_tools | tipsi_tools/doc_utils/tipsi_sphinx/dyn_serializer.py | parse_doc | def parse_doc(doc):
"""
Parse docstrings to dict, it should look like:
key: value
"""
if not doc:
return {}
out = {}
for s in doc.split('\n'):
s = s.strip().split(':', maxsplit=1)
if len(s) == 2:
out[s[0]] = s[1]
return out | python | def parse_doc(doc):
"""
Parse docstrings to dict, it should look like:
key: value
"""
if not doc:
return {}
out = {}
for s in doc.split('\n'):
s = s.strip().split(':', maxsplit=1)
if len(s) == 2:
out[s[0]] = s[1]
return out | ['def', 'parse_doc', '(', 'doc', ')', ':', 'if', 'not', 'doc', ':', 'return', '{', '}', 'out', '=', '{', '}', 'for', 's', 'in', 'doc', '.', 'split', '(', "'\\n'", ')', ':', 's', '=', 's', '.', 'strip', '(', ')', '.', 'split', '(', "':'", ',', 'maxsplit', '=', '1', ')', 'if', 'len', '(', 's', ')', '==', '2', ':', 'out', '[', 's', '[', '0', ']', ']', '=', 's', '[', '1', ']', 'return', 'out'] | Parse docstrings to dict, it should look like:
key: value | ['Parse', 'docstrings', 'to', 'dict', 'it', 'should', 'look', 'like', ':', 'key', ':', 'value'] | train | https://github.com/tipsi/tipsi_tools/blob/1aba960c9890ceef2fb5e215b98b1646056ee58e/tipsi_tools/doc_utils/tipsi_sphinx/dyn_serializer.py#L20-L32 |
6,910 | gr33ndata/dysl | dysl/social.py | SocialLM.karbasa | def karbasa(self, result):
""" Finding if class probabilities are close to eachother
Ratio of the distance between 1st and 2nd class,
to the distance between 1st and last class.
:param result: The dict returned by LM.calculate()
"""
probs = result['all_probs']
probs.sort()
return float(probs[1] - probs[0]) / float(probs[-1] - probs[0]) | python | def karbasa(self, result):
""" Finding if class probabilities are close to eachother
Ratio of the distance between 1st and 2nd class,
to the distance between 1st and last class.
:param result: The dict returned by LM.calculate()
"""
probs = result['all_probs']
probs.sort()
return float(probs[1] - probs[0]) / float(probs[-1] - probs[0]) | ['def', 'karbasa', '(', 'self', ',', 'result', ')', ':', 'probs', '=', 'result', '[', "'all_probs'", ']', 'probs', '.', 'sort', '(', ')', 'return', 'float', '(', 'probs', '[', '1', ']', '-', 'probs', '[', '0', ']', ')', '/', 'float', '(', 'probs', '[', '-', '1', ']', '-', 'probs', '[', '0', ']', ')'] | Finding if class probabilities are close to eachother
Ratio of the distance between 1st and 2nd class,
to the distance between 1st and last class.
:param result: The dict returned by LM.calculate() | ['Finding', 'if', 'class', 'probabilities', 'are', 'close', 'to', 'eachother', 'Ratio', 'of', 'the', 'distance', 'between', '1st', 'and', '2nd', 'class', 'to', 'the', 'distance', 'between', '1st', 'and', 'last', 'class', '.'] | train | https://github.com/gr33ndata/dysl/blob/649c1d6a1761f47d49a9842e7389f6df52039155/dysl/social.py#L26-L35 |
6,911 | titusjan/argos | argos/config/choicecti.py | ChoiceCti.createEditor | def createEditor(self, delegate, parent, option):
""" Creates a ChoiceCtiEditor.
For the parameters see the AbstractCti constructor documentation.
"""
return ChoiceCtiEditor(self, delegate, parent=parent) | python | def createEditor(self, delegate, parent, option):
""" Creates a ChoiceCtiEditor.
For the parameters see the AbstractCti constructor documentation.
"""
return ChoiceCtiEditor(self, delegate, parent=parent) | ['def', 'createEditor', '(', 'self', ',', 'delegate', ',', 'parent', ',', 'option', ')', ':', 'return', 'ChoiceCtiEditor', '(', 'self', ',', 'delegate', ',', 'parent', '=', 'parent', ')'] | Creates a ChoiceCtiEditor.
For the parameters see the AbstractCti constructor documentation. | ['Creates', 'a', 'ChoiceCtiEditor', '.', 'For', 'the', 'parameters', 'see', 'the', 'AbstractCti', 'constructor', 'documentation', '.'] | train | https://github.com/titusjan/argos/blob/20d0a3cae26c36ea789a5d219c02ca7df21279dd/argos/config/choicecti.py#L161-L165 |
6,912 | clalancette/pycdlib | pycdlib/udf.py | symlink_to_bytes | def symlink_to_bytes(symlink_target):
# type: (str) -> bytes
'''
A function to generate UDF symlink data from a Unix-like path.
Parameters:
symlink_target - The Unix-like path that is the symlink.
Returns:
The UDF data corresponding to the symlink.
'''
symlink_data = bytearray()
for comp in symlink_target.split('/'):
if comp == '':
# If comp is empty, then we know this is the leading slash
# and we should make an absolute entry (double slashes and
# such are weeded out by the earlier utils.normpath).
symlink_data.extend(b'\x02\x00\x00\x00')
elif comp == '.':
symlink_data.extend(b'\x04\x00\x00\x00')
elif comp == '..':
symlink_data.extend(b'\x03\x00\x00\x00')
else:
symlink_data.extend(b'\x05')
ostaname = _ostaunicode(comp)
symlink_data.append(len(ostaname))
symlink_data.extend(b'\x00\x00')
symlink_data.extend(ostaname)
return symlink_data | python | def symlink_to_bytes(symlink_target):
# type: (str) -> bytes
'''
A function to generate UDF symlink data from a Unix-like path.
Parameters:
symlink_target - The Unix-like path that is the symlink.
Returns:
The UDF data corresponding to the symlink.
'''
symlink_data = bytearray()
for comp in symlink_target.split('/'):
if comp == '':
# If comp is empty, then we know this is the leading slash
# and we should make an absolute entry (double slashes and
# such are weeded out by the earlier utils.normpath).
symlink_data.extend(b'\x02\x00\x00\x00')
elif comp == '.':
symlink_data.extend(b'\x04\x00\x00\x00')
elif comp == '..':
symlink_data.extend(b'\x03\x00\x00\x00')
else:
symlink_data.extend(b'\x05')
ostaname = _ostaunicode(comp)
symlink_data.append(len(ostaname))
symlink_data.extend(b'\x00\x00')
symlink_data.extend(ostaname)
return symlink_data | ['def', 'symlink_to_bytes', '(', 'symlink_target', ')', ':', '# type: (str) -> bytes', 'symlink_data', '=', 'bytearray', '(', ')', 'for', 'comp', 'in', 'symlink_target', '.', 'split', '(', "'/'", ')', ':', 'if', 'comp', '==', "''", ':', '# If comp is empty, then we know this is the leading slash', '# and we should make an absolute entry (double slashes and', '# such are weeded out by the earlier utils.normpath).', 'symlink_data', '.', 'extend', '(', "b'\\x02\\x00\\x00\\x00'", ')', 'elif', 'comp', '==', "'.'", ':', 'symlink_data', '.', 'extend', '(', "b'\\x04\\x00\\x00\\x00'", ')', 'elif', 'comp', '==', "'..'", ':', 'symlink_data', '.', 'extend', '(', "b'\\x03\\x00\\x00\\x00'", ')', 'else', ':', 'symlink_data', '.', 'extend', '(', "b'\\x05'", ')', 'ostaname', '=', '_ostaunicode', '(', 'comp', ')', 'symlink_data', '.', 'append', '(', 'len', '(', 'ostaname', ')', ')', 'symlink_data', '.', 'extend', '(', "b'\\x00\\x00'", ')', 'symlink_data', '.', 'extend', '(', 'ostaname', ')', 'return', 'symlink_data'] | A function to generate UDF symlink data from a Unix-like path.
Parameters:
symlink_target - The Unix-like path that is the symlink.
Returns:
The UDF data corresponding to the symlink. | ['A', 'function', 'to', 'generate', 'UDF', 'symlink', 'data', 'from', 'a', 'Unix', '-', 'like', 'path', '.'] | train | https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/udf.py#L3554-L3582 |
6,913 | GNS3/gns3-server | gns3server/compute/dynamips/nios/nio.py | NIO.set_bandwidth | def set_bandwidth(self, bandwidth):
"""
Sets bandwidth constraint.
:param bandwidth: bandwidth integer value (in Kb/s)
"""
yield from self._hypervisor.send("nio set_bandwidth {name} {bandwidth}".format(name=self._name, bandwidth=bandwidth))
self._bandwidth = bandwidth | python | def set_bandwidth(self, bandwidth):
"""
Sets bandwidth constraint.
:param bandwidth: bandwidth integer value (in Kb/s)
"""
yield from self._hypervisor.send("nio set_bandwidth {name} {bandwidth}".format(name=self._name, bandwidth=bandwidth))
self._bandwidth = bandwidth | ['def', 'set_bandwidth', '(', 'self', ',', 'bandwidth', ')', ':', 'yield', 'from', 'self', '.', '_hypervisor', '.', 'send', '(', '"nio set_bandwidth {name} {bandwidth}"', '.', 'format', '(', 'name', '=', 'self', '.', '_name', ',', 'bandwidth', '=', 'bandwidth', ')', ')', 'self', '.', '_bandwidth', '=', 'bandwidth'] | Sets bandwidth constraint.
:param bandwidth: bandwidth integer value (in Kb/s) | ['Sets', 'bandwidth', 'constraint', '.'] | train | https://github.com/GNS3/gns3-server/blob/a221678448fb5d24e977ef562f81d56aacc89ab1/gns3server/compute/dynamips/nios/nio.py#L229-L237 |
6,914 | SystemRDL/systemrdl-compiler | systemrdl/core/ComponentVisitor.py | ComponentVisitor.visitParam_def | def visitParam_def(self, ctx:SystemRDLParser.Param_defContext):
"""
Parameter Definition block
"""
self.compiler.namespace.enter_scope()
param_defs = []
for elem in ctx.getTypedRuleContexts(SystemRDLParser.Param_def_elemContext):
param_def = self.visit(elem)
param_defs.append(param_def)
self.compiler.namespace.exit_scope()
return param_defs | python | def visitParam_def(self, ctx:SystemRDLParser.Param_defContext):
"""
Parameter Definition block
"""
self.compiler.namespace.enter_scope()
param_defs = []
for elem in ctx.getTypedRuleContexts(SystemRDLParser.Param_def_elemContext):
param_def = self.visit(elem)
param_defs.append(param_def)
self.compiler.namespace.exit_scope()
return param_defs | ['def', 'visitParam_def', '(', 'self', ',', 'ctx', ':', 'SystemRDLParser', '.', 'Param_defContext', ')', ':', 'self', '.', 'compiler', '.', 'namespace', '.', 'enter_scope', '(', ')', 'param_defs', '=', '[', ']', 'for', 'elem', 'in', 'ctx', '.', 'getTypedRuleContexts', '(', 'SystemRDLParser', '.', 'Param_def_elemContext', ')', ':', 'param_def', '=', 'self', '.', 'visit', '(', 'elem', ')', 'param_defs', '.', 'append', '(', 'param_def', ')', 'self', '.', 'compiler', '.', 'namespace', '.', 'exit_scope', '(', ')', 'return', 'param_defs'] | Parameter Definition block | ['Parameter', 'Definition', 'block'] | train | https://github.com/SystemRDL/systemrdl-compiler/blob/6ae64f2bb6ecbbe9db356e20e8ac94e85bdeed3a/systemrdl/core/ComponentVisitor.py#L471-L483 |
6,915 | alejandroautalan/pygubu | pygubu/widgets/calendarframe.py | CalendarFrame._draw_calendar | def _draw_calendar(self, canvas, redraw=False):
"""Draws calendar."""
options = self.__options
# Update labels:
name = self._cal.formatmonthname(self._date.year, self._date.month, 0,
withyear=False)
self._lmonth.configure(text=name.title())
self._lyear.configure(text=str(self._date.year))
# Update calendar
ch = canvas.winfo_height()
cw = canvas.winfo_width()
rowh = ch / 7.0
colw = cw / 7.0
# Header background
if self._rheader is None:
self._rheader = canvas.create_rectangle(0, 0, cw, rowh, width=0,
fill=options['headerbg'])
else:
canvas.itemconfigure(self._rheader, fill=options['headerbg'])
canvas.coords(self._rheader, 0, 0, cw, rowh)
# Header text
ox = 0
oy = rowh / 2.0
coffset = colw / 2.0
cols = self._cal.formatweekheader(3).split()
for i in range(0, 7):
x = ox + i * colw + coffset
if redraw:
item = self._theader[i]
canvas.coords(item, x, oy)
canvas.itemconfigure(item, text=cols[i],
fill=options['headerfg'])
else:
self._theader[i] = canvas.create_text(x, oy, text=cols[i],
fill=options['headerbg'])
# background matrix
oy = rowh
ox = 0
for i, x, y, x1, y1 in matrix_coords(6, 7, rowh, colw, ox, oy):
x1 -= 1
y1 -= 1
if redraw:
rec = self._recmat[i]
canvas.coords(rec, x, y, x1, y1)
canvas.itemconfigure(rec, fill=options['calendarbg'])
else:
rec = canvas.create_rectangle(x, y, x1, y1, width=1,
fill=options['calendarbg'],
outline=options['calendarbg'],
activeoutline=options['selectbg'],
activewidth=1, tags='cell')
self._recmat[i] = rec
# text matrix
weeks = self._weeks
xoffset = colw / 2.0
yoffset = rowh / 2.0
oy = rowh
ox = 0
for i, x, y, x1, y1 in matrix_coords(6, 7, rowh, colw, ox, oy):
x += coffset
y += yoffset
# day text
txt = ""
f, c = i2rc(i, 7)
if f < len(weeks):
day = weeks[f][c]
txt = "{0}".format(day) if day != 0 else ""
if redraw:
item = self._txtmat[i]
canvas.coords(item, x, y)
canvas.itemconfigure(item, text=txt)
else:
self._txtmat[i] = canvas.create_text(x, y, text=txt,
state=tk.DISABLED)
# Mark days
self._mark_days() | python | def _draw_calendar(self, canvas, redraw=False):
"""Draws calendar."""
options = self.__options
# Update labels:
name = self._cal.formatmonthname(self._date.year, self._date.month, 0,
withyear=False)
self._lmonth.configure(text=name.title())
self._lyear.configure(text=str(self._date.year))
# Update calendar
ch = canvas.winfo_height()
cw = canvas.winfo_width()
rowh = ch / 7.0
colw = cw / 7.0
# Header background
if self._rheader is None:
self._rheader = canvas.create_rectangle(0, 0, cw, rowh, width=0,
fill=options['headerbg'])
else:
canvas.itemconfigure(self._rheader, fill=options['headerbg'])
canvas.coords(self._rheader, 0, 0, cw, rowh)
# Header text
ox = 0
oy = rowh / 2.0
coffset = colw / 2.0
cols = self._cal.formatweekheader(3).split()
for i in range(0, 7):
x = ox + i * colw + coffset
if redraw:
item = self._theader[i]
canvas.coords(item, x, oy)
canvas.itemconfigure(item, text=cols[i],
fill=options['headerfg'])
else:
self._theader[i] = canvas.create_text(x, oy, text=cols[i],
fill=options['headerbg'])
# background matrix
oy = rowh
ox = 0
for i, x, y, x1, y1 in matrix_coords(6, 7, rowh, colw, ox, oy):
x1 -= 1
y1 -= 1
if redraw:
rec = self._recmat[i]
canvas.coords(rec, x, y, x1, y1)
canvas.itemconfigure(rec, fill=options['calendarbg'])
else:
rec = canvas.create_rectangle(x, y, x1, y1, width=1,
fill=options['calendarbg'],
outline=options['calendarbg'],
activeoutline=options['selectbg'],
activewidth=1, tags='cell')
self._recmat[i] = rec
# text matrix
weeks = self._weeks
xoffset = colw / 2.0
yoffset = rowh / 2.0
oy = rowh
ox = 0
for i, x, y, x1, y1 in matrix_coords(6, 7, rowh, colw, ox, oy):
x += coffset
y += yoffset
# day text
txt = ""
f, c = i2rc(i, 7)
if f < len(weeks):
day = weeks[f][c]
txt = "{0}".format(day) if day != 0 else ""
if redraw:
item = self._txtmat[i]
canvas.coords(item, x, y)
canvas.itemconfigure(item, text=txt)
else:
self._txtmat[i] = canvas.create_text(x, y, text=txt,
state=tk.DISABLED)
# Mark days
self._mark_days() | ['def', '_draw_calendar', '(', 'self', ',', 'canvas', ',', 'redraw', '=', 'False', ')', ':', 'options', '=', 'self', '.', '__options', '# Update labels:', 'name', '=', 'self', '.', '_cal', '.', 'formatmonthname', '(', 'self', '.', '_date', '.', 'year', ',', 'self', '.', '_date', '.', 'month', ',', '0', ',', 'withyear', '=', 'False', ')', 'self', '.', '_lmonth', '.', 'configure', '(', 'text', '=', 'name', '.', 'title', '(', ')', ')', 'self', '.', '_lyear', '.', 'configure', '(', 'text', '=', 'str', '(', 'self', '.', '_date', '.', 'year', ')', ')', '# Update calendar', 'ch', '=', 'canvas', '.', 'winfo_height', '(', ')', 'cw', '=', 'canvas', '.', 'winfo_width', '(', ')', 'rowh', '=', 'ch', '/', '7.0', 'colw', '=', 'cw', '/', '7.0', '# Header background', 'if', 'self', '.', '_rheader', 'is', 'None', ':', 'self', '.', '_rheader', '=', 'canvas', '.', 'create_rectangle', '(', '0', ',', '0', ',', 'cw', ',', 'rowh', ',', 'width', '=', '0', ',', 'fill', '=', 'options', '[', "'headerbg'", ']', ')', 'else', ':', 'canvas', '.', 'itemconfigure', '(', 'self', '.', '_rheader', ',', 'fill', '=', 'options', '[', "'headerbg'", ']', ')', 'canvas', '.', 'coords', '(', 'self', '.', '_rheader', ',', '0', ',', '0', ',', 'cw', ',', 'rowh', ')', '# Header text', 'ox', '=', '0', 'oy', '=', 'rowh', '/', '2.0', 'coffset', '=', 'colw', '/', '2.0', 'cols', '=', 'self', '.', '_cal', '.', 'formatweekheader', '(', '3', ')', '.', 'split', '(', ')', 'for', 'i', 'in', 'range', '(', '0', ',', '7', ')', ':', 'x', '=', 'ox', '+', 'i', '*', 'colw', '+', 'coffset', 'if', 'redraw', ':', 'item', '=', 'self', '.', '_theader', '[', 'i', ']', 'canvas', '.', 'coords', '(', 'item', ',', 'x', ',', 'oy', ')', 'canvas', '.', 'itemconfigure', '(', 'item', ',', 'text', '=', 'cols', '[', 'i', ']', ',', 'fill', '=', 'options', '[', "'headerfg'", ']', ')', 'else', ':', 'self', '.', '_theader', '[', 'i', ']', '=', 'canvas', '.', 'create_text', '(', 'x', ',', 'oy', ',', 'text', '=', 'cols', '[', 'i', ']', ',', 'fill', '=', 'options', '[', "'headerbg'", ']', ')', '# background matrix', 'oy', '=', 'rowh', 'ox', '=', '0', 'for', 'i', ',', 'x', ',', 'y', ',', 'x1', ',', 'y1', 'in', 'matrix_coords', '(', '6', ',', '7', ',', 'rowh', ',', 'colw', ',', 'ox', ',', 'oy', ')', ':', 'x1', '-=', '1', 'y1', '-=', '1', 'if', 'redraw', ':', 'rec', '=', 'self', '.', '_recmat', '[', 'i', ']', 'canvas', '.', 'coords', '(', 'rec', ',', 'x', ',', 'y', ',', 'x1', ',', 'y1', ')', 'canvas', '.', 'itemconfigure', '(', 'rec', ',', 'fill', '=', 'options', '[', "'calendarbg'", ']', ')', 'else', ':', 'rec', '=', 'canvas', '.', 'create_rectangle', '(', 'x', ',', 'y', ',', 'x1', ',', 'y1', ',', 'width', '=', '1', ',', 'fill', '=', 'options', '[', "'calendarbg'", ']', ',', 'outline', '=', 'options', '[', "'calendarbg'", ']', ',', 'activeoutline', '=', 'options', '[', "'selectbg'", ']', ',', 'activewidth', '=', '1', ',', 'tags', '=', "'cell'", ')', 'self', '.', '_recmat', '[', 'i', ']', '=', 'rec', '# text matrix', 'weeks', '=', 'self', '.', '_weeks', 'xoffset', '=', 'colw', '/', '2.0', 'yoffset', '=', 'rowh', '/', '2.0', 'oy', '=', 'rowh', 'ox', '=', '0', 'for', 'i', ',', 'x', ',', 'y', ',', 'x1', ',', 'y1', 'in', 'matrix_coords', '(', '6', ',', '7', ',', 'rowh', ',', 'colw', ',', 'ox', ',', 'oy', ')', ':', 'x', '+=', 'coffset', 'y', '+=', 'yoffset', '# day text', 'txt', '=', '""', 'f', ',', 'c', '=', 'i2rc', '(', 'i', ',', '7', ')', 'if', 'f', '<', 'len', '(', 'weeks', ')', ':', 'day', '=', 'weeks', '[', 'f', ']', '[', 'c', ']', 'txt', '=', '"{0}"', '.', 'format', '(', 'day', ')', 'if', 'day', '!=', '0', 'else', '""', 'if', 'redraw', ':', 'item', '=', 'self', '.', '_txtmat', '[', 'i', ']', 'canvas', '.', 'coords', '(', 'item', ',', 'x', ',', 'y', ')', 'canvas', '.', 'itemconfigure', '(', 'item', ',', 'text', '=', 'txt', ')', 'else', ':', 'self', '.', '_txtmat', '[', 'i', ']', '=', 'canvas', '.', 'create_text', '(', 'x', ',', 'y', ',', 'text', '=', 'txt', ',', 'state', '=', 'tk', '.', 'DISABLED', ')', '# Mark days', 'self', '.', '_mark_days', '(', ')'] | Draws calendar. | ['Draws', 'calendar', '.'] | train | https://github.com/alejandroautalan/pygubu/blob/41c8fb37ef973736ec5d68cbe1cd4ecb78712e40/pygubu/widgets/calendarframe.py#L362-L440 |
6,916 | log2timeline/plaso | plaso/storage/event_tag_index.py | EventTagIndex._Build | def _Build(self, storage_file):
"""Builds the event tag index.
Args:
storage_file (BaseStorageFile): storage file.
"""
self._index = {}
for event_tag in storage_file.GetEventTags():
self.SetEventTag(event_tag) | python | def _Build(self, storage_file):
"""Builds the event tag index.
Args:
storage_file (BaseStorageFile): storage file.
"""
self._index = {}
for event_tag in storage_file.GetEventTags():
self.SetEventTag(event_tag) | ['def', '_Build', '(', 'self', ',', 'storage_file', ')', ':', 'self', '.', '_index', '=', '{', '}', 'for', 'event_tag', 'in', 'storage_file', '.', 'GetEventTags', '(', ')', ':', 'self', '.', 'SetEventTag', '(', 'event_tag', ')'] | Builds the event tag index.
Args:
storage_file (BaseStorageFile): storage file. | ['Builds', 'the', 'event', 'tag', 'index', '.'] | train | https://github.com/log2timeline/plaso/blob/9c564698d2da3ffbe23607a3c54c0582ea18a6cc/plaso/storage/event_tag_index.py#L21-L29 |
6,917 | marcharper/python-ternary | ternary/ternary_axes_subplot.py | TernaryAxesSubplot.left_axis_label | def left_axis_label(self, label, position=None, rotation=60, offset=0.08,
**kwargs):
"""
Sets the label on the left axis.
Parameters
----------
label: String
The axis label
position: 3-Tuple of floats, None
The position of the text label
rotation: float, 60
The angle of rotation of the label
offset: float,
Used to compute the distance of the label from the axis
kwargs:
Any kwargs to pass through to matplotlib.
"""
if not position:
position = (-offset, 3./5, 2./5)
self._labels["left"] = (label, position, rotation, kwargs) | python | def left_axis_label(self, label, position=None, rotation=60, offset=0.08,
**kwargs):
"""
Sets the label on the left axis.
Parameters
----------
label: String
The axis label
position: 3-Tuple of floats, None
The position of the text label
rotation: float, 60
The angle of rotation of the label
offset: float,
Used to compute the distance of the label from the axis
kwargs:
Any kwargs to pass through to matplotlib.
"""
if not position:
position = (-offset, 3./5, 2./5)
self._labels["left"] = (label, position, rotation, kwargs) | ['def', 'left_axis_label', '(', 'self', ',', 'label', ',', 'position', '=', 'None', ',', 'rotation', '=', '60', ',', 'offset', '=', '0.08', ',', '*', '*', 'kwargs', ')', ':', 'if', 'not', 'position', ':', 'position', '=', '(', '-', 'offset', ',', '3.', '/', '5', ',', '2.', '/', '5', ')', 'self', '.', '_labels', '[', '"left"', ']', '=', '(', 'label', ',', 'position', ',', 'rotation', ',', 'kwargs', ')'] | Sets the label on the left axis.
Parameters
----------
label: String
The axis label
position: 3-Tuple of floats, None
The position of the text label
rotation: float, 60
The angle of rotation of the label
offset: float,
Used to compute the distance of the label from the axis
kwargs:
Any kwargs to pass through to matplotlib. | ['Sets', 'the', 'label', 'on', 'the', 'left', 'axis', '.'] | train | https://github.com/marcharper/python-ternary/blob/a4bef393ec9df130d4b55707293c750498a01843/ternary/ternary_axes_subplot.py#L122-L143 |
6,918 | materialsproject/pymatgen | pymatgen/symmetry/analyzer.py | PointGroupAnalyzer._find_spherical_axes | def _find_spherical_axes(self):
"""
Looks for R5, R4, R3 and R2 axes in spherical top molecules. Point
group T molecules have only one unique 3-fold and one unique 2-fold
axis. O molecules have one unique 4, 3 and 2-fold axes. I molecules
have a unique 5-fold axis.
"""
rot_present = defaultdict(bool)
origin_site, dist_el_sites = cluster_sites(self.centered_mol, self.tol)
test_set = min(dist_el_sites.values(), key=lambda s: len(s))
coords = [s.coords for s in test_set]
for c1, c2, c3 in itertools.combinations(coords, 3):
for cc1, cc2 in itertools.combinations([c1, c2, c3], 2):
if not rot_present[2]:
test_axis = cc1 + cc2
if np.linalg.norm(test_axis) > self.tol:
op = SymmOp.from_axis_angle_and_translation(test_axis,
180)
rot_present[2] = self.is_valid_op(op)
if rot_present[2]:
self.symmops.append(op)
self.rot_sym.append((test_axis, 2))
test_axis = np.cross(c2 - c1, c3 - c1)
if np.linalg.norm(test_axis) > self.tol:
for r in (3, 4, 5):
if not rot_present[r]:
op = SymmOp.from_axis_angle_and_translation(
test_axis, 360 / r)
rot_present[r] = self.is_valid_op(op)
if rot_present[r]:
self.symmops.append(op)
self.rot_sym.append((test_axis, r))
break
if rot_present[2] and rot_present[3] and (
rot_present[4] or rot_present[5]):
break | python | def _find_spherical_axes(self):
"""
Looks for R5, R4, R3 and R2 axes in spherical top molecules. Point
group T molecules have only one unique 3-fold and one unique 2-fold
axis. O molecules have one unique 4, 3 and 2-fold axes. I molecules
have a unique 5-fold axis.
"""
rot_present = defaultdict(bool)
origin_site, dist_el_sites = cluster_sites(self.centered_mol, self.tol)
test_set = min(dist_el_sites.values(), key=lambda s: len(s))
coords = [s.coords for s in test_set]
for c1, c2, c3 in itertools.combinations(coords, 3):
for cc1, cc2 in itertools.combinations([c1, c2, c3], 2):
if not rot_present[2]:
test_axis = cc1 + cc2
if np.linalg.norm(test_axis) > self.tol:
op = SymmOp.from_axis_angle_and_translation(test_axis,
180)
rot_present[2] = self.is_valid_op(op)
if rot_present[2]:
self.symmops.append(op)
self.rot_sym.append((test_axis, 2))
test_axis = np.cross(c2 - c1, c3 - c1)
if np.linalg.norm(test_axis) > self.tol:
for r in (3, 4, 5):
if not rot_present[r]:
op = SymmOp.from_axis_angle_and_translation(
test_axis, 360 / r)
rot_present[r] = self.is_valid_op(op)
if rot_present[r]:
self.symmops.append(op)
self.rot_sym.append((test_axis, r))
break
if rot_present[2] and rot_present[3] and (
rot_present[4] or rot_present[5]):
break | ['def', '_find_spherical_axes', '(', 'self', ')', ':', 'rot_present', '=', 'defaultdict', '(', 'bool', ')', 'origin_site', ',', 'dist_el_sites', '=', 'cluster_sites', '(', 'self', '.', 'centered_mol', ',', 'self', '.', 'tol', ')', 'test_set', '=', 'min', '(', 'dist_el_sites', '.', 'values', '(', ')', ',', 'key', '=', 'lambda', 's', ':', 'len', '(', 's', ')', ')', 'coords', '=', '[', 's', '.', 'coords', 'for', 's', 'in', 'test_set', ']', 'for', 'c1', ',', 'c2', ',', 'c3', 'in', 'itertools', '.', 'combinations', '(', 'coords', ',', '3', ')', ':', 'for', 'cc1', ',', 'cc2', 'in', 'itertools', '.', 'combinations', '(', '[', 'c1', ',', 'c2', ',', 'c3', ']', ',', '2', ')', ':', 'if', 'not', 'rot_present', '[', '2', ']', ':', 'test_axis', '=', 'cc1', '+', 'cc2', 'if', 'np', '.', 'linalg', '.', 'norm', '(', 'test_axis', ')', '>', 'self', '.', 'tol', ':', 'op', '=', 'SymmOp', '.', 'from_axis_angle_and_translation', '(', 'test_axis', ',', '180', ')', 'rot_present', '[', '2', ']', '=', 'self', '.', 'is_valid_op', '(', 'op', ')', 'if', 'rot_present', '[', '2', ']', ':', 'self', '.', 'symmops', '.', 'append', '(', 'op', ')', 'self', '.', 'rot_sym', '.', 'append', '(', '(', 'test_axis', ',', '2', ')', ')', 'test_axis', '=', 'np', '.', 'cross', '(', 'c2', '-', 'c1', ',', 'c3', '-', 'c1', ')', 'if', 'np', '.', 'linalg', '.', 'norm', '(', 'test_axis', ')', '>', 'self', '.', 'tol', ':', 'for', 'r', 'in', '(', '3', ',', '4', ',', '5', ')', ':', 'if', 'not', 'rot_present', '[', 'r', ']', ':', 'op', '=', 'SymmOp', '.', 'from_axis_angle_and_translation', '(', 'test_axis', ',', '360', '/', 'r', ')', 'rot_present', '[', 'r', ']', '=', 'self', '.', 'is_valid_op', '(', 'op', ')', 'if', 'rot_present', '[', 'r', ']', ':', 'self', '.', 'symmops', '.', 'append', '(', 'op', ')', 'self', '.', 'rot_sym', '.', 'append', '(', '(', 'test_axis', ',', 'r', ')', ')', 'break', 'if', 'rot_present', '[', '2', ']', 'and', 'rot_present', '[', '3', ']', 'and', '(', 'rot_present', '[', '4', ']', 'or', 'rot_present', '[', '5', ']', ')', ':', 'break'] | Looks for R5, R4, R3 and R2 axes in spherical top molecules. Point
group T molecules have only one unique 3-fold and one unique 2-fold
axis. O molecules have one unique 4, 3 and 2-fold axes. I molecules
have a unique 5-fold axis. | ['Looks', 'for', 'R5', 'R4', 'R3', 'and', 'R2', 'axes', 'in', 'spherical', 'top', 'molecules', '.', 'Point', 'group', 'T', 'molecules', 'have', 'only', 'one', 'unique', '3', '-', 'fold', 'and', 'one', 'unique', '2', '-', 'fold', 'axis', '.', 'O', 'molecules', 'have', 'one', 'unique', '4', '3', 'and', '2', '-', 'fold', 'axes', '.', 'I', 'molecules', 'have', 'a', 'unique', '5', '-', 'fold', 'axis', '.'] | train | https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/symmetry/analyzer.py#L1151-L1187 |
6,919 | tensorflow/cleverhans | examples/nips17_adversarial_competition/eval_infra/code/master.py | print_header | def print_header(text):
"""Prints header with given text and frame composed of '#' characters."""
print()
print('#'*(len(text)+4))
print('# ' + text + ' #')
print('#'*(len(text)+4))
print() | python | def print_header(text):
"""Prints header with given text and frame composed of '#' characters."""
print()
print('#'*(len(text)+4))
print('# ' + text + ' #')
print('#'*(len(text)+4))
print() | ['def', 'print_header', '(', 'text', ')', ':', 'print', '(', ')', 'print', '(', "'#'", '*', '(', 'len', '(', 'text', ')', '+', '4', ')', ')', 'print', '(', "'# '", '+', 'text', '+', "' #'", ')', 'print', '(', "'#'", '*', '(', 'len', '(', 'text', ')', '+', '4', ')', ')', 'print', '(', ')'] | Prints header with given text and frame composed of '#' characters. | ['Prints', 'header', 'with', 'given', 'text', 'and', 'frame', 'composed', 'of', '#', 'characters', '.'] | train | https://github.com/tensorflow/cleverhans/blob/97488e215760547b81afc53f5e5de8ba7da5bd98/examples/nips17_adversarial_competition/eval_infra/code/master.py#L40-L46 |
6,920 | tuomas2/automate | src/automate/traits_fixes.py | _dispatch_change_event | def _dispatch_change_event(self, object, trait_name, old, new, handler):
""" Prepare and dispatch a trait change event to a listener. """
# Extract the arguments needed from the handler.
args = self.argument_transform(object, trait_name, old, new)
# Send a description of the event to the change event tracer.
if tnotifier._pre_change_event_tracer is not None:
tnotifier._pre_change_event_tracer(object, trait_name, old, new, handler)
# Dispatch the event to the listener.
from automate.common import SystemNotReady
try:
self.dispatch(handler, *args)
except SystemNotReady:
pass
except Exception as e:
if tnotifier._post_change_event_tracer is not None:
tnotifier._post_change_event_tracer(object, trait_name, old, new,
handler, exception=e)
# This call needs to be made inside the `except` block in case
# the handler wants to re-raise the exception.
tnotifier.handle_exception(object, trait_name, old, new)
else:
if tnotifier._post_change_event_tracer is not None:
tnotifier._post_change_event_tracer(object, trait_name, old, new,
handler, exception=None) | python | def _dispatch_change_event(self, object, trait_name, old, new, handler):
""" Prepare and dispatch a trait change event to a listener. """
# Extract the arguments needed from the handler.
args = self.argument_transform(object, trait_name, old, new)
# Send a description of the event to the change event tracer.
if tnotifier._pre_change_event_tracer is not None:
tnotifier._pre_change_event_tracer(object, trait_name, old, new, handler)
# Dispatch the event to the listener.
from automate.common import SystemNotReady
try:
self.dispatch(handler, *args)
except SystemNotReady:
pass
except Exception as e:
if tnotifier._post_change_event_tracer is not None:
tnotifier._post_change_event_tracer(object, trait_name, old, new,
handler, exception=e)
# This call needs to be made inside the `except` block in case
# the handler wants to re-raise the exception.
tnotifier.handle_exception(object, trait_name, old, new)
else:
if tnotifier._post_change_event_tracer is not None:
tnotifier._post_change_event_tracer(object, trait_name, old, new,
handler, exception=None) | ['def', '_dispatch_change_event', '(', 'self', ',', 'object', ',', 'trait_name', ',', 'old', ',', 'new', ',', 'handler', ')', ':', '# Extract the arguments needed from the handler.', 'args', '=', 'self', '.', 'argument_transform', '(', 'object', ',', 'trait_name', ',', 'old', ',', 'new', ')', '# Send a description of the event to the change event tracer.', 'if', 'tnotifier', '.', '_pre_change_event_tracer', 'is', 'not', 'None', ':', 'tnotifier', '.', '_pre_change_event_tracer', '(', 'object', ',', 'trait_name', ',', 'old', ',', 'new', ',', 'handler', ')', '# Dispatch the event to the listener.', 'from', 'automate', '.', 'common', 'import', 'SystemNotReady', 'try', ':', 'self', '.', 'dispatch', '(', 'handler', ',', '*', 'args', ')', 'except', 'SystemNotReady', ':', 'pass', 'except', 'Exception', 'as', 'e', ':', 'if', 'tnotifier', '.', '_post_change_event_tracer', 'is', 'not', 'None', ':', 'tnotifier', '.', '_post_change_event_tracer', '(', 'object', ',', 'trait_name', ',', 'old', ',', 'new', ',', 'handler', ',', 'exception', '=', 'e', ')', '# This call needs to be made inside the `except` block in case', '# the handler wants to re-raise the exception.', 'tnotifier', '.', 'handle_exception', '(', 'object', ',', 'trait_name', ',', 'old', ',', 'new', ')', 'else', ':', 'if', 'tnotifier', '.', '_post_change_event_tracer', 'is', 'not', 'None', ':', 'tnotifier', '.', '_post_change_event_tracer', '(', 'object', ',', 'trait_name', ',', 'old', ',', 'new', ',', 'handler', ',', 'exception', '=', 'None', ')'] | Prepare and dispatch a trait change event to a listener. | ['Prepare', 'and', 'dispatch', 'a', 'trait', 'change', 'event', 'to', 'a', 'listener', '.'] | train | https://github.com/tuomas2/automate/blob/d8a8cd03cd0da047e033a2d305f3f260f8c4e017/src/automate/traits_fixes.py#L59-L85 |
6,921 | scrapinghub/adblockparser | adblockparser/parser.py | AdblockRules._matches | def _matches(self, url, options,
general_re, domain_required_rules, rules_with_options):
"""
Return if ``url``/``options`` are matched by rules defined by
``general_re``, ``domain_required_rules`` and ``rules_with_options``.
``general_re`` is a compiled regex for rules without options.
``domain_required_rules`` is a {domain: [rules_which_require_it]}
mapping.
``rules_with_options`` is a list of AdblockRule instances that
don't require any domain, but have other options.
"""
if general_re and general_re.search(url):
return True
rules = []
if 'domain' in options and domain_required_rules:
src_domain = options['domain']
for domain in _domain_variants(src_domain):
if domain in domain_required_rules:
rules.extend(domain_required_rules[domain])
rules.extend(rules_with_options)
if self.skip_unsupported_rules:
rules = [rule for rule in rules if rule.matching_supported(options)]
return any(rule.match_url(url, options) for rule in rules) | python | def _matches(self, url, options,
general_re, domain_required_rules, rules_with_options):
"""
Return if ``url``/``options`` are matched by rules defined by
``general_re``, ``domain_required_rules`` and ``rules_with_options``.
``general_re`` is a compiled regex for rules without options.
``domain_required_rules`` is a {domain: [rules_which_require_it]}
mapping.
``rules_with_options`` is a list of AdblockRule instances that
don't require any domain, but have other options.
"""
if general_re and general_re.search(url):
return True
rules = []
if 'domain' in options and domain_required_rules:
src_domain = options['domain']
for domain in _domain_variants(src_domain):
if domain in domain_required_rules:
rules.extend(domain_required_rules[domain])
rules.extend(rules_with_options)
if self.skip_unsupported_rules:
rules = [rule for rule in rules if rule.matching_supported(options)]
return any(rule.match_url(url, options) for rule in rules) | ['def', '_matches', '(', 'self', ',', 'url', ',', 'options', ',', 'general_re', ',', 'domain_required_rules', ',', 'rules_with_options', ')', ':', 'if', 'general_re', 'and', 'general_re', '.', 'search', '(', 'url', ')', ':', 'return', 'True', 'rules', '=', '[', ']', 'if', "'domain'", 'in', 'options', 'and', 'domain_required_rules', ':', 'src_domain', '=', 'options', '[', "'domain'", ']', 'for', 'domain', 'in', '_domain_variants', '(', 'src_domain', ')', ':', 'if', 'domain', 'in', 'domain_required_rules', ':', 'rules', '.', 'extend', '(', 'domain_required_rules', '[', 'domain', ']', ')', 'rules', '.', 'extend', '(', 'rules_with_options', ')', 'if', 'self', '.', 'skip_unsupported_rules', ':', 'rules', '=', '[', 'rule', 'for', 'rule', 'in', 'rules', 'if', 'rule', '.', 'matching_supported', '(', 'options', ')', ']', 'return', 'any', '(', 'rule', '.', 'match_url', '(', 'url', ',', 'options', ')', 'for', 'rule', 'in', 'rules', ')'] | Return if ``url``/``options`` are matched by rules defined by
``general_re``, ``domain_required_rules`` and ``rules_with_options``.
``general_re`` is a compiled regex for rules without options.
``domain_required_rules`` is a {domain: [rules_which_require_it]}
mapping.
``rules_with_options`` is a list of AdblockRule instances that
don't require any domain, but have other options. | ['Return', 'if', 'url', '/', 'options', 'are', 'matched', 'by', 'rules', 'defined', 'by', 'general_re', 'domain_required_rules', 'and', 'rules_with_options', '.'] | train | https://github.com/scrapinghub/adblockparser/blob/4089612d65018d38dbb88dd7f697bcb07814014d/adblockparser/parser.py#L366-L395 |
6,922 | ND-CSE-30151/tock | tock/graphs.py | Graph.only_path | def only_path(self):
"""Finds the only path from the start node. If there is more than one,
raises ValueError."""
start = [v for v in self.nodes if self.nodes[v].get('start', False)]
if len(start) != 1:
raise ValueError("graph does not have exactly one start node")
path = []
[v] = start
while True:
path.append(v)
u = v
vs = self.edges.get(u, ())
if len(vs) == 0:
break
elif len(vs) > 1:
raise ValueError("graph does not have exactly one path")
[v] = vs
return path | python | def only_path(self):
"""Finds the only path from the start node. If there is more than one,
raises ValueError."""
start = [v for v in self.nodes if self.nodes[v].get('start', False)]
if len(start) != 1:
raise ValueError("graph does not have exactly one start node")
path = []
[v] = start
while True:
path.append(v)
u = v
vs = self.edges.get(u, ())
if len(vs) == 0:
break
elif len(vs) > 1:
raise ValueError("graph does not have exactly one path")
[v] = vs
return path | ['def', 'only_path', '(', 'self', ')', ':', 'start', '=', '[', 'v', 'for', 'v', 'in', 'self', '.', 'nodes', 'if', 'self', '.', 'nodes', '[', 'v', ']', '.', 'get', '(', "'start'", ',', 'False', ')', ']', 'if', 'len', '(', 'start', ')', '!=', '1', ':', 'raise', 'ValueError', '(', '"graph does not have exactly one start node"', ')', 'path', '=', '[', ']', '[', 'v', ']', '=', 'start', 'while', 'True', ':', 'path', '.', 'append', '(', 'v', ')', 'u', '=', 'v', 'vs', '=', 'self', '.', 'edges', '.', 'get', '(', 'u', ',', '(', ')', ')', 'if', 'len', '(', 'vs', ')', '==', '0', ':', 'break', 'elif', 'len', '(', 'vs', ')', '>', '1', ':', 'raise', 'ValueError', '(', '"graph does not have exactly one path"', ')', '[', 'v', ']', '=', 'vs', 'return', 'path'] | Finds the only path from the start node. If there is more than one,
raises ValueError. | ['Finds', 'the', 'only', 'path', 'from', 'the', 'start', 'node', '.', 'If', 'there', 'is', 'more', 'than', 'one', 'raises', 'ValueError', '.'] | train | https://github.com/ND-CSE-30151/tock/blob/b8d21901aaf0e6ac913c2afa855f5b5a882a16c6/tock/graphs.py#L44-L63 |
6,923 | tjvr/kurt | kurt/__init__.py | BlockType.has_conversion | def has_conversion(self, plugin):
"""Return True if the plugin supports this block."""
plugin = kurt.plugin.Kurt.get_plugin(plugin)
return plugin.name in self._plugins | python | def has_conversion(self, plugin):
"""Return True if the plugin supports this block."""
plugin = kurt.plugin.Kurt.get_plugin(plugin)
return plugin.name in self._plugins | ['def', 'has_conversion', '(', 'self', ',', 'plugin', ')', ':', 'plugin', '=', 'kurt', '.', 'plugin', '.', 'Kurt', '.', 'get_plugin', '(', 'plugin', ')', 'return', 'plugin', '.', 'name', 'in', 'self', '.', '_plugins'] | Return True if the plugin supports this block. | ['Return', 'True', 'if', 'the', 'plugin', 'supports', 'this', 'block', '.'] | train | https://github.com/tjvr/kurt/blob/fcccd80cae11dc233f6dd02b40ec9a388c62f259/kurt/__init__.py#L1596-L1599 |
6,924 | inasafe/inasafe | safe/gui/widgets/message.py | show_keyword_version_message | def show_keyword_version_message(sender, keyword_version, inasafe_version):
"""Show a message indicating that the keywords version is mismatch
.. versionadded: 3.2
:param sender: Sender of the message signal. Default to Any object.
:type sender: object
:param keyword_version: The version of the layer's keywords
:type keyword_version: str
:param inasafe_version: The version of the InaSAFE
:type inasafe_version: str
.. note:: The print button will be disabled if this method is called.
"""
LOGGER.debug('Showing Mismatch Version Message')
message = generate_input_error_message(
tr('Layer Keyword\'s Version Mismatch:'),
m.Paragraph(
tr(
'Your layer\'s keyword\'s version ({layer_version}) does not '
'match with your InaSAFE version ({inasafe_version}). If you '
'wish to use it as an exposure, hazard, or aggregation layer '
'in an analysis, please use the keyword wizard to update the '
'keywords. You can open the wizard by clicking on '
'the ').format(
layer_version=keyword_version,
inasafe_version=inasafe_version),
m.Image(
'file:///%s/img/icons/'
'show-keyword-wizard.svg' % resources_path(),
**SMALL_ICON_STYLE),
tr(
' icon in the toolbar.'))
)
send_static_message(sender, message) | python | def show_keyword_version_message(sender, keyword_version, inasafe_version):
"""Show a message indicating that the keywords version is mismatch
.. versionadded: 3.2
:param sender: Sender of the message signal. Default to Any object.
:type sender: object
:param keyword_version: The version of the layer's keywords
:type keyword_version: str
:param inasafe_version: The version of the InaSAFE
:type inasafe_version: str
.. note:: The print button will be disabled if this method is called.
"""
LOGGER.debug('Showing Mismatch Version Message')
message = generate_input_error_message(
tr('Layer Keyword\'s Version Mismatch:'),
m.Paragraph(
tr(
'Your layer\'s keyword\'s version ({layer_version}) does not '
'match with your InaSAFE version ({inasafe_version}). If you '
'wish to use it as an exposure, hazard, or aggregation layer '
'in an analysis, please use the keyword wizard to update the '
'keywords. You can open the wizard by clicking on '
'the ').format(
layer_version=keyword_version,
inasafe_version=inasafe_version),
m.Image(
'file:///%s/img/icons/'
'show-keyword-wizard.svg' % resources_path(),
**SMALL_ICON_STYLE),
tr(
' icon in the toolbar.'))
)
send_static_message(sender, message) | ['def', 'show_keyword_version_message', '(', 'sender', ',', 'keyword_version', ',', 'inasafe_version', ')', ':', 'LOGGER', '.', 'debug', '(', "'Showing Mismatch Version Message'", ')', 'message', '=', 'generate_input_error_message', '(', 'tr', '(', "'Layer Keyword\\'s Version Mismatch:'", ')', ',', 'm', '.', 'Paragraph', '(', 'tr', '(', "'Your layer\\'s keyword\\'s version ({layer_version}) does not '", "'match with your InaSAFE version ({inasafe_version}). If you '", "'wish to use it as an exposure, hazard, or aggregation layer '", "'in an analysis, please use the keyword wizard to update the '", "'keywords. You can open the wizard by clicking on '", "'the '", ')', '.', 'format', '(', 'layer_version', '=', 'keyword_version', ',', 'inasafe_version', '=', 'inasafe_version', ')', ',', 'm', '.', 'Image', '(', "'file:///%s/img/icons/'", "'show-keyword-wizard.svg'", '%', 'resources_path', '(', ')', ',', '*', '*', 'SMALL_ICON_STYLE', ')', ',', 'tr', '(', "' icon in the toolbar.'", ')', ')', ')', 'send_static_message', '(', 'sender', ',', 'message', ')'] | Show a message indicating that the keywords version is mismatch
.. versionadded: 3.2
:param sender: Sender of the message signal. Default to Any object.
:type sender: object
:param keyword_version: The version of the layer's keywords
:type keyword_version: str
:param inasafe_version: The version of the InaSAFE
:type inasafe_version: str
.. note:: The print button will be disabled if this method is called. | ['Show', 'a', 'message', 'indicating', 'that', 'the', 'keywords', 'version', 'is', 'mismatch'] | train | https://github.com/inasafe/inasafe/blob/831d60abba919f6d481dc94a8d988cc205130724/safe/gui/widgets/message.py#L187-L223 |
6,925 | acorg/dark-matter | dark/sam.py | SAMFilter.addFilteringOptions | def addFilteringOptions(parser, samfileIsPositionalArg=False):
"""
Add options to an argument parser for filtering SAM/BAM.
@param samfileIsPositionalArg: If C{True} the SAM/BAM file must
be given as the final argument on the command line (without
being preceded by --samfile).
@param parser: An C{argparse.ArgumentParser} instance.
"""
parser.add_argument(
'%ssamfile' % ('' if samfileIsPositionalArg else '--'),
required=True,
help='The SAM/BAM file to filter.')
parser.add_argument(
'--referenceId', metavar='ID', nargs='+', action='append',
help=('A reference sequence id whose alignments should be kept '
'(alignments against other references will be dropped). '
'If omitted, alignments against all references will be '
'kept. May be repeated.'))
parser.add_argument(
'--dropUnmapped', default=False, action='store_true',
help='If given, unmapped matches will not be output.')
parser.add_argument(
'--dropSecondary', default=False, action='store_true',
help='If given, secondary matches will not be output.')
parser.add_argument(
'--dropSupplementary', default=False, action='store_true',
help='If given, supplementary matches will not be output.')
parser.add_argument(
'--dropDuplicates', default=False, action='store_true',
help=('If given, matches flagged as optical or PCR duplicates '
'will not be output.'))
parser.add_argument(
'--keepQCFailures', default=False, action='store_true',
help=('If given, reads that are considered quality control '
'failures will be included in the output.'))
parser.add_argument(
'--minScore', type=float,
help=('If given, alignments with --scoreTag (default AS) values '
'less than this value will not be output. If given, '
'alignments that do not have a score will not be output.'))
parser.add_argument(
'--maxScore', type=float,
help=('If given, alignments with --scoreTag (default AS) values '
'greater than this value will not be output. If given, '
'alignments that do not have a score will not be output.'))
parser.add_argument(
'--scoreTag', default='AS',
help=('The alignment tag to extract for --minScore and --maxScore '
'comparisons.')) | python | def addFilteringOptions(parser, samfileIsPositionalArg=False):
"""
Add options to an argument parser for filtering SAM/BAM.
@param samfileIsPositionalArg: If C{True} the SAM/BAM file must
be given as the final argument on the command line (without
being preceded by --samfile).
@param parser: An C{argparse.ArgumentParser} instance.
"""
parser.add_argument(
'%ssamfile' % ('' if samfileIsPositionalArg else '--'),
required=True,
help='The SAM/BAM file to filter.')
parser.add_argument(
'--referenceId', metavar='ID', nargs='+', action='append',
help=('A reference sequence id whose alignments should be kept '
'(alignments against other references will be dropped). '
'If omitted, alignments against all references will be '
'kept. May be repeated.'))
parser.add_argument(
'--dropUnmapped', default=False, action='store_true',
help='If given, unmapped matches will not be output.')
parser.add_argument(
'--dropSecondary', default=False, action='store_true',
help='If given, secondary matches will not be output.')
parser.add_argument(
'--dropSupplementary', default=False, action='store_true',
help='If given, supplementary matches will not be output.')
parser.add_argument(
'--dropDuplicates', default=False, action='store_true',
help=('If given, matches flagged as optical or PCR duplicates '
'will not be output.'))
parser.add_argument(
'--keepQCFailures', default=False, action='store_true',
help=('If given, reads that are considered quality control '
'failures will be included in the output.'))
parser.add_argument(
'--minScore', type=float,
help=('If given, alignments with --scoreTag (default AS) values '
'less than this value will not be output. If given, '
'alignments that do not have a score will not be output.'))
parser.add_argument(
'--maxScore', type=float,
help=('If given, alignments with --scoreTag (default AS) values '
'greater than this value will not be output. If given, '
'alignments that do not have a score will not be output.'))
parser.add_argument(
'--scoreTag', default='AS',
help=('The alignment tag to extract for --minScore and --maxScore '
'comparisons.')) | ['def', 'addFilteringOptions', '(', 'parser', ',', 'samfileIsPositionalArg', '=', 'False', ')', ':', 'parser', '.', 'add_argument', '(', "'%ssamfile'", '%', '(', "''", 'if', 'samfileIsPositionalArg', 'else', "'--'", ')', ',', 'required', '=', 'True', ',', 'help', '=', "'The SAM/BAM file to filter.'", ')', 'parser', '.', 'add_argument', '(', "'--referenceId'", ',', 'metavar', '=', "'ID'", ',', 'nargs', '=', "'+'", ',', 'action', '=', "'append'", ',', 'help', '=', '(', "'A reference sequence id whose alignments should be kept '", "'(alignments against other references will be dropped). '", "'If omitted, alignments against all references will be '", "'kept. May be repeated.'", ')', ')', 'parser', '.', 'add_argument', '(', "'--dropUnmapped'", ',', 'default', '=', 'False', ',', 'action', '=', "'store_true'", ',', 'help', '=', "'If given, unmapped matches will not be output.'", ')', 'parser', '.', 'add_argument', '(', "'--dropSecondary'", ',', 'default', '=', 'False', ',', 'action', '=', "'store_true'", ',', 'help', '=', "'If given, secondary matches will not be output.'", ')', 'parser', '.', 'add_argument', '(', "'--dropSupplementary'", ',', 'default', '=', 'False', ',', 'action', '=', "'store_true'", ',', 'help', '=', "'If given, supplementary matches will not be output.'", ')', 'parser', '.', 'add_argument', '(', "'--dropDuplicates'", ',', 'default', '=', 'False', ',', 'action', '=', "'store_true'", ',', 'help', '=', '(', "'If given, matches flagged as optical or PCR duplicates '", "'will not be output.'", ')', ')', 'parser', '.', 'add_argument', '(', "'--keepQCFailures'", ',', 'default', '=', 'False', ',', 'action', '=', "'store_true'", ',', 'help', '=', '(', "'If given, reads that are considered quality control '", "'failures will be included in the output.'", ')', ')', 'parser', '.', 'add_argument', '(', "'--minScore'", ',', 'type', '=', 'float', ',', 'help', '=', '(', "'If given, alignments with --scoreTag (default AS) values '", "'less than this value will not be output. If given, '", "'alignments that do not have a score will not be output.'", ')', ')', 'parser', '.', 'add_argument', '(', "'--maxScore'", ',', 'type', '=', 'float', ',', 'help', '=', '(', "'If given, alignments with --scoreTag (default AS) values '", "'greater than this value will not be output. If given, '", "'alignments that do not have a score will not be output.'", ')', ')', 'parser', '.', 'add_argument', '(', "'--scoreTag'", ',', 'default', '=', "'AS'", ',', 'help', '=', '(', "'The alignment tag to extract for --minScore and --maxScore '", "'comparisons.'", ')', ')'] | Add options to an argument parser for filtering SAM/BAM.
@param samfileIsPositionalArg: If C{True} the SAM/BAM file must
be given as the final argument on the command line (without
being preceded by --samfile).
@param parser: An C{argparse.ArgumentParser} instance. | ['Add', 'options', 'to', 'an', 'argument', 'parser', 'for', 'filtering', 'SAM', '/', 'BAM', '.'] | train | https://github.com/acorg/dark-matter/blob/c78a1bf262667fa5db3548fa7066c4ec14d0551d/dark/sam.py#L211-L269 |
6,926 | LonamiWebs/Telethon | telethon/events/common.py | _into_id_set | async def _into_id_set(client, chats):
"""Helper util to turn the input chat or chats into a set of IDs."""
if chats is None:
return None
if not utils.is_list_like(chats):
chats = (chats,)
result = set()
for chat in chats:
if isinstance(chat, int):
if chat < 0:
result.add(chat) # Explicitly marked IDs are negative
else:
result.update({ # Support all valid types of peers
utils.get_peer_id(types.PeerUser(chat)),
utils.get_peer_id(types.PeerChat(chat)),
utils.get_peer_id(types.PeerChannel(chat)),
})
elif isinstance(chat, TLObject) and chat.SUBCLASS_OF_ID == 0x2d45687:
# 0x2d45687 == crc32(b'Peer')
result.add(utils.get_peer_id(chat))
else:
chat = await client.get_input_entity(chat)
if isinstance(chat, types.InputPeerSelf):
chat = await client.get_me(input_peer=True)
result.add(utils.get_peer_id(chat))
return result | python | async def _into_id_set(client, chats):
"""Helper util to turn the input chat or chats into a set of IDs."""
if chats is None:
return None
if not utils.is_list_like(chats):
chats = (chats,)
result = set()
for chat in chats:
if isinstance(chat, int):
if chat < 0:
result.add(chat) # Explicitly marked IDs are negative
else:
result.update({ # Support all valid types of peers
utils.get_peer_id(types.PeerUser(chat)),
utils.get_peer_id(types.PeerChat(chat)),
utils.get_peer_id(types.PeerChannel(chat)),
})
elif isinstance(chat, TLObject) and chat.SUBCLASS_OF_ID == 0x2d45687:
# 0x2d45687 == crc32(b'Peer')
result.add(utils.get_peer_id(chat))
else:
chat = await client.get_input_entity(chat)
if isinstance(chat, types.InputPeerSelf):
chat = await client.get_me(input_peer=True)
result.add(utils.get_peer_id(chat))
return result | ['async', 'def', '_into_id_set', '(', 'client', ',', 'chats', ')', ':', 'if', 'chats', 'is', 'None', ':', 'return', 'None', 'if', 'not', 'utils', '.', 'is_list_like', '(', 'chats', ')', ':', 'chats', '=', '(', 'chats', ',', ')', 'result', '=', 'set', '(', ')', 'for', 'chat', 'in', 'chats', ':', 'if', 'isinstance', '(', 'chat', ',', 'int', ')', ':', 'if', 'chat', '<', '0', ':', 'result', '.', 'add', '(', 'chat', ')', '# Explicitly marked IDs are negative', 'else', ':', 'result', '.', 'update', '(', '{', '# Support all valid types of peers', 'utils', '.', 'get_peer_id', '(', 'types', '.', 'PeerUser', '(', 'chat', ')', ')', ',', 'utils', '.', 'get_peer_id', '(', 'types', '.', 'PeerChat', '(', 'chat', ')', ')', ',', 'utils', '.', 'get_peer_id', '(', 'types', '.', 'PeerChannel', '(', 'chat', ')', ')', ',', '}', ')', 'elif', 'isinstance', '(', 'chat', ',', 'TLObject', ')', 'and', 'chat', '.', 'SUBCLASS_OF_ID', '==', '0x2d45687', ':', "# 0x2d45687 == crc32(b'Peer')", 'result', '.', 'add', '(', 'utils', '.', 'get_peer_id', '(', 'chat', ')', ')', 'else', ':', 'chat', '=', 'await', 'client', '.', 'get_input_entity', '(', 'chat', ')', 'if', 'isinstance', '(', 'chat', ',', 'types', '.', 'InputPeerSelf', ')', ':', 'chat', '=', 'await', 'client', '.', 'get_me', '(', 'input_peer', '=', 'True', ')', 'result', '.', 'add', '(', 'utils', '.', 'get_peer_id', '(', 'chat', ')', ')', 'return', 'result'] | Helper util to turn the input chat or chats into a set of IDs. | ['Helper', 'util', 'to', 'turn', 'the', 'input', 'chat', 'or', 'chats', 'into', 'a', 'set', 'of', 'IDs', '.'] | train | https://github.com/LonamiWebs/Telethon/blob/1ead9757d366b58c1e0567cddb0196e20f1a445f/telethon/events/common.py#L11-L39 |
6,927 | jazzband/django-widget-tweaks | widget_tweaks/templatetags/widget_tweaks.py | render_field | def render_field(parser, token):
"""
Render a form field using given attribute-value pairs
Takes form field as first argument and list of attribute-value pairs for
all other arguments. Attribute-value pairs should be in the form of
attribute=value or attribute="a value" for assignment and attribute+=value
or attribute+="value" for appending.
"""
error_msg = '%r tag requires a form field followed by a list of attributes and values in the form attr="value"' % token.split_contents()[0]
try:
bits = token.split_contents()
tag_name = bits[0]
form_field = bits[1]
attr_list = bits[2:]
except ValueError:
raise TemplateSyntaxError(error_msg)
form_field = parser.compile_filter(form_field)
set_attrs = []
append_attrs = []
for pair in attr_list:
match = ATTRIBUTE_RE.match(pair)
if not match:
raise TemplateSyntaxError(error_msg + ": %s" % pair)
dct = match.groupdict()
attr, sign, value = \
dct['attr'], dct['sign'], parser.compile_filter(dct['value'])
if sign == "=":
set_attrs.append((attr, value))
else:
append_attrs.append((attr, value))
return FieldAttributeNode(form_field, set_attrs, append_attrs) | python | def render_field(parser, token):
"""
Render a form field using given attribute-value pairs
Takes form field as first argument and list of attribute-value pairs for
all other arguments. Attribute-value pairs should be in the form of
attribute=value or attribute="a value" for assignment and attribute+=value
or attribute+="value" for appending.
"""
error_msg = '%r tag requires a form field followed by a list of attributes and values in the form attr="value"' % token.split_contents()[0]
try:
bits = token.split_contents()
tag_name = bits[0]
form_field = bits[1]
attr_list = bits[2:]
except ValueError:
raise TemplateSyntaxError(error_msg)
form_field = parser.compile_filter(form_field)
set_attrs = []
append_attrs = []
for pair in attr_list:
match = ATTRIBUTE_RE.match(pair)
if not match:
raise TemplateSyntaxError(error_msg + ": %s" % pair)
dct = match.groupdict()
attr, sign, value = \
dct['attr'], dct['sign'], parser.compile_filter(dct['value'])
if sign == "=":
set_attrs.append((attr, value))
else:
append_attrs.append((attr, value))
return FieldAttributeNode(form_field, set_attrs, append_attrs) | ['def', 'render_field', '(', 'parser', ',', 'token', ')', ':', 'error_msg', '=', '\'%r tag requires a form field followed by a list of attributes and values in the form attr="value"\'', '%', 'token', '.', 'split_contents', '(', ')', '[', '0', ']', 'try', ':', 'bits', '=', 'token', '.', 'split_contents', '(', ')', 'tag_name', '=', 'bits', '[', '0', ']', 'form_field', '=', 'bits', '[', '1', ']', 'attr_list', '=', 'bits', '[', '2', ':', ']', 'except', 'ValueError', ':', 'raise', 'TemplateSyntaxError', '(', 'error_msg', ')', 'form_field', '=', 'parser', '.', 'compile_filter', '(', 'form_field', ')', 'set_attrs', '=', '[', ']', 'append_attrs', '=', '[', ']', 'for', 'pair', 'in', 'attr_list', ':', 'match', '=', 'ATTRIBUTE_RE', '.', 'match', '(', 'pair', ')', 'if', 'not', 'match', ':', 'raise', 'TemplateSyntaxError', '(', 'error_msg', '+', '": %s"', '%', 'pair', ')', 'dct', '=', 'match', '.', 'groupdict', '(', ')', 'attr', ',', 'sign', ',', 'value', '=', 'dct', '[', "'attr'", ']', ',', 'dct', '[', "'sign'", ']', ',', 'parser', '.', 'compile_filter', '(', 'dct', '[', "'value'", ']', ')', 'if', 'sign', '==', '"="', ':', 'set_attrs', '.', 'append', '(', '(', 'attr', ',', 'value', ')', ')', 'else', ':', 'append_attrs', '.', 'append', '(', '(', 'attr', ',', 'value', ')', ')', 'return', 'FieldAttributeNode', '(', 'form_field', ',', 'set_attrs', ',', 'append_attrs', ')'] | Render a form field using given attribute-value pairs
Takes form field as first argument and list of attribute-value pairs for
all other arguments. Attribute-value pairs should be in the form of
attribute=value or attribute="a value" for assignment and attribute+=value
or attribute+="value" for appending. | ['Render', 'a', 'form', 'field', 'using', 'given', 'attribute', '-', 'value', 'pairs'] | train | https://github.com/jazzband/django-widget-tweaks/blob/f50ee92410d68e81528a7643a10544e7331af8fb/widget_tweaks/templatetags/widget_tweaks.py#L138-L172 |
6,928 | jmgilman/Neolib | neolib/pyamf/remoting/client/__init__.py | RemotingService.addRequest | def addRequest(self, service, *args):
"""
Adds a request to be sent to the remoting gateway.
"""
wrapper = RequestWrapper(self, '/%d' % self.request_number,
service, *args)
self.request_number += 1
self.requests.append(wrapper)
if self.logger:
self.logger.debug('Adding request %s%r', wrapper.service, args)
return wrapper | python | def addRequest(self, service, *args):
"""
Adds a request to be sent to the remoting gateway.
"""
wrapper = RequestWrapper(self, '/%d' % self.request_number,
service, *args)
self.request_number += 1
self.requests.append(wrapper)
if self.logger:
self.logger.debug('Adding request %s%r', wrapper.service, args)
return wrapper | ['def', 'addRequest', '(', 'self', ',', 'service', ',', '*', 'args', ')', ':', 'wrapper', '=', 'RequestWrapper', '(', 'self', ',', "'/%d'", '%', 'self', '.', 'request_number', ',', 'service', ',', '*', 'args', ')', 'self', '.', 'request_number', '+=', '1', 'self', '.', 'requests', '.', 'append', '(', 'wrapper', ')', 'if', 'self', '.', 'logger', ':', 'self', '.', 'logger', '.', 'debug', '(', "'Adding request %s%r'", ',', 'wrapper', '.', 'service', ',', 'args', ')', 'return', 'wrapper'] | Adds a request to be sent to the remoting gateway. | ['Adds', 'a', 'request', 'to', 'be', 'sent', 'to', 'the', 'remoting', 'gateway', '.'] | train | https://github.com/jmgilman/Neolib/blob/228fafeaed0f3195676137732384a14820ae285c/neolib/pyamf/remoting/client/__init__.py#L298-L311 |
6,929 | chrlie/frogsay | src/frogsay/__init__.py | cli | def cli():
"""\
Frogsay generates an ASCII picture of a FROG spouting a FROG tip.
FROG tips are fetched from frog.tips's API endpoint when needed,
otherwise they are cached locally in an application-specific folder.
"""
with open_client(cache_dir=get_cache_dir()) as client:
tip = client.frog_tip()
terminal_width = click.termui.get_terminal_size()[0]
wisdom = make_frog_fresco(tip, width=terminal_width)
click.echo(wisdom) | python | def cli():
"""\
Frogsay generates an ASCII picture of a FROG spouting a FROG tip.
FROG tips are fetched from frog.tips's API endpoint when needed,
otherwise they are cached locally in an application-specific folder.
"""
with open_client(cache_dir=get_cache_dir()) as client:
tip = client.frog_tip()
terminal_width = click.termui.get_terminal_size()[0]
wisdom = make_frog_fresco(tip, width=terminal_width)
click.echo(wisdom) | ['def', 'cli', '(', ')', ':', 'with', 'open_client', '(', 'cache_dir', '=', 'get_cache_dir', '(', ')', ')', 'as', 'client', ':', 'tip', '=', 'client', '.', 'frog_tip', '(', ')', 'terminal_width', '=', 'click', '.', 'termui', '.', 'get_terminal_size', '(', ')', '[', '0', ']', 'wisdom', '=', 'make_frog_fresco', '(', 'tip', ',', 'width', '=', 'terminal_width', ')', 'click', '.', 'echo', '(', 'wisdom', ')'] | \
Frogsay generates an ASCII picture of a FROG spouting a FROG tip.
FROG tips are fetched from frog.tips's API endpoint when needed,
otherwise they are cached locally in an application-specific folder. | ['\\', 'Frogsay', 'generates', 'an', 'ASCII', 'picture', 'of', 'a', 'FROG', 'spouting', 'a', 'FROG', 'tip', '.'] | train | https://github.com/chrlie/frogsay/blob/1c21e1401dc24719732218af830d34b842ab10b9/src/frogsay/__init__.py#L17-L30 |
6,930 | wonambi-python/wonambi | wonambi/trans/select.py | _create_subepochs | def _create_subepochs(x, nperseg, step):
"""Transform the data into a matrix for easy manipulation
Parameters
----------
x : 1d ndarray
actual data values
nperseg : int
number of samples in each row to create
step : int
distance in samples between rows
Returns
-------
2d ndarray
a view (i.e. doesn't copy data) of the original x, with shape
determined by nperseg and step. You should use the last dimension
"""
axis = x.ndim - 1 # last dim
nsmp = x.shape[axis]
stride = x.strides[axis]
noverlap = nperseg - step
v_shape = *x.shape[:axis], (nsmp - noverlap) // step, nperseg
v_strides = *x.strides[:axis], stride * step, stride
v = as_strided(x, shape=v_shape, strides=v_strides,
writeable=False) # much safer
return v | python | def _create_subepochs(x, nperseg, step):
"""Transform the data into a matrix for easy manipulation
Parameters
----------
x : 1d ndarray
actual data values
nperseg : int
number of samples in each row to create
step : int
distance in samples between rows
Returns
-------
2d ndarray
a view (i.e. doesn't copy data) of the original x, with shape
determined by nperseg and step. You should use the last dimension
"""
axis = x.ndim - 1 # last dim
nsmp = x.shape[axis]
stride = x.strides[axis]
noverlap = nperseg - step
v_shape = *x.shape[:axis], (nsmp - noverlap) // step, nperseg
v_strides = *x.strides[:axis], stride * step, stride
v = as_strided(x, shape=v_shape, strides=v_strides,
writeable=False) # much safer
return v | ['def', '_create_subepochs', '(', 'x', ',', 'nperseg', ',', 'step', ')', ':', 'axis', '=', 'x', '.', 'ndim', '-', '1', '# last dim', 'nsmp', '=', 'x', '.', 'shape', '[', 'axis', ']', 'stride', '=', 'x', '.', 'strides', '[', 'axis', ']', 'noverlap', '=', 'nperseg', '-', 'step', 'v_shape', '=', '*', 'x', '.', 'shape', '[', ':', 'axis', ']', ',', '(', 'nsmp', '-', 'noverlap', ')', '//', 'step', ',', 'nperseg', 'v_strides', '=', '*', 'x', '.', 'strides', '[', ':', 'axis', ']', ',', 'stride', '*', 'step', ',', 'stride', 'v', '=', 'as_strided', '(', 'x', ',', 'shape', '=', 'v_shape', ',', 'strides', '=', 'v_strides', ',', 'writeable', '=', 'False', ')', '# much safer', 'return', 'v'] | Transform the data into a matrix for easy manipulation
Parameters
----------
x : 1d ndarray
actual data values
nperseg : int
number of samples in each row to create
step : int
distance in samples between rows
Returns
-------
2d ndarray
a view (i.e. doesn't copy data) of the original x, with shape
determined by nperseg and step. You should use the last dimension | ['Transform', 'the', 'data', 'into', 'a', 'matrix', 'for', 'easy', 'manipulation'] | train | https://github.com/wonambi-python/wonambi/blob/1d8e3d7e53df8017c199f703bcab582914676e76/wonambi/trans/select.py#L690-L715 |
6,931 | numenta/htmresearch | projects/l2_pooling/topology_experiments.py | plotConvergenceByColumnTopology | def plotConvergenceByColumnTopology(results, columnRange, featureRange, networkType, numTrials):
"""
Plots the convergence graph: iterations vs number of columns.
Each curve shows the convergence for a given number of unique features.
"""
########################################################################
#
# Accumulate all the results per column in a convergence array.
#
# Convergence[f, c, t] = how long it took it to converge with f unique
# features, c columns and topology t.
convergence = numpy.zeros((max(featureRange), max(columnRange) + 1, len(networkType)))
networkTypeNames = {}
for i, topologyType in enumerate(networkType):
if "Topology" in topologyType:
networkTypeNames[i] = "Normal"
else:
networkTypeNames[i] = "Dense"
for r in results:
convergence[r["numFeatures"] - 1, r["numColumns"], networkType.index(r["networkType"])] += r["convergencePoint"]
convergence /= numTrials
# For each column, print convergence as fct of number of unique features
for c in range(1, max(columnRange) + 1):
for t in range(len(networkType)):
print c, convergence[:, c, t]
# Print everything anyway for debugging
print "Average convergence array=", convergence
########################################################################
#
# Create the plot. x-axis=
plt.figure()
plotPath = os.path.join("plots", "convergence_by_column_topology.pdf")
# Plot each curve
legendList = []
colormap = plt.get_cmap("jet")
colorList = [colormap(x) for x in numpy.linspace(0., 1.,
len(featureRange)*len(networkType))]
for i in range(len(featureRange)):
for t in range(len(networkType)):
f = featureRange[i]
print columnRange
print convergence[f-1,columnRange, t]
legendList.append('Unique features={}, topology={}'.format(f, networkTypeNames[t]))
plt.plot(columnRange, convergence[f-1,columnRange, t],
color=colorList[i*len(networkType) + t])
# format
plt.legend(legendList, loc="upper right")
plt.xlabel("Number of columns")
plt.xticks(columnRange)
plt.yticks(range(0,int(convergence.max())+1))
plt.ylabel("Average number of touches")
plt.title("Number of touches to recognize one object (multiple columns)")
# save
plt.savefig(plotPath)
plt.close() | python | def plotConvergenceByColumnTopology(results, columnRange, featureRange, networkType, numTrials):
"""
Plots the convergence graph: iterations vs number of columns.
Each curve shows the convergence for a given number of unique features.
"""
########################################################################
#
# Accumulate all the results per column in a convergence array.
#
# Convergence[f, c, t] = how long it took it to converge with f unique
# features, c columns and topology t.
convergence = numpy.zeros((max(featureRange), max(columnRange) + 1, len(networkType)))
networkTypeNames = {}
for i, topologyType in enumerate(networkType):
if "Topology" in topologyType:
networkTypeNames[i] = "Normal"
else:
networkTypeNames[i] = "Dense"
for r in results:
convergence[r["numFeatures"] - 1, r["numColumns"], networkType.index(r["networkType"])] += r["convergencePoint"]
convergence /= numTrials
# For each column, print convergence as fct of number of unique features
for c in range(1, max(columnRange) + 1):
for t in range(len(networkType)):
print c, convergence[:, c, t]
# Print everything anyway for debugging
print "Average convergence array=", convergence
########################################################################
#
# Create the plot. x-axis=
plt.figure()
plotPath = os.path.join("plots", "convergence_by_column_topology.pdf")
# Plot each curve
legendList = []
colormap = plt.get_cmap("jet")
colorList = [colormap(x) for x in numpy.linspace(0., 1.,
len(featureRange)*len(networkType))]
for i in range(len(featureRange)):
for t in range(len(networkType)):
f = featureRange[i]
print columnRange
print convergence[f-1,columnRange, t]
legendList.append('Unique features={}, topology={}'.format(f, networkTypeNames[t]))
plt.plot(columnRange, convergence[f-1,columnRange, t],
color=colorList[i*len(networkType) + t])
# format
plt.legend(legendList, loc="upper right")
plt.xlabel("Number of columns")
plt.xticks(columnRange)
plt.yticks(range(0,int(convergence.max())+1))
plt.ylabel("Average number of touches")
plt.title("Number of touches to recognize one object (multiple columns)")
# save
plt.savefig(plotPath)
plt.close() | ['def', 'plotConvergenceByColumnTopology', '(', 'results', ',', 'columnRange', ',', 'featureRange', ',', 'networkType', ',', 'numTrials', ')', ':', '########################################################################', '#', '# Accumulate all the results per column in a convergence array.', '#', '# Convergence[f, c, t] = how long it took it to converge with f unique', '# features, c columns and topology t.', 'convergence', '=', 'numpy', '.', 'zeros', '(', '(', 'max', '(', 'featureRange', ')', ',', 'max', '(', 'columnRange', ')', '+', '1', ',', 'len', '(', 'networkType', ')', ')', ')', 'networkTypeNames', '=', '{', '}', 'for', 'i', ',', 'topologyType', 'in', 'enumerate', '(', 'networkType', ')', ':', 'if', '"Topology"', 'in', 'topologyType', ':', 'networkTypeNames', '[', 'i', ']', '=', '"Normal"', 'else', ':', 'networkTypeNames', '[', 'i', ']', '=', '"Dense"', 'for', 'r', 'in', 'results', ':', 'convergence', '[', 'r', '[', '"numFeatures"', ']', '-', '1', ',', 'r', '[', '"numColumns"', ']', ',', 'networkType', '.', 'index', '(', 'r', '[', '"networkType"', ']', ')', ']', '+=', 'r', '[', '"convergencePoint"', ']', 'convergence', '/=', 'numTrials', '# For each column, print convergence as fct of number of unique features', 'for', 'c', 'in', 'range', '(', '1', ',', 'max', '(', 'columnRange', ')', '+', '1', ')', ':', 'for', 't', 'in', 'range', '(', 'len', '(', 'networkType', ')', ')', ':', 'print', 'c', ',', 'convergence', '[', ':', ',', 'c', ',', 't', ']', '# Print everything anyway for debugging', 'print', '"Average convergence array="', ',', 'convergence', '########################################################################', '#', '# Create the plot. x-axis=', 'plt', '.', 'figure', '(', ')', 'plotPath', '=', 'os', '.', 'path', '.', 'join', '(', '"plots"', ',', '"convergence_by_column_topology.pdf"', ')', '# Plot each curve', 'legendList', '=', '[', ']', 'colormap', '=', 'plt', '.', 'get_cmap', '(', '"jet"', ')', 'colorList', '=', '[', 'colormap', '(', 'x', ')', 'for', 'x', 'in', 'numpy', '.', 'linspace', '(', '0.', ',', '1.', ',', 'len', '(', 'featureRange', ')', '*', 'len', '(', 'networkType', ')', ')', ']', 'for', 'i', 'in', 'range', '(', 'len', '(', 'featureRange', ')', ')', ':', 'for', 't', 'in', 'range', '(', 'len', '(', 'networkType', ')', ')', ':', 'f', '=', 'featureRange', '[', 'i', ']', 'print', 'columnRange', 'print', 'convergence', '[', 'f', '-', '1', ',', 'columnRange', ',', 't', ']', 'legendList', '.', 'append', '(', "'Unique features={}, topology={}'", '.', 'format', '(', 'f', ',', 'networkTypeNames', '[', 't', ']', ')', ')', 'plt', '.', 'plot', '(', 'columnRange', ',', 'convergence', '[', 'f', '-', '1', ',', 'columnRange', ',', 't', ']', ',', 'color', '=', 'colorList', '[', 'i', '*', 'len', '(', 'networkType', ')', '+', 't', ']', ')', '# format', 'plt', '.', 'legend', '(', 'legendList', ',', 'loc', '=', '"upper right"', ')', 'plt', '.', 'xlabel', '(', '"Number of columns"', ')', 'plt', '.', 'xticks', '(', 'columnRange', ')', 'plt', '.', 'yticks', '(', 'range', '(', '0', ',', 'int', '(', 'convergence', '.', 'max', '(', ')', ')', '+', '1', ')', ')', 'plt', '.', 'ylabel', '(', '"Average number of touches"', ')', 'plt', '.', 'title', '(', '"Number of touches to recognize one object (multiple columns)"', ')', '# save', 'plt', '.', 'savefig', '(', 'plotPath', ')', 'plt', '.', 'close', '(', ')'] | Plots the convergence graph: iterations vs number of columns.
Each curve shows the convergence for a given number of unique features. | ['Plots', 'the', 'convergence', 'graph', ':', 'iterations', 'vs', 'number', 'of', 'columns', '.', 'Each', 'curve', 'shows', 'the', 'convergence', 'for', 'a', 'given', 'number', 'of', 'unique', 'features', '.'] | train | https://github.com/numenta/htmresearch/blob/70c096b09a577ea0432c3f3bfff4442d4871b7aa/projects/l2_pooling/topology_experiments.py#L118-L182 |
6,932 | StanfordVL/robosuite | robosuite/utils/mjcf_utils.py | xml_path_completion | def xml_path_completion(xml_path):
"""
Takes in a local xml path and returns a full path.
if @xml_path is absolute, do nothing
if @xml_path is not absolute, load xml that is shipped by the package
"""
if xml_path.startswith("/"):
full_path = xml_path
else:
full_path = os.path.join(robosuite.models.assets_root, xml_path)
return full_path | python | def xml_path_completion(xml_path):
"""
Takes in a local xml path and returns a full path.
if @xml_path is absolute, do nothing
if @xml_path is not absolute, load xml that is shipped by the package
"""
if xml_path.startswith("/"):
full_path = xml_path
else:
full_path = os.path.join(robosuite.models.assets_root, xml_path)
return full_path | ['def', 'xml_path_completion', '(', 'xml_path', ')', ':', 'if', 'xml_path', '.', 'startswith', '(', '"/"', ')', ':', 'full_path', '=', 'xml_path', 'else', ':', 'full_path', '=', 'os', '.', 'path', '.', 'join', '(', 'robosuite', '.', 'models', '.', 'assets_root', ',', 'xml_path', ')', 'return', 'full_path'] | Takes in a local xml path and returns a full path.
if @xml_path is absolute, do nothing
if @xml_path is not absolute, load xml that is shipped by the package | ['Takes', 'in', 'a', 'local', 'xml', 'path', 'and', 'returns', 'a', 'full', 'path', '.', 'if'] | train | https://github.com/StanfordVL/robosuite/blob/65cd16810e2ed647e3ec88746af3412065b7f278/robosuite/utils/mjcf_utils.py#L14-L24 |
6,933 | SuperCowPowers/workbench | workbench_apps/workbench_cli/workbench_shell.py | WorkbenchShell.run | def run(self):
''' Running the workbench CLI '''
# Announce versions
self.versions()
# Sample/Tag info and Help
self.tags()
print '\n%s' % self.workbench.help('cli')
# Now that we have the Workbench connection spun up, we register some stuff
# with the embedded IPython interpreter and than spin it up
# cfg = IPython.config.loader.Config()
cfg = Config()
cfg.InteractiveShellEmbed.autocall = 2
cfg.InteractiveShellEmbed.colors = 'Linux'
cfg.InteractiveShellEmbed.color_info = True
cfg.InteractiveShellEmbed.autoindent = True
cfg.InteractiveShellEmbed.deep_reload = True
cfg.PromptManager.in_template = (
r'{color.LightPurple}{short_md5}{color.Yellow}{prompt_deco}{color.LightBlue} Workbench{color.Green}[\#]> ')
# cfg.PromptManager.out_template = ''
# Create the IPython shell
self.ipshell = IPython.terminal.embed.InteractiveShellEmbed(
config=cfg, banner1='', exit_msg='\nWorkbench has SuperCowPowers...')
# Register our transformer, the shell will use this for 'shortcut' commands
auto_quoter = auto_quote_xform.AutoQuoteTransformer(self.ipshell, self.ipshell.prefilter_manager)
auto_quoter.register_command_set(self.command_set)
# Setting up some Pandas options
pd.set_option('display.width', 140)
pd.set_option('max_colwidth', 15)
# Start up the shell with our set of workbench commands
self.ipshell(local_ns=self.command_dict) | python | def run(self):
''' Running the workbench CLI '''
# Announce versions
self.versions()
# Sample/Tag info and Help
self.tags()
print '\n%s' % self.workbench.help('cli')
# Now that we have the Workbench connection spun up, we register some stuff
# with the embedded IPython interpreter and than spin it up
# cfg = IPython.config.loader.Config()
cfg = Config()
cfg.InteractiveShellEmbed.autocall = 2
cfg.InteractiveShellEmbed.colors = 'Linux'
cfg.InteractiveShellEmbed.color_info = True
cfg.InteractiveShellEmbed.autoindent = True
cfg.InteractiveShellEmbed.deep_reload = True
cfg.PromptManager.in_template = (
r'{color.LightPurple}{short_md5}{color.Yellow}{prompt_deco}{color.LightBlue} Workbench{color.Green}[\#]> ')
# cfg.PromptManager.out_template = ''
# Create the IPython shell
self.ipshell = IPython.terminal.embed.InteractiveShellEmbed(
config=cfg, banner1='', exit_msg='\nWorkbench has SuperCowPowers...')
# Register our transformer, the shell will use this for 'shortcut' commands
auto_quoter = auto_quote_xform.AutoQuoteTransformer(self.ipshell, self.ipshell.prefilter_manager)
auto_quoter.register_command_set(self.command_set)
# Setting up some Pandas options
pd.set_option('display.width', 140)
pd.set_option('max_colwidth', 15)
# Start up the shell with our set of workbench commands
self.ipshell(local_ns=self.command_dict) | ['def', 'run', '(', 'self', ')', ':', '# Announce versions', 'self', '.', 'versions', '(', ')', '# Sample/Tag info and Help', 'self', '.', 'tags', '(', ')', 'print', "'\\n%s'", '%', 'self', '.', 'workbench', '.', 'help', '(', "'cli'", ')', '# Now that we have the Workbench connection spun up, we register some stuff', '# with the embedded IPython interpreter and than spin it up', '# cfg = IPython.config.loader.Config()', 'cfg', '=', 'Config', '(', ')', 'cfg', '.', 'InteractiveShellEmbed', '.', 'autocall', '=', '2', 'cfg', '.', 'InteractiveShellEmbed', '.', 'colors', '=', "'Linux'", 'cfg', '.', 'InteractiveShellEmbed', '.', 'color_info', '=', 'True', 'cfg', '.', 'InteractiveShellEmbed', '.', 'autoindent', '=', 'True', 'cfg', '.', 'InteractiveShellEmbed', '.', 'deep_reload', '=', 'True', 'cfg', '.', 'PromptManager', '.', 'in_template', '=', '(', "r'{color.LightPurple}{short_md5}{color.Yellow}{prompt_deco}{color.LightBlue} Workbench{color.Green}[\\#]> '", ')', "# cfg.PromptManager.out_template = ''", '# Create the IPython shell', 'self', '.', 'ipshell', '=', 'IPython', '.', 'terminal', '.', 'embed', '.', 'InteractiveShellEmbed', '(', 'config', '=', 'cfg', ',', 'banner1', '=', "''", ',', 'exit_msg', '=', "'\\nWorkbench has SuperCowPowers...'", ')', "# Register our transformer, the shell will use this for 'shortcut' commands", 'auto_quoter', '=', 'auto_quote_xform', '.', 'AutoQuoteTransformer', '(', 'self', '.', 'ipshell', ',', 'self', '.', 'ipshell', '.', 'prefilter_manager', ')', 'auto_quoter', '.', 'register_command_set', '(', 'self', '.', 'command_set', ')', '# Setting up some Pandas options', 'pd', '.', 'set_option', '(', "'display.width'", ',', '140', ')', 'pd', '.', 'set_option', '(', "'max_colwidth'", ',', '15', ')', '# Start up the shell with our set of workbench commands', 'self', '.', 'ipshell', '(', 'local_ns', '=', 'self', '.', 'command_dict', ')'] | Running the workbench CLI | ['Running', 'the', 'workbench', 'CLI'] | train | https://github.com/SuperCowPowers/workbench/blob/710232756dd717f734253315e3d0b33c9628dafb/workbench_apps/workbench_cli/workbench_shell.py#L238-L274 |
6,934 | dpgaspar/Flask-AppBuilder | flask_appbuilder/api/convert.py | Model2SchemaConverter._meta_schema_factory | def _meta_schema_factory(self, columns, model, class_mixin):
"""
Creates ModelSchema marshmallow-sqlalchemy
:param columns: a list of columns to mix
:param model: Model
:param class_mixin: a marshamallow Schema to mix
:return: ModelSchema
"""
_model = model
if columns:
class MetaSchema(ModelSchema, class_mixin):
class Meta:
model = _model
fields = columns
strict = True
sqla_session = self.datamodel.session
else:
class MetaSchema(ModelSchema, class_mixin):
class Meta:
model = _model
strict = True
sqla_session = self.datamodel.session
return MetaSchema | python | def _meta_schema_factory(self, columns, model, class_mixin):
"""
Creates ModelSchema marshmallow-sqlalchemy
:param columns: a list of columns to mix
:param model: Model
:param class_mixin: a marshamallow Schema to mix
:return: ModelSchema
"""
_model = model
if columns:
class MetaSchema(ModelSchema, class_mixin):
class Meta:
model = _model
fields = columns
strict = True
sqla_session = self.datamodel.session
else:
class MetaSchema(ModelSchema, class_mixin):
class Meta:
model = _model
strict = True
sqla_session = self.datamodel.session
return MetaSchema | ['def', '_meta_schema_factory', '(', 'self', ',', 'columns', ',', 'model', ',', 'class_mixin', ')', ':', '_model', '=', 'model', 'if', 'columns', ':', 'class', 'MetaSchema', '(', 'ModelSchema', ',', 'class_mixin', ')', ':', 'class', 'Meta', ':', 'model', '=', '_model', 'fields', '=', 'columns', 'strict', '=', 'True', 'sqla_session', '=', 'self', '.', 'datamodel', '.', 'session', 'else', ':', 'class', 'MetaSchema', '(', 'ModelSchema', ',', 'class_mixin', ')', ':', 'class', 'Meta', ':', 'model', '=', '_model', 'strict', '=', 'True', 'sqla_session', '=', 'self', '.', 'datamodel', '.', 'session', 'return', 'MetaSchema'] | Creates ModelSchema marshmallow-sqlalchemy
:param columns: a list of columns to mix
:param model: Model
:param class_mixin: a marshamallow Schema to mix
:return: ModelSchema | ['Creates', 'ModelSchema', 'marshmallow', '-', 'sqlalchemy'] | train | https://github.com/dpgaspar/Flask-AppBuilder/blob/c293734c1b86e176a3ba57ee2deab6676d125576/flask_appbuilder/api/convert.py#L87-L110 |
6,935 | bcbio/bcbio-nextgen | bcbio/distributed/resources.py | _get_prog_memory | def _get_prog_memory(resources, cores_per_job):
"""Get expected memory usage, in Gb per core, for a program from resource specification.
"""
out = None
for jvm_opt in resources.get("jvm_opts", []):
if jvm_opt.startswith("-Xmx"):
out = _str_memory_to_gb(jvm_opt[4:])
memory = resources.get("memory")
if memory:
out = _str_memory_to_gb(memory)
prog_cores = resources.get("cores")
# if a single core with memory is requested for the job
# and we run multiple cores, scale down to avoid overscheduling
if out and prog_cores and int(prog_cores) == 1 and cores_per_job > int(prog_cores):
out = out / float(cores_per_job)
return out | python | def _get_prog_memory(resources, cores_per_job):
"""Get expected memory usage, in Gb per core, for a program from resource specification.
"""
out = None
for jvm_opt in resources.get("jvm_opts", []):
if jvm_opt.startswith("-Xmx"):
out = _str_memory_to_gb(jvm_opt[4:])
memory = resources.get("memory")
if memory:
out = _str_memory_to_gb(memory)
prog_cores = resources.get("cores")
# if a single core with memory is requested for the job
# and we run multiple cores, scale down to avoid overscheduling
if out and prog_cores and int(prog_cores) == 1 and cores_per_job > int(prog_cores):
out = out / float(cores_per_job)
return out | ['def', '_get_prog_memory', '(', 'resources', ',', 'cores_per_job', ')', ':', 'out', '=', 'None', 'for', 'jvm_opt', 'in', 'resources', '.', 'get', '(', '"jvm_opts"', ',', '[', ']', ')', ':', 'if', 'jvm_opt', '.', 'startswith', '(', '"-Xmx"', ')', ':', 'out', '=', '_str_memory_to_gb', '(', 'jvm_opt', '[', '4', ':', ']', ')', 'memory', '=', 'resources', '.', 'get', '(', '"memory"', ')', 'if', 'memory', ':', 'out', '=', '_str_memory_to_gb', '(', 'memory', ')', 'prog_cores', '=', 'resources', '.', 'get', '(', '"cores"', ')', '# if a single core with memory is requested for the job', '# and we run multiple cores, scale down to avoid overscheduling', 'if', 'out', 'and', 'prog_cores', 'and', 'int', '(', 'prog_cores', ')', '==', '1', 'and', 'cores_per_job', '>', 'int', '(', 'prog_cores', ')', ':', 'out', '=', 'out', '/', 'float', '(', 'cores_per_job', ')', 'return', 'out'] | Get expected memory usage, in Gb per core, for a program from resource specification. | ['Get', 'expected', 'memory', 'usage', 'in', 'Gb', 'per', 'core', 'for', 'a', 'program', 'from', 'resource', 'specification', '.'] | train | https://github.com/bcbio/bcbio-nextgen/blob/6a9348c0054ccd5baffd22f1bb7d0422f6978b20/bcbio/distributed/resources.py#L83-L98 |
6,936 | pschmitt/python-opsview | opsview/opsview.py | main | def main():
'''
Main function
'''
# We should only steal the root logger if we're the application, not the module
logging.basicConfig(level=logging.DEBUG)
args = get_args()
if args.password:
password = args.password
else:
password = getpass(
prompt='Enter password for {}@{}: '.format(args.user, args.host)
)
opsview = Opsview(
host=args.host,
port=args.port,
use_ssl=args.ssl,
verify_ssl=not args.skip_ssl_verification,
username=args.user,
password=password,
verbose=args.verbose,
)
d = {}
with open('vcenter.json') as f:
d = json.load(f)
logger.debug(
pformat(opsview.create_host(params=d, verbose=args.verbose))
) | python | def main():
'''
Main function
'''
# We should only steal the root logger if we're the application, not the module
logging.basicConfig(level=logging.DEBUG)
args = get_args()
if args.password:
password = args.password
else:
password = getpass(
prompt='Enter password for {}@{}: '.format(args.user, args.host)
)
opsview = Opsview(
host=args.host,
port=args.port,
use_ssl=args.ssl,
verify_ssl=not args.skip_ssl_verification,
username=args.user,
password=password,
verbose=args.verbose,
)
d = {}
with open('vcenter.json') as f:
d = json.load(f)
logger.debug(
pformat(opsview.create_host(params=d, verbose=args.verbose))
) | ['def', 'main', '(', ')', ':', "# We should only steal the root logger if we're the application, not the module", 'logging', '.', 'basicConfig', '(', 'level', '=', 'logging', '.', 'DEBUG', ')', 'args', '=', 'get_args', '(', ')', 'if', 'args', '.', 'password', ':', 'password', '=', 'args', '.', 'password', 'else', ':', 'password', '=', 'getpass', '(', 'prompt', '=', "'Enter password for {}@{}: '", '.', 'format', '(', 'args', '.', 'user', ',', 'args', '.', 'host', ')', ')', 'opsview', '=', 'Opsview', '(', 'host', '=', 'args', '.', 'host', ',', 'port', '=', 'args', '.', 'port', ',', 'use_ssl', '=', 'args', '.', 'ssl', ',', 'verify_ssl', '=', 'not', 'args', '.', 'skip_ssl_verification', ',', 'username', '=', 'args', '.', 'user', ',', 'password', '=', 'password', ',', 'verbose', '=', 'args', '.', 'verbose', ',', ')', 'd', '=', '{', '}', 'with', 'open', '(', "'vcenter.json'", ')', 'as', 'f', ':', 'd', '=', 'json', '.', 'load', '(', 'f', ')', 'logger', '.', 'debug', '(', 'pformat', '(', 'opsview', '.', 'create_host', '(', 'params', '=', 'd', ',', 'verbose', '=', 'args', '.', 'verbose', ')', ')', ')'] | Main function | ['Main', 'function'] | train | https://github.com/pschmitt/python-opsview/blob/720acc06c491db32d18c79d20f04cae16e57a7fb/opsview/opsview.py#L500-L529 |
6,937 | nchopin/particles | particles/kalman.py | predict_step | def predict_step(F, covX, filt):
"""Predictive step of Kalman filter.
Parameters
----------
F: (dx, dx) numpy array
Mean of X_t | X_{t-1} is F * X_{t-1}
covX: (dx, dx) numpy array
covariance of X_t | X_{t-1}
filt: MeanAndCov object
filtering distribution at time t-1
Returns
-------
pred: MeanAndCov object
predictive distribution at time t
Note
----
filt.mean may either be of shape (dx,) or (N, dx); in the latter case
N predictive steps are performed in parallel.
"""
pred_mean = np.matmul(filt.mean, F.T)
pred_cov = dotdot(F, filt.cov, F.T) + covX
return MeanAndCov(mean=pred_mean, cov=pred_cov) | python | def predict_step(F, covX, filt):
"""Predictive step of Kalman filter.
Parameters
----------
F: (dx, dx) numpy array
Mean of X_t | X_{t-1} is F * X_{t-1}
covX: (dx, dx) numpy array
covariance of X_t | X_{t-1}
filt: MeanAndCov object
filtering distribution at time t-1
Returns
-------
pred: MeanAndCov object
predictive distribution at time t
Note
----
filt.mean may either be of shape (dx,) or (N, dx); in the latter case
N predictive steps are performed in parallel.
"""
pred_mean = np.matmul(filt.mean, F.T)
pred_cov = dotdot(F, filt.cov, F.T) + covX
return MeanAndCov(mean=pred_mean, cov=pred_cov) | ['def', 'predict_step', '(', 'F', ',', 'covX', ',', 'filt', ')', ':', 'pred_mean', '=', 'np', '.', 'matmul', '(', 'filt', '.', 'mean', ',', 'F', '.', 'T', ')', 'pred_cov', '=', 'dotdot', '(', 'F', ',', 'filt', '.', 'cov', ',', 'F', '.', 'T', ')', '+', 'covX', 'return', 'MeanAndCov', '(', 'mean', '=', 'pred_mean', ',', 'cov', '=', 'pred_cov', ')'] | Predictive step of Kalman filter.
Parameters
----------
F: (dx, dx) numpy array
Mean of X_t | X_{t-1} is F * X_{t-1}
covX: (dx, dx) numpy array
covariance of X_t | X_{t-1}
filt: MeanAndCov object
filtering distribution at time t-1
Returns
-------
pred: MeanAndCov object
predictive distribution at time t
Note
----
filt.mean may either be of shape (dx,) or (N, dx); in the latter case
N predictive steps are performed in parallel. | ['Predictive', 'step', 'of', 'Kalman', 'filter', '.'] | train | https://github.com/nchopin/particles/blob/3faa97a1073db45c5889eef3e015dd76ef350b52/particles/kalman.py#L163-L187 |
6,938 | CivicSpleen/ambry | ambry/bundle/bundle.py | Bundle.phase_search_names | def phase_search_names(self, source, phase):
"""Search the bundle.yaml metadata file for pipeline configurations. Looks for:
- <phase>-<source_table>
- <phase>-<dest_table>
- <phase>-<source_name>
"""
search = []
assert phase is not None
# Create a search list of names for getting a pipline from the metadata
if source and source.source_table_name:
search.append(phase + '-' + source.source_table_name)
if source and source.dest_table_name:
search.append(phase + '-' + source.dest_table_name)
if source:
search.append(phase + '-' + source.name)
search.append(phase)
return search | python | def phase_search_names(self, source, phase):
"""Search the bundle.yaml metadata file for pipeline configurations. Looks for:
- <phase>-<source_table>
- <phase>-<dest_table>
- <phase>-<source_name>
"""
search = []
assert phase is not None
# Create a search list of names for getting a pipline from the metadata
if source and source.source_table_name:
search.append(phase + '-' + source.source_table_name)
if source and source.dest_table_name:
search.append(phase + '-' + source.dest_table_name)
if source:
search.append(phase + '-' + source.name)
search.append(phase)
return search | ['def', 'phase_search_names', '(', 'self', ',', 'source', ',', 'phase', ')', ':', 'search', '=', '[', ']', 'assert', 'phase', 'is', 'not', 'None', '# Create a search list of names for getting a pipline from the metadata', 'if', 'source', 'and', 'source', '.', 'source_table_name', ':', 'search', '.', 'append', '(', 'phase', '+', "'-'", '+', 'source', '.', 'source_table_name', ')', 'if', 'source', 'and', 'source', '.', 'dest_table_name', ':', 'search', '.', 'append', '(', 'phase', '+', "'-'", '+', 'source', '.', 'dest_table_name', ')', 'if', 'source', ':', 'search', '.', 'append', '(', 'phase', '+', "'-'", '+', 'source', '.', 'name', ')', 'search', '.', 'append', '(', 'phase', ')', 'return', 'search'] | Search the bundle.yaml metadata file for pipeline configurations. Looks for:
- <phase>-<source_table>
- <phase>-<dest_table>
- <phase>-<source_name> | ['Search', 'the', 'bundle', '.', 'yaml', 'metadata', 'file', 'for', 'pipeline', 'configurations', '.', 'Looks', 'for', ':', '-', '<phase', '>', '-', '<source_table', '>', '-', '<phase', '>', '-', '<dest_table', '>', '-', '<phase', '>', '-', '<source_name', '>'] | train | https://github.com/CivicSpleen/ambry/blob/d7f2be4bf1f7ffd086f3fadd4fcae60c32473e42/ambry/bundle/bundle.py#L644-L667 |
6,939 | fabioz/PyDev.Debugger | _pydev_imps/_pydev_SocketServer.py | ForkingMixIn.process_request | def process_request(self, request, client_address):
"""Fork a new subprocess to process the request."""
self.collect_children()
pid = os.fork() # @UndefinedVariable
if pid:
# Parent process
if self.active_children is None:
self.active_children = []
self.active_children.append(pid)
self.close_request(request) #close handle in parent process
return
else:
# Child process.
# This must never return, hence os._exit()!
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
os._exit(0)
except:
try:
self.handle_error(request, client_address)
self.shutdown_request(request)
finally:
os._exit(1) | python | def process_request(self, request, client_address):
"""Fork a new subprocess to process the request."""
self.collect_children()
pid = os.fork() # @UndefinedVariable
if pid:
# Parent process
if self.active_children is None:
self.active_children = []
self.active_children.append(pid)
self.close_request(request) #close handle in parent process
return
else:
# Child process.
# This must never return, hence os._exit()!
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
os._exit(0)
except:
try:
self.handle_error(request, client_address)
self.shutdown_request(request)
finally:
os._exit(1) | ['def', 'process_request', '(', 'self', ',', 'request', ',', 'client_address', ')', ':', 'self', '.', 'collect_children', '(', ')', 'pid', '=', 'os', '.', 'fork', '(', ')', '# @UndefinedVariable', 'if', 'pid', ':', '# Parent process', 'if', 'self', '.', 'active_children', 'is', 'None', ':', 'self', '.', 'active_children', '=', '[', ']', 'self', '.', 'active_children', '.', 'append', '(', 'pid', ')', 'self', '.', 'close_request', '(', 'request', ')', '#close handle in parent process', 'return', 'else', ':', '# Child process.', '# This must never return, hence os._exit()!', 'try', ':', 'self', '.', 'finish_request', '(', 'request', ',', 'client_address', ')', 'self', '.', 'shutdown_request', '(', 'request', ')', 'os', '.', '_exit', '(', '0', ')', 'except', ':', 'try', ':', 'self', '.', 'handle_error', '(', 'request', ',', 'client_address', ')', 'self', '.', 'shutdown_request', '(', 'request', ')', 'finally', ':', 'os', '.', '_exit', '(', '1', ')'] | Fork a new subprocess to process the request. | ['Fork', 'a', 'new', 'subprocess', 'to', 'process', 'the', 'request', '.'] | train | https://github.com/fabioz/PyDev.Debugger/blob/ed9c4307662a5593b8a7f1f3389ecd0e79b8c503/_pydev_imps/_pydev_SocketServer.py#L542-L565 |
6,940 | andreikop/qutepart | qutepart/vim.py | isChar | def isChar(ev):
""" Check if an event may be a typed character
"""
text = ev.text()
if len(text) != 1:
return False
if ev.modifiers() not in (Qt.ShiftModifier, Qt.KeypadModifier, Qt.NoModifier):
return False
asciiCode = ord(text)
if asciiCode <= 31 or asciiCode == 0x7f: # control characters
return False
if text == ' ' and ev.modifiers() == Qt.ShiftModifier:
return False # Shift+Space is a shortcut, not a text
return True | python | def isChar(ev):
""" Check if an event may be a typed character
"""
text = ev.text()
if len(text) != 1:
return False
if ev.modifiers() not in (Qt.ShiftModifier, Qt.KeypadModifier, Qt.NoModifier):
return False
asciiCode = ord(text)
if asciiCode <= 31 or asciiCode == 0x7f: # control characters
return False
if text == ' ' and ev.modifiers() == Qt.ShiftModifier:
return False # Shift+Space is a shortcut, not a text
return True | ['def', 'isChar', '(', 'ev', ')', ':', 'text', '=', 'ev', '.', 'text', '(', ')', 'if', 'len', '(', 'text', ')', '!=', '1', ':', 'return', 'False', 'if', 'ev', '.', 'modifiers', '(', ')', 'not', 'in', '(', 'Qt', '.', 'ShiftModifier', ',', 'Qt', '.', 'KeypadModifier', ',', 'Qt', '.', 'NoModifier', ')', ':', 'return', 'False', 'asciiCode', '=', 'ord', '(', 'text', ')', 'if', 'asciiCode', '<=', '31', 'or', 'asciiCode', '==', '0x7f', ':', '# control characters', 'return', 'False', 'if', 'text', '==', "' '", 'and', 'ev', '.', 'modifiers', '(', ')', '==', 'Qt', '.', 'ShiftModifier', ':', 'return', 'False', '# Shift+Space is a shortcut, not a text', 'return', 'True'] | Check if an event may be a typed character | ['Check', 'if', 'an', 'event', 'may', 'be', 'a', 'typed', 'character'] | train | https://github.com/andreikop/qutepart/blob/109d76b239751318bcef06f39b2fbbf18687a40b/qutepart/vim.py#L47-L64 |
6,941 | openego/ding0 | ding0/tools/geo.py | calc_geo_centre_point | def calc_geo_centre_point(node_source, node_target):
""" Calculates the geodesic distance between `node_source` and `node_target`
incorporating the detour factor specified in config_calc.cfg.
Parameters
----------
node_source: LVStationDing0, GeneratorDing0, or CableDistributorDing0
source node, member of GridDing0._graph
node_target: LVStationDing0, GeneratorDing0, or CableDistributorDing0
target node, member of GridDing0._graph
Returns
-------
:any:`float`
Distance in m.
"""
proj_source = partial(
pyproj.transform,
pyproj.Proj(init='epsg:4326'), # source coordinate system
pyproj.Proj(init='epsg:3035')) # destination coordinate system
# ETRS (equidistant) to WGS84 (conformal) projection
proj_target = partial(
pyproj.transform,
pyproj.Proj(init='epsg:3035'), # source coordinate system
pyproj.Proj(init='epsg:4326')) # destination coordinate system
branch_shp = transform(proj_source, LineString([node_source.geo_data, node_target.geo_data]))
distance = vincenty((node_source.geo_data.y, node_source.geo_data.x),
(node_target.geo_data.y, node_target.geo_data.x)).m
centre_point_shp = transform(proj_target, branch_shp.interpolate(distance/2))
return centre_point_shp | python | def calc_geo_centre_point(node_source, node_target):
""" Calculates the geodesic distance between `node_source` and `node_target`
incorporating the detour factor specified in config_calc.cfg.
Parameters
----------
node_source: LVStationDing0, GeneratorDing0, or CableDistributorDing0
source node, member of GridDing0._graph
node_target: LVStationDing0, GeneratorDing0, or CableDistributorDing0
target node, member of GridDing0._graph
Returns
-------
:any:`float`
Distance in m.
"""
proj_source = partial(
pyproj.transform,
pyproj.Proj(init='epsg:4326'), # source coordinate system
pyproj.Proj(init='epsg:3035')) # destination coordinate system
# ETRS (equidistant) to WGS84 (conformal) projection
proj_target = partial(
pyproj.transform,
pyproj.Proj(init='epsg:3035'), # source coordinate system
pyproj.Proj(init='epsg:4326')) # destination coordinate system
branch_shp = transform(proj_source, LineString([node_source.geo_data, node_target.geo_data]))
distance = vincenty((node_source.geo_data.y, node_source.geo_data.x),
(node_target.geo_data.y, node_target.geo_data.x)).m
centre_point_shp = transform(proj_target, branch_shp.interpolate(distance/2))
return centre_point_shp | ['def', 'calc_geo_centre_point', '(', 'node_source', ',', 'node_target', ')', ':', 'proj_source', '=', 'partial', '(', 'pyproj', '.', 'transform', ',', 'pyproj', '.', 'Proj', '(', 'init', '=', "'epsg:4326'", ')', ',', '# source coordinate system', 'pyproj', '.', 'Proj', '(', 'init', '=', "'epsg:3035'", ')', ')', '# destination coordinate system', '# ETRS (equidistant) to WGS84 (conformal) projection', 'proj_target', '=', 'partial', '(', 'pyproj', '.', 'transform', ',', 'pyproj', '.', 'Proj', '(', 'init', '=', "'epsg:3035'", ')', ',', '# source coordinate system', 'pyproj', '.', 'Proj', '(', 'init', '=', "'epsg:4326'", ')', ')', '# destination coordinate system', 'branch_shp', '=', 'transform', '(', 'proj_source', ',', 'LineString', '(', '[', 'node_source', '.', 'geo_data', ',', 'node_target', '.', 'geo_data', ']', ')', ')', 'distance', '=', 'vincenty', '(', '(', 'node_source', '.', 'geo_data', '.', 'y', ',', 'node_source', '.', 'geo_data', '.', 'x', ')', ',', '(', 'node_target', '.', 'geo_data', '.', 'y', ',', 'node_target', '.', 'geo_data', '.', 'x', ')', ')', '.', 'm', 'centre_point_shp', '=', 'transform', '(', 'proj_target', ',', 'branch_shp', '.', 'interpolate', '(', 'distance', '/', '2', ')', ')', 'return', 'centre_point_shp'] | Calculates the geodesic distance between `node_source` and `node_target`
incorporating the detour factor specified in config_calc.cfg.
Parameters
----------
node_source: LVStationDing0, GeneratorDing0, or CableDistributorDing0
source node, member of GridDing0._graph
node_target: LVStationDing0, GeneratorDing0, or CableDistributorDing0
target node, member of GridDing0._graph
Returns
-------
:any:`float`
Distance in m. | ['Calculates', 'the', 'geodesic', 'distance', 'between', 'node_source', 'and', 'node_target', 'incorporating', 'the', 'detour', 'factor', 'specified', 'in', 'config_calc', '.', 'cfg', '.', 'Parameters', '----------', 'node_source', ':', 'LVStationDing0', 'GeneratorDing0', 'or', 'CableDistributorDing0', 'source', 'node', 'member', 'of', 'GridDing0', '.', '_graph', 'node_target', ':', 'LVStationDing0', 'GeneratorDing0', 'or', 'CableDistributorDing0', 'target', 'node', 'member', 'of', 'GridDing0', '.', '_graph'] | train | https://github.com/openego/ding0/blob/e2d6528f96255e4bb22ba15514a4f1883564ed5d/ding0/tools/geo.py#L206-L241 |
6,942 | elmotec/massedit | massedit.py | MassEdit.append_code_expr | def append_code_expr(self, code):
"""Compile argument and adds it to the list of code objects."""
# expects a string.
if isinstance(code, str) and not isinstance(code, unicode):
code = unicode(code)
if not isinstance(code, unicode):
raise TypeError("string expected")
log.debug("compiling code %s...", code)
try:
code_obj = compile(code, '<string>', 'eval')
self.code_objs[code] = code_obj
except SyntaxError as syntax_err:
log.error("cannot compile %s: %s", code, syntax_err)
raise
log.debug("compiled code %s", code) | python | def append_code_expr(self, code):
"""Compile argument and adds it to the list of code objects."""
# expects a string.
if isinstance(code, str) and not isinstance(code, unicode):
code = unicode(code)
if not isinstance(code, unicode):
raise TypeError("string expected")
log.debug("compiling code %s...", code)
try:
code_obj = compile(code, '<string>', 'eval')
self.code_objs[code] = code_obj
except SyntaxError as syntax_err:
log.error("cannot compile %s: %s", code, syntax_err)
raise
log.debug("compiled code %s", code) | ['def', 'append_code_expr', '(', 'self', ',', 'code', ')', ':', '# expects a string.', 'if', 'isinstance', '(', 'code', ',', 'str', ')', 'and', 'not', 'isinstance', '(', 'code', ',', 'unicode', ')', ':', 'code', '=', 'unicode', '(', 'code', ')', 'if', 'not', 'isinstance', '(', 'code', ',', 'unicode', ')', ':', 'raise', 'TypeError', '(', '"string expected"', ')', 'log', '.', 'debug', '(', '"compiling code %s..."', ',', 'code', ')', 'try', ':', 'code_obj', '=', 'compile', '(', 'code', ',', "'<string>'", ',', "'eval'", ')', 'self', '.', 'code_objs', '[', 'code', ']', '=', 'code_obj', 'except', 'SyntaxError', 'as', 'syntax_err', ':', 'log', '.', 'error', '(', '"cannot compile %s: %s"', ',', 'code', ',', 'syntax_err', ')', 'raise', 'log', '.', 'debug', '(', '"compiled code %s"', ',', 'code', ')'] | Compile argument and adds it to the list of code objects. | ['Compile', 'argument', 'and', 'adds', 'it', 'to', 'the', 'list', 'of', 'code', 'objects', '.'] | train | https://github.com/elmotec/massedit/blob/57e22787354896d63a8850312314b19aa0308906/massedit.py#L262-L276 |
6,943 | ska-sa/montblanc | montblanc/util/__init__.py | random_like | def random_like(ary=None, shape=None, dtype=None):
"""
Returns a random array of the same shape and type as the
supplied array argument, or the supplied shape and dtype
"""
if ary is not None:
shape, dtype = ary.shape, ary.dtype
elif shape is None or dtype is None:
raise ValueError((
'random_like(ary, shape, dtype) must be supplied '
'with either an array argument, or the shape and dtype '
'of the desired random array.'))
if np.issubdtype(dtype, np.complexfloating):
return (np.random.random(size=shape) + \
np.random.random(size=shape)*1j).astype(dtype)
else:
return np.random.random(size=shape).astype(dtype) | python | def random_like(ary=None, shape=None, dtype=None):
"""
Returns a random array of the same shape and type as the
supplied array argument, or the supplied shape and dtype
"""
if ary is not None:
shape, dtype = ary.shape, ary.dtype
elif shape is None or dtype is None:
raise ValueError((
'random_like(ary, shape, dtype) must be supplied '
'with either an array argument, or the shape and dtype '
'of the desired random array.'))
if np.issubdtype(dtype, np.complexfloating):
return (np.random.random(size=shape) + \
np.random.random(size=shape)*1j).astype(dtype)
else:
return np.random.random(size=shape).astype(dtype) | ['def', 'random_like', '(', 'ary', '=', 'None', ',', 'shape', '=', 'None', ',', 'dtype', '=', 'None', ')', ':', 'if', 'ary', 'is', 'not', 'None', ':', 'shape', ',', 'dtype', '=', 'ary', '.', 'shape', ',', 'ary', '.', 'dtype', 'elif', 'shape', 'is', 'None', 'or', 'dtype', 'is', 'None', ':', 'raise', 'ValueError', '(', '(', "'random_like(ary, shape, dtype) must be supplied '", "'with either an array argument, or the shape and dtype '", "'of the desired random array.'", ')', ')', 'if', 'np', '.', 'issubdtype', '(', 'dtype', ',', 'np', '.', 'complexfloating', ')', ':', 'return', '(', 'np', '.', 'random', '.', 'random', '(', 'size', '=', 'shape', ')', '+', 'np', '.', 'random', '.', 'random', '(', 'size', '=', 'shape', ')', '*', '1j', ')', '.', 'astype', '(', 'dtype', ')', 'else', ':', 'return', 'np', '.', 'random', '.', 'random', '(', 'size', '=', 'shape', ')', '.', 'astype', '(', 'dtype', ')'] | Returns a random array of the same shape and type as the
supplied array argument, or the supplied shape and dtype | ['Returns', 'a', 'random', 'array', 'of', 'the', 'same', 'shape', 'and', 'type', 'as', 'the', 'supplied', 'array', 'argument', 'or', 'the', 'supplied', 'shape', 'and', 'dtype'] | train | https://github.com/ska-sa/montblanc/blob/8a2e742e7500bcc6196489b735f87b233075dd2d/montblanc/util/__init__.py#L96-L113 |
6,944 | soldag/python-pwmled | pwmled/led/rgb.py | RgbLed._prepare_transition | def _prepare_transition(self, is_on=None, brightness=None, color=None):
"""
Perform pre-transition tasks and construct the destination state.
:param is_on: The on-off state to transition to.
:param brightness: The brightness to transition to (0.0-1.0).
:param color: The color to transition to.
:return: The destination state of the transition.
"""
dest_state = super()._prepare_transition(is_on,
brightness=brightness,
color=color)
# Handle transitions from off to on and changing color
if is_on and not self.is_on and color is not None:
self.set(color=color, cancel_transition=False)
return dest_state | python | def _prepare_transition(self, is_on=None, brightness=None, color=None):
"""
Perform pre-transition tasks and construct the destination state.
:param is_on: The on-off state to transition to.
:param brightness: The brightness to transition to (0.0-1.0).
:param color: The color to transition to.
:return: The destination state of the transition.
"""
dest_state = super()._prepare_transition(is_on,
brightness=brightness,
color=color)
# Handle transitions from off to on and changing color
if is_on and not self.is_on and color is not None:
self.set(color=color, cancel_transition=False)
return dest_state | ['def', '_prepare_transition', '(', 'self', ',', 'is_on', '=', 'None', ',', 'brightness', '=', 'None', ',', 'color', '=', 'None', ')', ':', 'dest_state', '=', 'super', '(', ')', '.', '_prepare_transition', '(', 'is_on', ',', 'brightness', '=', 'brightness', ',', 'color', '=', 'color', ')', '# Handle transitions from off to on and changing color', 'if', 'is_on', 'and', 'not', 'self', '.', 'is_on', 'and', 'color', 'is', 'not', 'None', ':', 'self', '.', 'set', '(', 'color', '=', 'color', ',', 'cancel_transition', '=', 'False', ')', 'return', 'dest_state'] | Perform pre-transition tasks and construct the destination state.
:param is_on: The on-off state to transition to.
:param brightness: The brightness to transition to (0.0-1.0).
:param color: The color to transition to.
:return: The destination state of the transition. | ['Perform', 'pre', '-', 'transition', 'tasks', 'and', 'construct', 'the', 'destination', 'state', '.'] | train | https://github.com/soldag/python-pwmled/blob/09cde36ecc0153fa81dc2a1b9bb07d1c0e418c8c/pwmled/led/rgb.py#L74-L91 |
6,945 | geopy/geopy | geopy/geocoders/arcgis.py | ArcGIS._authenticated_call_geocoder | def _authenticated_call_geocoder(self, url, timeout=DEFAULT_SENTINEL):
"""
Wrap self._call_geocoder, handling tokens.
"""
if self.token is None or int(time()) > self.token_expiry:
self._refresh_authentication_token()
request = Request(
"&".join((url, urlencode({"token": self.token}))),
headers={"Referer": self.referer}
)
return self._base_call_geocoder(request, timeout=timeout) | python | def _authenticated_call_geocoder(self, url, timeout=DEFAULT_SENTINEL):
"""
Wrap self._call_geocoder, handling tokens.
"""
if self.token is None or int(time()) > self.token_expiry:
self._refresh_authentication_token()
request = Request(
"&".join((url, urlencode({"token": self.token}))),
headers={"Referer": self.referer}
)
return self._base_call_geocoder(request, timeout=timeout) | ['def', '_authenticated_call_geocoder', '(', 'self', ',', 'url', ',', 'timeout', '=', 'DEFAULT_SENTINEL', ')', ':', 'if', 'self', '.', 'token', 'is', 'None', 'or', 'int', '(', 'time', '(', ')', ')', '>', 'self', '.', 'token_expiry', ':', 'self', '.', '_refresh_authentication_token', '(', ')', 'request', '=', 'Request', '(', '"&"', '.', 'join', '(', '(', 'url', ',', 'urlencode', '(', '{', '"token"', ':', 'self', '.', 'token', '}', ')', ')', ')', ',', 'headers', '=', '{', '"Referer"', ':', 'self', '.', 'referer', '}', ')', 'return', 'self', '.', '_base_call_geocoder', '(', 'request', ',', 'timeout', '=', 'timeout', ')'] | Wrap self._call_geocoder, handling tokens. | ['Wrap', 'self', '.', '_call_geocoder', 'handling', 'tokens', '.'] | train | https://github.com/geopy/geopy/blob/02c838d965e76497f3c3d61f53808c86b5c58224/geopy/geocoders/arcgis.py#L145-L155 |
6,946 | ismms-himc/clustergrammer2 | setupbase.py | _get_data_files | def _get_data_files(data_specs, existing, top=HERE):
"""Expand data file specs into valid data files metadata.
Parameters
----------
data_specs: list of tuples
See [create_cmdclass] for description.
existing: list of tuples
The existing distrubution data_files metadata.
Returns
-------
A valid list of data_files items.
"""
# Extract the existing data files into a staging object.
file_data = defaultdict(list)
for (path, files) in existing or []:
file_data[path] = files
# Extract the files and assign them to the proper data
# files path.
for (path, dname, pattern) in data_specs or []:
if os.path.isabs(dname):
dname = os.path.relpath(dname, top)
dname = dname.replace(os.sep, '/')
offset = 0 if dname in ('.', '') else len(dname) + 1
files = _get_files(_glob_pjoin(dname, pattern), top=top)
for fname in files:
# Normalize the path.
root = os.path.dirname(fname)
full_path = _glob_pjoin(path, root[offset:])
print(dname, root, full_path, offset)
if full_path.endswith('/'):
full_path = full_path[:-1]
file_data[full_path].append(fname)
# Construct the data files spec.
data_files = []
for (path, files) in file_data.items():
data_files.append((path, files))
return data_files | python | def _get_data_files(data_specs, existing, top=HERE):
"""Expand data file specs into valid data files metadata.
Parameters
----------
data_specs: list of tuples
See [create_cmdclass] for description.
existing: list of tuples
The existing distrubution data_files metadata.
Returns
-------
A valid list of data_files items.
"""
# Extract the existing data files into a staging object.
file_data = defaultdict(list)
for (path, files) in existing or []:
file_data[path] = files
# Extract the files and assign them to the proper data
# files path.
for (path, dname, pattern) in data_specs or []:
if os.path.isabs(dname):
dname = os.path.relpath(dname, top)
dname = dname.replace(os.sep, '/')
offset = 0 if dname in ('.', '') else len(dname) + 1
files = _get_files(_glob_pjoin(dname, pattern), top=top)
for fname in files:
# Normalize the path.
root = os.path.dirname(fname)
full_path = _glob_pjoin(path, root[offset:])
print(dname, root, full_path, offset)
if full_path.endswith('/'):
full_path = full_path[:-1]
file_data[full_path].append(fname)
# Construct the data files spec.
data_files = []
for (path, files) in file_data.items():
data_files.append((path, files))
return data_files | ['def', '_get_data_files', '(', 'data_specs', ',', 'existing', ',', 'top', '=', 'HERE', ')', ':', '# Extract the existing data files into a staging object.', 'file_data', '=', 'defaultdict', '(', 'list', ')', 'for', '(', 'path', ',', 'files', ')', 'in', 'existing', 'or', '[', ']', ':', 'file_data', '[', 'path', ']', '=', 'files', '# Extract the files and assign them to the proper data', '# files path.', 'for', '(', 'path', ',', 'dname', ',', 'pattern', ')', 'in', 'data_specs', 'or', '[', ']', ':', 'if', 'os', '.', 'path', '.', 'isabs', '(', 'dname', ')', ':', 'dname', '=', 'os', '.', 'path', '.', 'relpath', '(', 'dname', ',', 'top', ')', 'dname', '=', 'dname', '.', 'replace', '(', 'os', '.', 'sep', ',', "'/'", ')', 'offset', '=', '0', 'if', 'dname', 'in', '(', "'.'", ',', "''", ')', 'else', 'len', '(', 'dname', ')', '+', '1', 'files', '=', '_get_files', '(', '_glob_pjoin', '(', 'dname', ',', 'pattern', ')', ',', 'top', '=', 'top', ')', 'for', 'fname', 'in', 'files', ':', '# Normalize the path.', 'root', '=', 'os', '.', 'path', '.', 'dirname', '(', 'fname', ')', 'full_path', '=', '_glob_pjoin', '(', 'path', ',', 'root', '[', 'offset', ':', ']', ')', 'print', '(', 'dname', ',', 'root', ',', 'full_path', ',', 'offset', ')', 'if', 'full_path', '.', 'endswith', '(', "'/'", ')', ':', 'full_path', '=', 'full_path', '[', ':', '-', '1', ']', 'file_data', '[', 'full_path', ']', '.', 'append', '(', 'fname', ')', '# Construct the data files spec.', 'data_files', '=', '[', ']', 'for', '(', 'path', ',', 'files', ')', 'in', 'file_data', '.', 'items', '(', ')', ':', 'data_files', '.', 'append', '(', '(', 'path', ',', 'files', ')', ')', 'return', 'data_files'] | Expand data file specs into valid data files metadata.
Parameters
----------
data_specs: list of tuples
See [create_cmdclass] for description.
existing: list of tuples
The existing distrubution data_files metadata.
Returns
-------
A valid list of data_files items. | ['Expand', 'data', 'file', 'specs', 'into', 'valid', 'data', 'files', 'metadata', '.'] | train | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/setupbase.py#L514-L554 |
6,947 | fhcrc/taxtastic | taxtastic/taxonomy.py | Taxonomy.primary_from_name | def primary_from_name(self, tax_name):
"""
Return tax_id and primary tax_name corresponding to tax_name.
"""
names = self.names
s1 = select([names.c.tax_id, names.c.is_primary],
names.c.tax_name == tax_name)
log.debug(str(s1))
res = s1.execute().fetchone()
if res:
tax_id, is_primary = res
else:
msg = '"{}" not found in names.tax_names'.format(tax_name)
raise ValueError(msg)
if not is_primary:
s2 = select([names.c.tax_name],
and_(names.c.tax_id == tax_id,
names.c.is_primary))
tax_name = s2.execute().fetchone()[0]
return tax_id, tax_name, bool(is_primary) | python | def primary_from_name(self, tax_name):
"""
Return tax_id and primary tax_name corresponding to tax_name.
"""
names = self.names
s1 = select([names.c.tax_id, names.c.is_primary],
names.c.tax_name == tax_name)
log.debug(str(s1))
res = s1.execute().fetchone()
if res:
tax_id, is_primary = res
else:
msg = '"{}" not found in names.tax_names'.format(tax_name)
raise ValueError(msg)
if not is_primary:
s2 = select([names.c.tax_name],
and_(names.c.tax_id == tax_id,
names.c.is_primary))
tax_name = s2.execute().fetchone()[0]
return tax_id, tax_name, bool(is_primary) | ['def', 'primary_from_name', '(', 'self', ',', 'tax_name', ')', ':', 'names', '=', 'self', '.', 'names', 's1', '=', 'select', '(', '[', 'names', '.', 'c', '.', 'tax_id', ',', 'names', '.', 'c', '.', 'is_primary', ']', ',', 'names', '.', 'c', '.', 'tax_name', '==', 'tax_name', ')', 'log', '.', 'debug', '(', 'str', '(', 's1', ')', ')', 'res', '=', 's1', '.', 'execute', '(', ')', '.', 'fetchone', '(', ')', 'if', 'res', ':', 'tax_id', ',', 'is_primary', '=', 'res', 'else', ':', 'msg', '=', '\'"{}" not found in names.tax_names\'', '.', 'format', '(', 'tax_name', ')', 'raise', 'ValueError', '(', 'msg', ')', 'if', 'not', 'is_primary', ':', 's2', '=', 'select', '(', '[', 'names', '.', 'c', '.', 'tax_name', ']', ',', 'and_', '(', 'names', '.', 'c', '.', 'tax_id', '==', 'tax_id', ',', 'names', '.', 'c', '.', 'is_primary', ')', ')', 'tax_name', '=', 's2', '.', 'execute', '(', ')', '.', 'fetchone', '(', ')', '[', '0', ']', 'return', 'tax_id', ',', 'tax_name', ',', 'bool', '(', 'is_primary', ')'] | Return tax_id and primary tax_name corresponding to tax_name. | ['Return', 'tax_id', 'and', 'primary', 'tax_name', 'corresponding', 'to', 'tax_name', '.'] | train | https://github.com/fhcrc/taxtastic/blob/4e874b7f2cc146178828bfba386314f8c342722b/taxtastic/taxonomy.py#L169-L193 |
6,948 | tornadoweb/tornado | tornado/auth.py | GoogleOAuth2Mixin.get_authenticated_user | async def get_authenticated_user(
self, redirect_uri: str, code: str
) -> Dict[str, Any]:
"""Handles the login for the Google user, returning an access token.
The result is a dictionary containing an ``access_token`` field
([among others](https://developers.google.com/identity/protocols/OAuth2WebServer#handlingtheresponse)).
Unlike other ``get_authenticated_user`` methods in this package,
this method does not return any additional information about the user.
The returned access token can be used with `OAuth2Mixin.oauth2_request`
to request additional information (perhaps from
``https://www.googleapis.com/oauth2/v2/userinfo``)
Example usage:
.. testcode::
class GoogleOAuth2LoginHandler(tornado.web.RequestHandler,
tornado.auth.GoogleOAuth2Mixin):
async def get(self):
if self.get_argument('code', False):
access = await self.get_authenticated_user(
redirect_uri='http://your.site.com/auth/google',
code=self.get_argument('code'))
user = await self.oauth2_request(
"https://www.googleapis.com/oauth2/v1/userinfo",
access_token=access["access_token"])
# Save the user and access token with
# e.g. set_secure_cookie.
else:
await self.authorize_redirect(
redirect_uri='http://your.site.com/auth/google',
client_id=self.settings['google_oauth']['key'],
scope=['profile', 'email'],
response_type='code',
extra_params={'approval_prompt': 'auto'})
.. testoutput::
:hide:
.. versionchanged:: 6.0
The ``callback`` argument was removed. Use the returned awaitable object instead.
""" # noqa: E501
handler = cast(RequestHandler, self)
http = self.get_auth_http_client()
body = urllib.parse.urlencode(
{
"redirect_uri": redirect_uri,
"code": code,
"client_id": handler.settings[self._OAUTH_SETTINGS_KEY]["key"],
"client_secret": handler.settings[self._OAUTH_SETTINGS_KEY]["secret"],
"grant_type": "authorization_code",
}
)
response = await http.fetch(
self._OAUTH_ACCESS_TOKEN_URL,
method="POST",
headers={"Content-Type": "application/x-www-form-urlencoded"},
body=body,
)
return escape.json_decode(response.body) | python | async def get_authenticated_user(
self, redirect_uri: str, code: str
) -> Dict[str, Any]:
"""Handles the login for the Google user, returning an access token.
The result is a dictionary containing an ``access_token`` field
([among others](https://developers.google.com/identity/protocols/OAuth2WebServer#handlingtheresponse)).
Unlike other ``get_authenticated_user`` methods in this package,
this method does not return any additional information about the user.
The returned access token can be used with `OAuth2Mixin.oauth2_request`
to request additional information (perhaps from
``https://www.googleapis.com/oauth2/v2/userinfo``)
Example usage:
.. testcode::
class GoogleOAuth2LoginHandler(tornado.web.RequestHandler,
tornado.auth.GoogleOAuth2Mixin):
async def get(self):
if self.get_argument('code', False):
access = await self.get_authenticated_user(
redirect_uri='http://your.site.com/auth/google',
code=self.get_argument('code'))
user = await self.oauth2_request(
"https://www.googleapis.com/oauth2/v1/userinfo",
access_token=access["access_token"])
# Save the user and access token with
# e.g. set_secure_cookie.
else:
await self.authorize_redirect(
redirect_uri='http://your.site.com/auth/google',
client_id=self.settings['google_oauth']['key'],
scope=['profile', 'email'],
response_type='code',
extra_params={'approval_prompt': 'auto'})
.. testoutput::
:hide:
.. versionchanged:: 6.0
The ``callback`` argument was removed. Use the returned awaitable object instead.
""" # noqa: E501
handler = cast(RequestHandler, self)
http = self.get_auth_http_client()
body = urllib.parse.urlencode(
{
"redirect_uri": redirect_uri,
"code": code,
"client_id": handler.settings[self._OAUTH_SETTINGS_KEY]["key"],
"client_secret": handler.settings[self._OAUTH_SETTINGS_KEY]["secret"],
"grant_type": "authorization_code",
}
)
response = await http.fetch(
self._OAUTH_ACCESS_TOKEN_URL,
method="POST",
headers={"Content-Type": "application/x-www-form-urlencoded"},
body=body,
)
return escape.json_decode(response.body) | ['async', 'def', 'get_authenticated_user', '(', 'self', ',', 'redirect_uri', ':', 'str', ',', 'code', ':', 'str', ')', '->', 'Dict', '[', 'str', ',', 'Any', ']', ':', '# noqa: E501', 'handler', '=', 'cast', '(', 'RequestHandler', ',', 'self', ')', 'http', '=', 'self', '.', 'get_auth_http_client', '(', ')', 'body', '=', 'urllib', '.', 'parse', '.', 'urlencode', '(', '{', '"redirect_uri"', ':', 'redirect_uri', ',', '"code"', ':', 'code', ',', '"client_id"', ':', 'handler', '.', 'settings', '[', 'self', '.', '_OAUTH_SETTINGS_KEY', ']', '[', '"key"', ']', ',', '"client_secret"', ':', 'handler', '.', 'settings', '[', 'self', '.', '_OAUTH_SETTINGS_KEY', ']', '[', '"secret"', ']', ',', '"grant_type"', ':', '"authorization_code"', ',', '}', ')', 'response', '=', 'await', 'http', '.', 'fetch', '(', 'self', '.', '_OAUTH_ACCESS_TOKEN_URL', ',', 'method', '=', '"POST"', ',', 'headers', '=', '{', '"Content-Type"', ':', '"application/x-www-form-urlencoded"', '}', ',', 'body', '=', 'body', ',', ')', 'return', 'escape', '.', 'json_decode', '(', 'response', '.', 'body', ')'] | Handles the login for the Google user, returning an access token.
The result is a dictionary containing an ``access_token`` field
([among others](https://developers.google.com/identity/protocols/OAuth2WebServer#handlingtheresponse)).
Unlike other ``get_authenticated_user`` methods in this package,
this method does not return any additional information about the user.
The returned access token can be used with `OAuth2Mixin.oauth2_request`
to request additional information (perhaps from
``https://www.googleapis.com/oauth2/v2/userinfo``)
Example usage:
.. testcode::
class GoogleOAuth2LoginHandler(tornado.web.RequestHandler,
tornado.auth.GoogleOAuth2Mixin):
async def get(self):
if self.get_argument('code', False):
access = await self.get_authenticated_user(
redirect_uri='http://your.site.com/auth/google',
code=self.get_argument('code'))
user = await self.oauth2_request(
"https://www.googleapis.com/oauth2/v1/userinfo",
access_token=access["access_token"])
# Save the user and access token with
# e.g. set_secure_cookie.
else:
await self.authorize_redirect(
redirect_uri='http://your.site.com/auth/google',
client_id=self.settings['google_oauth']['key'],
scope=['profile', 'email'],
response_type='code',
extra_params={'approval_prompt': 'auto'})
.. testoutput::
:hide:
.. versionchanged:: 6.0
The ``callback`` argument was removed. Use the returned awaitable object instead. | ['Handles', 'the', 'login', 'for', 'the', 'Google', 'user', 'returning', 'an', 'access', 'token', '.'] | train | https://github.com/tornadoweb/tornado/blob/b8b481770bcdb333a69afde5cce7eaa449128326/tornado/auth.py#L854-L916 |
6,949 | ensime/ensime-vim | ensime_shared/editor.py | Editor.point2pos | def point2pos(self, point):
"""Converts a point or offset in a file to a (row, col) position."""
row = self._vim.eval('byte2line({})'.format(point))
col = self._vim.eval('{} - line2byte({})'.format(point, row))
return (int(row), int(col)) | python | def point2pos(self, point):
"""Converts a point or offset in a file to a (row, col) position."""
row = self._vim.eval('byte2line({})'.format(point))
col = self._vim.eval('{} - line2byte({})'.format(point, row))
return (int(row), int(col)) | ['def', 'point2pos', '(', 'self', ',', 'point', ')', ':', 'row', '=', 'self', '.', '_vim', '.', 'eval', '(', "'byte2line({})'", '.', 'format', '(', 'point', ')', ')', 'col', '=', 'self', '.', '_vim', '.', 'eval', '(', "'{} - line2byte({})'", '.', 'format', '(', 'point', ',', 'row', ')', ')', 'return', '(', 'int', '(', 'row', ')', ',', 'int', '(', 'col', ')', ')'] | Converts a point or offset in a file to a (row, col) position. | ['Converts', 'a', 'point', 'or', 'offset', 'in', 'a', 'file', 'to', 'a', '(', 'row', 'col', ')', 'position', '.'] | train | https://github.com/ensime/ensime-vim/blob/caa734e84f002b25446c615706283a74edd4ecfe/ensime_shared/editor.py#L89-L93 |
6,950 | parkouss/pyewmh | ewmh/ewmh.py | EWMH._setProperty | def _setProperty(self, _type, data, win=None, mask=None):
"""
Send a ClientMessage event to the root window
"""
if not win:
win = self.root
if type(data) is str:
dataSize = 8
else:
data = (data+[0]*(5-len(data)))[:5]
dataSize = 32
ev = protocol.event.ClientMessage(
window=win,
client_type=self.display.get_atom(_type), data=(dataSize, data))
if not mask:
mask = (X.SubstructureRedirectMask | X.SubstructureNotifyMask)
self.root.send_event(ev, event_mask=mask) | python | def _setProperty(self, _type, data, win=None, mask=None):
"""
Send a ClientMessage event to the root window
"""
if not win:
win = self.root
if type(data) is str:
dataSize = 8
else:
data = (data+[0]*(5-len(data)))[:5]
dataSize = 32
ev = protocol.event.ClientMessage(
window=win,
client_type=self.display.get_atom(_type), data=(dataSize, data))
if not mask:
mask = (X.SubstructureRedirectMask | X.SubstructureNotifyMask)
self.root.send_event(ev, event_mask=mask) | ['def', '_setProperty', '(', 'self', ',', '_type', ',', 'data', ',', 'win', '=', 'None', ',', 'mask', '=', 'None', ')', ':', 'if', 'not', 'win', ':', 'win', '=', 'self', '.', 'root', 'if', 'type', '(', 'data', ')', 'is', 'str', ':', 'dataSize', '=', '8', 'else', ':', 'data', '=', '(', 'data', '+', '[', '0', ']', '*', '(', '5', '-', 'len', '(', 'data', ')', ')', ')', '[', ':', '5', ']', 'dataSize', '=', '32', 'ev', '=', 'protocol', '.', 'event', '.', 'ClientMessage', '(', 'window', '=', 'win', ',', 'client_type', '=', 'self', '.', 'display', '.', 'get_atom', '(', '_type', ')', ',', 'data', '=', '(', 'dataSize', ',', 'data', ')', ')', 'if', 'not', 'mask', ':', 'mask', '=', '(', 'X', '.', 'SubstructureRedirectMask', '|', 'X', '.', 'SubstructureNotifyMask', ')', 'self', '.', 'root', '.', 'send_event', '(', 'ev', ',', 'event_mask', '=', 'mask', ')'] | Send a ClientMessage event to the root window | ['Send', 'a', 'ClientMessage', 'event', 'to', 'the', 'root', 'window'] | train | https://github.com/parkouss/pyewmh/blob/8209e9d942b4f39e32f14e2684d94bb5e6269aac/ewmh/ewmh.py#L412-L430 |
6,951 | stephen-bunn/file-config | tasks/docs.py | view | def view(ctx):
""" Build and view docs.
"""
report.info(ctx, "docs.view", f"viewing documentation")
build_path = ctx.docs.directory / "build" / "html" / "index.html"
build_path = pathname2url(build_path.as_posix())
webbrowser.open(f"file:{build_path!s}") | python | def view(ctx):
""" Build and view docs.
"""
report.info(ctx, "docs.view", f"viewing documentation")
build_path = ctx.docs.directory / "build" / "html" / "index.html"
build_path = pathname2url(build_path.as_posix())
webbrowser.open(f"file:{build_path!s}") | ['def', 'view', '(', 'ctx', ')', ':', 'report', '.', 'info', '(', 'ctx', ',', '"docs.view"', ',', 'f"viewing documentation"', ')', 'build_path', '=', 'ctx', '.', 'docs', '.', 'directory', '/', '"build"', '/', '"html"', '/', '"index.html"', 'build_path', '=', 'pathname2url', '(', 'build_path', '.', 'as_posix', '(', ')', ')', 'webbrowser', '.', 'open', '(', 'f"file:{build_path!s}"', ')'] | Build and view docs. | ['Build', 'and', 'view', 'docs', '.'] | train | https://github.com/stephen-bunn/file-config/blob/93429360c949985202e1f2b9cd0340731819ba75/tasks/docs.py#L58-L65 |
6,952 | HazyResearch/fonduer | src/fonduer/candidates/matchers.py | _FigureMatcher._get_span | def _get_span(self, m):
"""
Gets a tuple that identifies a figure for the specific mention class
that m belongs to.
"""
return (m.figure.document.id, m.figure.position) | python | def _get_span(self, m):
"""
Gets a tuple that identifies a figure for the specific mention class
that m belongs to.
"""
return (m.figure.document.id, m.figure.position) | ['def', '_get_span', '(', 'self', ',', 'm', ')', ':', 'return', '(', 'm', '.', 'figure', '.', 'document', '.', 'id', ',', 'm', '.', 'figure', '.', 'position', ')'] | Gets a tuple that identifies a figure for the specific mention class
that m belongs to. | ['Gets', 'a', 'tuple', 'that', 'identifies', 'a', 'figure', 'for', 'the', 'specific', 'mention', 'class', 'that', 'm', 'belongs', 'to', '.'] | train | https://github.com/HazyResearch/fonduer/blob/4520f86a716f03dcca458a9f4bddac75b4e7068f/src/fonduer/candidates/matchers.py#L476-L481 |
6,953 | gwastro/pycbc | pycbc/inference/sampler/base_mcmc.py | BaseMCMC.set_target_from_config | def set_target_from_config(self, cp, section):
"""Sets the target using the given config file.
This looks for ``niterations`` to set the ``target_niterations``, and
``effective-nsamples`` to set the ``target_eff_nsamples``.
Parameters
----------
cp : ConfigParser
Open config parser to retrieve the argument from.
section : str
Name of the section to retrieve from.
"""
if cp.has_option(section, "niterations"):
niterations = int(cp.get(section, "niterations"))
else:
niterations = None
if cp.has_option(section, "effective-nsamples"):
nsamples = int(cp.get(section, "effective-nsamples"))
else:
nsamples = None
self.set_target(niterations=niterations, eff_nsamples=nsamples) | python | def set_target_from_config(self, cp, section):
"""Sets the target using the given config file.
This looks for ``niterations`` to set the ``target_niterations``, and
``effective-nsamples`` to set the ``target_eff_nsamples``.
Parameters
----------
cp : ConfigParser
Open config parser to retrieve the argument from.
section : str
Name of the section to retrieve from.
"""
if cp.has_option(section, "niterations"):
niterations = int(cp.get(section, "niterations"))
else:
niterations = None
if cp.has_option(section, "effective-nsamples"):
nsamples = int(cp.get(section, "effective-nsamples"))
else:
nsamples = None
self.set_target(niterations=niterations, eff_nsamples=nsamples) | ['def', 'set_target_from_config', '(', 'self', ',', 'cp', ',', 'section', ')', ':', 'if', 'cp', '.', 'has_option', '(', 'section', ',', '"niterations"', ')', ':', 'niterations', '=', 'int', '(', 'cp', '.', 'get', '(', 'section', ',', '"niterations"', ')', ')', 'else', ':', 'niterations', '=', 'None', 'if', 'cp', '.', 'has_option', '(', 'section', ',', '"effective-nsamples"', ')', ':', 'nsamples', '=', 'int', '(', 'cp', '.', 'get', '(', 'section', ',', '"effective-nsamples"', ')', ')', 'else', ':', 'nsamples', '=', 'None', 'self', '.', 'set_target', '(', 'niterations', '=', 'niterations', ',', 'eff_nsamples', '=', 'nsamples', ')'] | Sets the target using the given config file.
This looks for ``niterations`` to set the ``target_niterations``, and
``effective-nsamples`` to set the ``target_eff_nsamples``.
Parameters
----------
cp : ConfigParser
Open config parser to retrieve the argument from.
section : str
Name of the section to retrieve from. | ['Sets', 'the', 'target', 'using', 'the', 'given', 'config', 'file', '.'] | train | https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/inference/sampler/base_mcmc.py#L661-L682 |
6,954 | choderalab/pymbar | pymbar/utils.py | check_w_normalized | def check_w_normalized(W, N_k, tolerance = 1.0e-4):
"""Check the weight matrix W is properly normalized. The sum over N should be 1, and the sum over k by N_k should aslo be 1
Parameters
----------
W : np.ndarray, shape=(N, K), dtype='float'
The normalized weight matrix for snapshots and states.
W[n, k] is the weight of snapshot n in state k.
N_k : np.ndarray, shape=(K), dtype='int'
N_k[k] is the number of samples from state k.
tolerance : float, optional, default=1.0e-4
Tolerance for checking equality of sums
Returns
-------
None : NoneType
Returns a None object if test passes, otherwise raises a ParameterError with appropriate message if W is not normalized within tolerance.
"""
[N, K] = W.shape
column_sums = np.sum(W, axis=0)
badcolumns = (np.abs(column_sums - 1) > tolerance)
if np.any(badcolumns):
which_badcolumns = np.arange(K)[badcolumns]
firstbad = which_badcolumns[0]
raise ParameterError(
'Warning: Should have \sum_n W_nk = 1. Actual column sum for state %d was %f. %d other columns have similar problems' %
(firstbad, column_sums[firstbad], np.sum(badcolumns)))
row_sums = np.sum(W * N_k, axis=1)
badrows = (np.abs(row_sums - 1) > tolerance)
if np.any(badrows):
which_badrows = np.arange(N)[badrows]
firstbad = which_badrows[0]
raise ParameterError(
'Warning: Should have \sum_k N_k W_nk = 1. Actual row sum for sample %d was %f. %d other rows have similar problems' %
(firstbad, row_sums[firstbad], np.sum(badrows)))
return | python | def check_w_normalized(W, N_k, tolerance = 1.0e-4):
"""Check the weight matrix W is properly normalized. The sum over N should be 1, and the sum over k by N_k should aslo be 1
Parameters
----------
W : np.ndarray, shape=(N, K), dtype='float'
The normalized weight matrix for snapshots and states.
W[n, k] is the weight of snapshot n in state k.
N_k : np.ndarray, shape=(K), dtype='int'
N_k[k] is the number of samples from state k.
tolerance : float, optional, default=1.0e-4
Tolerance for checking equality of sums
Returns
-------
None : NoneType
Returns a None object if test passes, otherwise raises a ParameterError with appropriate message if W is not normalized within tolerance.
"""
[N, K] = W.shape
column_sums = np.sum(W, axis=0)
badcolumns = (np.abs(column_sums - 1) > tolerance)
if np.any(badcolumns):
which_badcolumns = np.arange(K)[badcolumns]
firstbad = which_badcolumns[0]
raise ParameterError(
'Warning: Should have \sum_n W_nk = 1. Actual column sum for state %d was %f. %d other columns have similar problems' %
(firstbad, column_sums[firstbad], np.sum(badcolumns)))
row_sums = np.sum(W * N_k, axis=1)
badrows = (np.abs(row_sums - 1) > tolerance)
if np.any(badrows):
which_badrows = np.arange(N)[badrows]
firstbad = which_badrows[0]
raise ParameterError(
'Warning: Should have \sum_k N_k W_nk = 1. Actual row sum for sample %d was %f. %d other rows have similar problems' %
(firstbad, row_sums[firstbad], np.sum(badrows)))
return | ['def', 'check_w_normalized', '(', 'W', ',', 'N_k', ',', 'tolerance', '=', '1.0e-4', ')', ':', '[', 'N', ',', 'K', ']', '=', 'W', '.', 'shape', 'column_sums', '=', 'np', '.', 'sum', '(', 'W', ',', 'axis', '=', '0', ')', 'badcolumns', '=', '(', 'np', '.', 'abs', '(', 'column_sums', '-', '1', ')', '>', 'tolerance', ')', 'if', 'np', '.', 'any', '(', 'badcolumns', ')', ':', 'which_badcolumns', '=', 'np', '.', 'arange', '(', 'K', ')', '[', 'badcolumns', ']', 'firstbad', '=', 'which_badcolumns', '[', '0', ']', 'raise', 'ParameterError', '(', "'Warning: Should have \\sum_n W_nk = 1. Actual column sum for state %d was %f. %d other columns have similar problems'", '%', '(', 'firstbad', ',', 'column_sums', '[', 'firstbad', ']', ',', 'np', '.', 'sum', '(', 'badcolumns', ')', ')', ')', 'row_sums', '=', 'np', '.', 'sum', '(', 'W', '*', 'N_k', ',', 'axis', '=', '1', ')', 'badrows', '=', '(', 'np', '.', 'abs', '(', 'row_sums', '-', '1', ')', '>', 'tolerance', ')', 'if', 'np', '.', 'any', '(', 'badrows', ')', ':', 'which_badrows', '=', 'np', '.', 'arange', '(', 'N', ')', '[', 'badrows', ']', 'firstbad', '=', 'which_badrows', '[', '0', ']', 'raise', 'ParameterError', '(', "'Warning: Should have \\sum_k N_k W_nk = 1. Actual row sum for sample %d was %f. %d other rows have similar problems'", '%', '(', 'firstbad', ',', 'row_sums', '[', 'firstbad', ']', ',', 'np', '.', 'sum', '(', 'badrows', ')', ')', ')', 'return'] | Check the weight matrix W is properly normalized. The sum over N should be 1, and the sum over k by N_k should aslo be 1
Parameters
----------
W : np.ndarray, shape=(N, K), dtype='float'
The normalized weight matrix for snapshots and states.
W[n, k] is the weight of snapshot n in state k.
N_k : np.ndarray, shape=(K), dtype='int'
N_k[k] is the number of samples from state k.
tolerance : float, optional, default=1.0e-4
Tolerance for checking equality of sums
Returns
-------
None : NoneType
Returns a None object if test passes, otherwise raises a ParameterError with appropriate message if W is not normalized within tolerance. | ['Check', 'the', 'weight', 'matrix', 'W', 'is', 'properly', 'normalized', '.', 'The', 'sum', 'over', 'N', 'should', 'be', '1', 'and', 'the', 'sum', 'over', 'k', 'by', 'N_k', 'should', 'aslo', 'be', '1'] | train | https://github.com/choderalab/pymbar/blob/69d1f0ff680e9ac1c6a51a5a207ea28f3ed86740/pymbar/utils.py#L332-L371 |
6,955 | Microsoft/nni | src/sdk/pynni/nni/metis_tuner/metis_tuner.py | _rand_init | def _rand_init(x_bounds, x_types, selection_num_starting_points):
'''
Random sample some init seed within bounds.
'''
return [lib_data.rand(x_bounds, x_types) for i \
in range(0, selection_num_starting_points)] | python | def _rand_init(x_bounds, x_types, selection_num_starting_points):
'''
Random sample some init seed within bounds.
'''
return [lib_data.rand(x_bounds, x_types) for i \
in range(0, selection_num_starting_points)] | ['def', '_rand_init', '(', 'x_bounds', ',', 'x_types', ',', 'selection_num_starting_points', ')', ':', 'return', '[', 'lib_data', '.', 'rand', '(', 'x_bounds', ',', 'x_types', ')', 'for', 'i', 'in', 'range', '(', '0', ',', 'selection_num_starting_points', ')', ']'] | Random sample some init seed within bounds. | ['Random', 'sample', 'some', 'init', 'seed', 'within', 'bounds', '.'] | train | https://github.com/Microsoft/nni/blob/c7cc8db32da8d2ec77a382a55089f4e17247ce41/src/sdk/pynni/nni/metis_tuner/metis_tuner.py#L493-L498 |
6,956 | juju/python-libjuju | juju/model.py | Model._wait | async def _wait(self, entity_type, entity_id, action, predicate=None):
"""
Block the calling routine until a given action has happened to the
given entity
:param entity_type: The entity's type.
:param entity_id: The entity's id.
:param action: the type of action (e.g., 'add', 'change', or 'remove')
:param predicate: optional callable that must take as an
argument a delta, and must return a boolean, indicating
whether the delta contains the specific action we're looking
for. For example, you might check to see whether a 'change'
has a 'completed' status. See the _Observer class for details.
"""
q = asyncio.Queue(loop=self._connector.loop)
async def callback(delta, old, new, model):
await q.put(delta.get_id())
self.add_observer(callback, entity_type, action, entity_id, predicate)
entity_id = await q.get()
# object might not be in the entity_map if we were waiting for a
# 'remove' action
return self.state._live_entity_map(entity_type).get(entity_id) | python | async def _wait(self, entity_type, entity_id, action, predicate=None):
"""
Block the calling routine until a given action has happened to the
given entity
:param entity_type: The entity's type.
:param entity_id: The entity's id.
:param action: the type of action (e.g., 'add', 'change', or 'remove')
:param predicate: optional callable that must take as an
argument a delta, and must return a boolean, indicating
whether the delta contains the specific action we're looking
for. For example, you might check to see whether a 'change'
has a 'completed' status. See the _Observer class for details.
"""
q = asyncio.Queue(loop=self._connector.loop)
async def callback(delta, old, new, model):
await q.put(delta.get_id())
self.add_observer(callback, entity_type, action, entity_id, predicate)
entity_id = await q.get()
# object might not be in the entity_map if we were waiting for a
# 'remove' action
return self.state._live_entity_map(entity_type).get(entity_id) | ['async', 'def', '_wait', '(', 'self', ',', 'entity_type', ',', 'entity_id', ',', 'action', ',', 'predicate', '=', 'None', ')', ':', 'q', '=', 'asyncio', '.', 'Queue', '(', 'loop', '=', 'self', '.', '_connector', '.', 'loop', ')', 'async', 'def', 'callback', '(', 'delta', ',', 'old', ',', 'new', ',', 'model', ')', ':', 'await', 'q', '.', 'put', '(', 'delta', '.', 'get_id', '(', ')', ')', 'self', '.', 'add_observer', '(', 'callback', ',', 'entity_type', ',', 'action', ',', 'entity_id', ',', 'predicate', ')', 'entity_id', '=', 'await', 'q', '.', 'get', '(', ')', '# object might not be in the entity_map if we were waiting for a', "# 'remove' action", 'return', 'self', '.', 'state', '.', '_live_entity_map', '(', 'entity_type', ')', '.', 'get', '(', 'entity_id', ')'] | Block the calling routine until a given action has happened to the
given entity
:param entity_type: The entity's type.
:param entity_id: The entity's id.
:param action: the type of action (e.g., 'add', 'change', or 'remove')
:param predicate: optional callable that must take as an
argument a delta, and must return a boolean, indicating
whether the delta contains the specific action we're looking
for. For example, you might check to see whether a 'change'
has a 'completed' status. See the _Observer class for details. | ['Block', 'the', 'calling', 'routine', 'until', 'a', 'given', 'action', 'has', 'happened', 'to', 'the', 'given', 'entity'] | train | https://github.com/juju/python-libjuju/blob/58f0011f4c57cd68830258952fa952eaadca6b38/juju/model.py#L898-L922 |
6,957 | theislab/anndata | anndata/h5py/h5sparse.py | _set_many | def _set_many(self, i, j, x):
"""Sets value at each (i, j) to x
Here (i,j) index major and minor respectively, and must not contain
duplicate entries.
"""
i, j, M, N = self._prepare_indices(i, j)
n_samples = len(x)
offsets = np.empty(n_samples, dtype=self.indices.dtype)
ret = _sparsetools.csr_sample_offsets(M, N, self.indptr, self.indices,
n_samples, i, j, offsets)
if ret == 1:
# rinse and repeat
self.sum_duplicates()
_sparsetools.csr_sample_offsets(M, N, self.indptr,
self.indices, n_samples, i, j,
offsets)
if -1 not in offsets:
# make a list for interaction with h5py
offsets = list(offsets)
# only affects existing non-zero cells
self.data[offsets] = x
return
else:
# raise ValueError(
# 'Currently, you cannot change the sparsity structure of a SparseDataset.')
# replace where possible
mask = offsets > -1
self.data[offsets[mask]] = x[mask]
# only insertions remain
mask = ~mask
i = i[mask]
i[i < 0] += M
j = j[mask]
j[j < 0] += N
self._insert_many(i, j, x[mask]) | python | def _set_many(self, i, j, x):
"""Sets value at each (i, j) to x
Here (i,j) index major and minor respectively, and must not contain
duplicate entries.
"""
i, j, M, N = self._prepare_indices(i, j)
n_samples = len(x)
offsets = np.empty(n_samples, dtype=self.indices.dtype)
ret = _sparsetools.csr_sample_offsets(M, N, self.indptr, self.indices,
n_samples, i, j, offsets)
if ret == 1:
# rinse and repeat
self.sum_duplicates()
_sparsetools.csr_sample_offsets(M, N, self.indptr,
self.indices, n_samples, i, j,
offsets)
if -1 not in offsets:
# make a list for interaction with h5py
offsets = list(offsets)
# only affects existing non-zero cells
self.data[offsets] = x
return
else:
# raise ValueError(
# 'Currently, you cannot change the sparsity structure of a SparseDataset.')
# replace where possible
mask = offsets > -1
self.data[offsets[mask]] = x[mask]
# only insertions remain
mask = ~mask
i = i[mask]
i[i < 0] += M
j = j[mask]
j[j < 0] += N
self._insert_many(i, j, x[mask]) | ['def', '_set_many', '(', 'self', ',', 'i', ',', 'j', ',', 'x', ')', ':', 'i', ',', 'j', ',', 'M', ',', 'N', '=', 'self', '.', '_prepare_indices', '(', 'i', ',', 'j', ')', 'n_samples', '=', 'len', '(', 'x', ')', 'offsets', '=', 'np', '.', 'empty', '(', 'n_samples', ',', 'dtype', '=', 'self', '.', 'indices', '.', 'dtype', ')', 'ret', '=', '_sparsetools', '.', 'csr_sample_offsets', '(', 'M', ',', 'N', ',', 'self', '.', 'indptr', ',', 'self', '.', 'indices', ',', 'n_samples', ',', 'i', ',', 'j', ',', 'offsets', ')', 'if', 'ret', '==', '1', ':', '# rinse and repeat', 'self', '.', 'sum_duplicates', '(', ')', '_sparsetools', '.', 'csr_sample_offsets', '(', 'M', ',', 'N', ',', 'self', '.', 'indptr', ',', 'self', '.', 'indices', ',', 'n_samples', ',', 'i', ',', 'j', ',', 'offsets', ')', 'if', '-', '1', 'not', 'in', 'offsets', ':', '# make a list for interaction with h5py', 'offsets', '=', 'list', '(', 'offsets', ')', '# only affects existing non-zero cells', 'self', '.', 'data', '[', 'offsets', ']', '=', 'x', 'return', 'else', ':', '# raise ValueError(', "# 'Currently, you cannot change the sparsity structure of a SparseDataset.')", '# replace where possible', 'mask', '=', 'offsets', '>', '-', '1', 'self', '.', 'data', '[', 'offsets', '[', 'mask', ']', ']', '=', 'x', '[', 'mask', ']', '# only insertions remain', 'mask', '=', '~', 'mask', 'i', '=', 'i', '[', 'mask', ']', 'i', '[', 'i', '<', '0', ']', '+=', 'M', 'j', '=', 'j', '[', 'mask', ']', 'j', '[', 'j', '<', '0', ']', '+=', 'N', 'self', '.', '_insert_many', '(', 'i', ',', 'j', ',', 'x', '[', 'mask', ']', ')'] | Sets value at each (i, j) to x
Here (i,j) index major and minor respectively, and must not contain
duplicate entries. | ['Sets', 'value', 'at', 'each', '(', 'i', 'j', ')', 'to', 'x'] | train | https://github.com/theislab/anndata/blob/34f4eb63710628fbc15e7050e5efcac1d7806062/anndata/h5py/h5sparse.py#L170-L208 |
6,958 | radical-cybertools/radical.entk | src/radical/entk/stage/stage.py | Stage._validate_entities | def _validate_entities(self, tasks):
"""
Purpose: Validate whether the 'tasks' is of type set. Validate the description of each Task.
"""
if not tasks:
raise TypeError(expected_type=Task, actual_type=type(tasks))
if not isinstance(tasks, set):
if not isinstance(tasks, list):
tasks = set([tasks])
else:
tasks = set(tasks)
for t in tasks:
if not isinstance(t, Task):
raise TypeError(expected_type=Task, actual_type=type(t))
return tasks | python | def _validate_entities(self, tasks):
"""
Purpose: Validate whether the 'tasks' is of type set. Validate the description of each Task.
"""
if not tasks:
raise TypeError(expected_type=Task, actual_type=type(tasks))
if not isinstance(tasks, set):
if not isinstance(tasks, list):
tasks = set([tasks])
else:
tasks = set(tasks)
for t in tasks:
if not isinstance(t, Task):
raise TypeError(expected_type=Task, actual_type=type(t))
return tasks | ['def', '_validate_entities', '(', 'self', ',', 'tasks', ')', ':', 'if', 'not', 'tasks', ':', 'raise', 'TypeError', '(', 'expected_type', '=', 'Task', ',', 'actual_type', '=', 'type', '(', 'tasks', ')', ')', 'if', 'not', 'isinstance', '(', 'tasks', ',', 'set', ')', ':', 'if', 'not', 'isinstance', '(', 'tasks', ',', 'list', ')', ':', 'tasks', '=', 'set', '(', '[', 'tasks', ']', ')', 'else', ':', 'tasks', '=', 'set', '(', 'tasks', ')', 'for', 't', 'in', 'tasks', ':', 'if', 'not', 'isinstance', '(', 't', ',', 'Task', ')', ':', 'raise', 'TypeError', '(', 'expected_type', '=', 'Task', ',', 'actual_type', '=', 'type', '(', 't', ')', ')', 'return', 'tasks'] | Purpose: Validate whether the 'tasks' is of type set. Validate the description of each Task. | ['Purpose', ':', 'Validate', 'whether', 'the', 'tasks', 'is', 'of', 'type', 'set', '.', 'Validate', 'the', 'description', 'of', 'each', 'Task', '.'] | train | https://github.com/radical-cybertools/radical.entk/blob/945f6c93c9a62db90ad191b306418d5c1cdd9d24/src/radical/entk/stage/stage.py#L308-L328 |
6,959 | boriel/zxbasic | zxbpplex.py | Lexer.t_singlecomment_NEWLINE | def t_singlecomment_NEWLINE(self, t):
r'\r?\n'
t.lexer.pop_state() # Back to initial
t.lexer.lineno += 1
return t | python | def t_singlecomment_NEWLINE(self, t):
r'\r?\n'
t.lexer.pop_state() # Back to initial
t.lexer.lineno += 1
return t | ['def', 't_singlecomment_NEWLINE', '(', 'self', ',', 't', ')', ':', 't', '.', 'lexer', '.', 'pop_state', '(', ')', '# Back to initial', 't', '.', 'lexer', '.', 'lineno', '+=', '1', 'return', 't'] | r'\r?\n | ['r', '\\', 'r?', '\\', 'n'] | train | https://github.com/boriel/zxbasic/blob/23b28db10e41117805bdb3c0f78543590853b132/zxbpplex.py#L152-L156 |
6,960 | infothrill/python-dyndnsc | dyndnsc/detector/rand.py | RandomIPGenerator.random_public_ip | def random_public_ip(self):
"""Return a randomly generated, public IPv4 address.
:return: ip address
"""
randomip = random_ip()
while self.is_reserved_ip(randomip):
randomip = random_ip()
return randomip | python | def random_public_ip(self):
"""Return a randomly generated, public IPv4 address.
:return: ip address
"""
randomip = random_ip()
while self.is_reserved_ip(randomip):
randomip = random_ip()
return randomip | ['def', 'random_public_ip', '(', 'self', ')', ':', 'randomip', '=', 'random_ip', '(', ')', 'while', 'self', '.', 'is_reserved_ip', '(', 'randomip', ')', ':', 'randomip', '=', 'random_ip', '(', ')', 'return', 'randomip'] | Return a randomly generated, public IPv4 address.
:return: ip address | ['Return', 'a', 'randomly', 'generated', 'public', 'IPv4', 'address', '.'] | train | https://github.com/infothrill/python-dyndnsc/blob/2196d48aa6098da9835a7611fbdb0b5f0fbf51e4/dyndnsc/detector/rand.py#L64-L72 |
6,961 | fermiPy/fermipy | fermipy/jobs/file_archive.py | FileArchive.get_file_paths | def get_file_paths(self, id_list):
"""Get a list of file paths based of a set of ids
Parameters
----------
id_list : list
List of integer file keys
Returns list of file paths
"""
if id_list is None:
return []
try:
path_array = self._table[id_list - 1]['path']
except IndexError:
print("IndexError ", len(self._table), id_list)
path_array = []
return [path for path in path_array] | python | def get_file_paths(self, id_list):
"""Get a list of file paths based of a set of ids
Parameters
----------
id_list : list
List of integer file keys
Returns list of file paths
"""
if id_list is None:
return []
try:
path_array = self._table[id_list - 1]['path']
except IndexError:
print("IndexError ", len(self._table), id_list)
path_array = []
return [path for path in path_array] | ['def', 'get_file_paths', '(', 'self', ',', 'id_list', ')', ':', 'if', 'id_list', 'is', 'None', ':', 'return', '[', ']', 'try', ':', 'path_array', '=', 'self', '.', '_table', '[', 'id_list', '-', '1', ']', '[', "'path'", ']', 'except', 'IndexError', ':', 'print', '(', '"IndexError "', ',', 'len', '(', 'self', '.', '_table', ')', ',', 'id_list', ')', 'path_array', '=', '[', ']', 'return', '[', 'path', 'for', 'path', 'in', 'path_array', ']'] | Get a list of file paths based of a set of ids
Parameters
----------
id_list : list
List of integer file keys
Returns list of file paths | ['Get', 'a', 'list', 'of', 'file', 'paths', 'based', 'of', 'a', 'set', 'of', 'ids'] | train | https://github.com/fermiPy/fermipy/blob/9df5e7e3728307fd58c5bba36fd86783c39fbad4/fermipy/jobs/file_archive.py#L746-L764 |
6,962 | mitsei/dlkit | dlkit/json_/assessment_authoring/managers.py | AssessmentAuthoringManager.get_sequence_rule_admin_session_for_bank | def get_sequence_rule_admin_session_for_bank(self, bank_id):
"""Gets the ``OsidSession`` associated with the sequence rule administration service for the given bank.
arg: bank_id (osid.id.Id): the ``Id`` of the ``Bank``
return: (osid.assessment.authoring.SequenceRuleAdminSession) - a
``SequenceRuleAdminSession``
raise: NotFound - no ``Bank`` found by the given ``Id``
raise: NullArgument - ``bank_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: Unimplemented - ``supports_sequence_rule_admin()`` or
``supports_visible_federation()`` is ``false``
*compliance: optional -- This method must be implemented if
``supports_sequence_rule_admin()`` and
``supports_visible_federation()`` are ``true``.*
"""
if not self.supports_sequence_rule_admin():
raise errors.Unimplemented()
##
# Also include check to see if the catalog Id is found otherwise raise errors.NotFound
##
# pylint: disable=no-member
return sessions.SequenceRuleAdminSession(bank_id, runtime=self._runtime) | python | def get_sequence_rule_admin_session_for_bank(self, bank_id):
"""Gets the ``OsidSession`` associated with the sequence rule administration service for the given bank.
arg: bank_id (osid.id.Id): the ``Id`` of the ``Bank``
return: (osid.assessment.authoring.SequenceRuleAdminSession) - a
``SequenceRuleAdminSession``
raise: NotFound - no ``Bank`` found by the given ``Id``
raise: NullArgument - ``bank_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: Unimplemented - ``supports_sequence_rule_admin()`` or
``supports_visible_federation()`` is ``false``
*compliance: optional -- This method must be implemented if
``supports_sequence_rule_admin()`` and
``supports_visible_federation()`` are ``true``.*
"""
if not self.supports_sequence_rule_admin():
raise errors.Unimplemented()
##
# Also include check to see if the catalog Id is found otherwise raise errors.NotFound
##
# pylint: disable=no-member
return sessions.SequenceRuleAdminSession(bank_id, runtime=self._runtime) | ['def', 'get_sequence_rule_admin_session_for_bank', '(', 'self', ',', 'bank_id', ')', ':', 'if', 'not', 'self', '.', 'supports_sequence_rule_admin', '(', ')', ':', 'raise', 'errors', '.', 'Unimplemented', '(', ')', '##', '# Also include check to see if the catalog Id is found otherwise raise errors.NotFound', '##', '# pylint: disable=no-member', 'return', 'sessions', '.', 'SequenceRuleAdminSession', '(', 'bank_id', ',', 'runtime', '=', 'self', '.', '_runtime', ')'] | Gets the ``OsidSession`` associated with the sequence rule administration service for the given bank.
arg: bank_id (osid.id.Id): the ``Id`` of the ``Bank``
return: (osid.assessment.authoring.SequenceRuleAdminSession) - a
``SequenceRuleAdminSession``
raise: NotFound - no ``Bank`` found by the given ``Id``
raise: NullArgument - ``bank_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: Unimplemented - ``supports_sequence_rule_admin()`` or
``supports_visible_federation()`` is ``false``
*compliance: optional -- This method must be implemented if
``supports_sequence_rule_admin()`` and
``supports_visible_federation()`` are ``true``.* | ['Gets', 'the', 'OsidSession', 'associated', 'with', 'the', 'sequence', 'rule', 'administration', 'service', 'for', 'the', 'given', 'bank', '.'] | train | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/assessment_authoring/managers.py#L560-L582 |
6,963 | camptocamp/Studio | studio/config/environment.py | load_environment | def load_environment(global_conf, app_conf):
"""Configure the Pylons environment via the ``pylons.config``
object
"""
# Pylons paths
root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
paths = dict(root=root,
controllers=os.path.join(root, 'controllers'),
static_files=os.path.join(root, 'public'),
templates=[os.path.join(root, 'templates')])
# Initialize config with the basic options
config.init_app(global_conf, app_conf, package='studio', paths=paths)
# Defines custom config parameters
config['resources_dir'] = os.path.join(root, 'resources')
# path to mapserver dir containing default fonts and symbols
config['mapserver_dir'] = os.path.join(config['resources_dir'], 'mapserver')
# path to default directory datastore
config['default_datastore_dir'] = os.path.join(config['resources_dir'], 'default_datastore')
# path to the template including the <script> tags
config['js_tmpl'] = os.path.join(paths['templates'][0], 'index.html')
# Convert the debug variable from the config to a boolean value
config['debug'] = asbool(config['debug'])
config['routes.map'] = make_map()
config['pylons.app_globals'] = app_globals.Globals()
config['pylons.h'] = studio.lib.helpers
# Create the Mako TemplateLookup, with the default auto-escaping
config['pylons.app_globals'].mako_lookup = TemplateLookup(
directories=paths['templates'],
error_handler=handle_mako_error,
module_directory=os.path.join(app_conf['cache_dir'], 'templates'),
input_encoding='utf-8', output_encoding='utf-8',
imports=['from webhelpers.html import escape'],
default_filters=['escape'])
# Setup SQLAlchemy database engine
engine = engine_from_config(config, 'sqlalchemy.')
init_model(engine) | python | def load_environment(global_conf, app_conf):
"""Configure the Pylons environment via the ``pylons.config``
object
"""
# Pylons paths
root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
paths = dict(root=root,
controllers=os.path.join(root, 'controllers'),
static_files=os.path.join(root, 'public'),
templates=[os.path.join(root, 'templates')])
# Initialize config with the basic options
config.init_app(global_conf, app_conf, package='studio', paths=paths)
# Defines custom config parameters
config['resources_dir'] = os.path.join(root, 'resources')
# path to mapserver dir containing default fonts and symbols
config['mapserver_dir'] = os.path.join(config['resources_dir'], 'mapserver')
# path to default directory datastore
config['default_datastore_dir'] = os.path.join(config['resources_dir'], 'default_datastore')
# path to the template including the <script> tags
config['js_tmpl'] = os.path.join(paths['templates'][0], 'index.html')
# Convert the debug variable from the config to a boolean value
config['debug'] = asbool(config['debug'])
config['routes.map'] = make_map()
config['pylons.app_globals'] = app_globals.Globals()
config['pylons.h'] = studio.lib.helpers
# Create the Mako TemplateLookup, with the default auto-escaping
config['pylons.app_globals'].mako_lookup = TemplateLookup(
directories=paths['templates'],
error_handler=handle_mako_error,
module_directory=os.path.join(app_conf['cache_dir'], 'templates'),
input_encoding='utf-8', output_encoding='utf-8',
imports=['from webhelpers.html import escape'],
default_filters=['escape'])
# Setup SQLAlchemy database engine
engine = engine_from_config(config, 'sqlalchemy.')
init_model(engine) | ['def', 'load_environment', '(', 'global_conf', ',', 'app_conf', ')', ':', '# Pylons paths', 'root', '=', 'os', '.', 'path', '.', 'dirname', '(', 'os', '.', 'path', '.', 'dirname', '(', 'os', '.', 'path', '.', 'abspath', '(', '__file__', ')', ')', ')', 'paths', '=', 'dict', '(', 'root', '=', 'root', ',', 'controllers', '=', 'os', '.', 'path', '.', 'join', '(', 'root', ',', "'controllers'", ')', ',', 'static_files', '=', 'os', '.', 'path', '.', 'join', '(', 'root', ',', "'public'", ')', ',', 'templates', '=', '[', 'os', '.', 'path', '.', 'join', '(', 'root', ',', "'templates'", ')', ']', ')', '# Initialize config with the basic options', 'config', '.', 'init_app', '(', 'global_conf', ',', 'app_conf', ',', 'package', '=', "'studio'", ',', 'paths', '=', 'paths', ')', '# Defines custom config parameters', 'config', '[', "'resources_dir'", ']', '=', 'os', '.', 'path', '.', 'join', '(', 'root', ',', "'resources'", ')', '# path to mapserver dir containing default fonts and symbols', 'config', '[', "'mapserver_dir'", ']', '=', 'os', '.', 'path', '.', 'join', '(', 'config', '[', "'resources_dir'", ']', ',', "'mapserver'", ')', '# path to default directory datastore', 'config', '[', "'default_datastore_dir'", ']', '=', 'os', '.', 'path', '.', 'join', '(', 'config', '[', "'resources_dir'", ']', ',', "'default_datastore'", ')', '# path to the template including the <script> tags', 'config', '[', "'js_tmpl'", ']', '=', 'os', '.', 'path', '.', 'join', '(', 'paths', '[', "'templates'", ']', '[', '0', ']', ',', "'index.html'", ')', '# Convert the debug variable from the config to a boolean value', 'config', '[', "'debug'", ']', '=', 'asbool', '(', 'config', '[', "'debug'", ']', ')', 'config', '[', "'routes.map'", ']', '=', 'make_map', '(', ')', 'config', '[', "'pylons.app_globals'", ']', '=', 'app_globals', '.', 'Globals', '(', ')', 'config', '[', "'pylons.h'", ']', '=', 'studio', '.', 'lib', '.', 'helpers', '# Create the Mako TemplateLookup, with the default auto-escaping', 'config', '[', "'pylons.app_globals'", ']', '.', 'mako_lookup', '=', 'TemplateLookup', '(', 'directories', '=', 'paths', '[', "'templates'", ']', ',', 'error_handler', '=', 'handle_mako_error', ',', 'module_directory', '=', 'os', '.', 'path', '.', 'join', '(', 'app_conf', '[', "'cache_dir'", ']', ',', "'templates'", ')', ',', 'input_encoding', '=', "'utf-8'", ',', 'output_encoding', '=', "'utf-8'", ',', 'imports', '=', '[', "'from webhelpers.html import escape'", ']', ',', 'default_filters', '=', '[', "'escape'", ']', ')', '# Setup SQLAlchemy database engine', 'engine', '=', 'engine_from_config', '(', 'config', ',', "'sqlalchemy.'", ')', 'init_model', '(', 'engine', ')'] | Configure the Pylons environment via the ``pylons.config``
object | ['Configure', 'the', 'Pylons', 'environment', 'via', 'the', 'pylons', '.', 'config', 'object'] | train | https://github.com/camptocamp/Studio/blob/43cb7298434fb606b15136801b79b03571a2f27e/studio/config/environment.py#L34-L75 |
6,964 | jilljenn/tryalgo | tryalgo/windows_k_distinct.py | windows_k_distinct | def windows_k_distinct(x, k):
"""Find all largest windows containing exactly k distinct elements
:param x: list or string
:param k: positive integer
:yields: largest intervals [i, j) with len(set(x[i:j])) == k
:complexity: `O(|x|)`
"""
dist, i, j = 0, 0, 0 # dist = |{x[i], ..., x[j-1]}|
occ = {xi: 0 for xi in x} # number of occurrences in x[i:j]
while j < len(x):
while dist == k: # move start of interval
occ[x[i]] -= 1 # update counters
if occ[x[i]] == 0:
dist -= 1
i += 1
while j < len(x) and (dist < k or occ[x[j]]):
if occ[x[j]] == 0: # update counters
dist += 1
occ[x[j]] += 1
j += 1 # move end of interval
if dist == k:
yield (i, j) | python | def windows_k_distinct(x, k):
"""Find all largest windows containing exactly k distinct elements
:param x: list or string
:param k: positive integer
:yields: largest intervals [i, j) with len(set(x[i:j])) == k
:complexity: `O(|x|)`
"""
dist, i, j = 0, 0, 0 # dist = |{x[i], ..., x[j-1]}|
occ = {xi: 0 for xi in x} # number of occurrences in x[i:j]
while j < len(x):
while dist == k: # move start of interval
occ[x[i]] -= 1 # update counters
if occ[x[i]] == 0:
dist -= 1
i += 1
while j < len(x) and (dist < k or occ[x[j]]):
if occ[x[j]] == 0: # update counters
dist += 1
occ[x[j]] += 1
j += 1 # move end of interval
if dist == k:
yield (i, j) | ['def', 'windows_k_distinct', '(', 'x', ',', 'k', ')', ':', 'dist', ',', 'i', ',', 'j', '=', '0', ',', '0', ',', '0', '# dist = |{x[i], ..., x[j-1]}|', 'occ', '=', '{', 'xi', ':', '0', 'for', 'xi', 'in', 'x', '}', '# number of occurrences in x[i:j]', 'while', 'j', '<', 'len', '(', 'x', ')', ':', 'while', 'dist', '==', 'k', ':', '# move start of interval', 'occ', '[', 'x', '[', 'i', ']', ']', '-=', '1', '# update counters', 'if', 'occ', '[', 'x', '[', 'i', ']', ']', '==', '0', ':', 'dist', '-=', '1', 'i', '+=', '1', 'while', 'j', '<', 'len', '(', 'x', ')', 'and', '(', 'dist', '<', 'k', 'or', 'occ', '[', 'x', '[', 'j', ']', ']', ')', ':', 'if', 'occ', '[', 'x', '[', 'j', ']', ']', '==', '0', ':', '# update counters', 'dist', '+=', '1', 'occ', '[', 'x', '[', 'j', ']', ']', '+=', '1', 'j', '+=', '1', '# move end of interval', 'if', 'dist', '==', 'k', ':', 'yield', '(', 'i', ',', 'j', ')'] | Find all largest windows containing exactly k distinct elements
:param x: list or string
:param k: positive integer
:yields: largest intervals [i, j) with len(set(x[i:j])) == k
:complexity: `O(|x|)` | ['Find', 'all', 'largest', 'windows', 'containing', 'exactly', 'k', 'distinct', 'elements'] | train | https://github.com/jilljenn/tryalgo/blob/89a4dd9655e7b6b0a176f72b4c60d0196420dfe1/tryalgo/windows_k_distinct.py#L8-L30 |
6,965 | SwoopSearch/pyaddress | address/dstk.py | post_multipart | def post_multipart(host, selector, fields, files):
"""
Post fields and files to an http host as multipart/form-data.
fields is a sequence of (name, value) elements for regular form fields.
files is a sequence of (name, filename, value) elements for data to be uploaded as files
Return the server's response page.
"""
content_type, body = encode_multipart_formdata(fields, files)
h = httplib.HTTP(host)
h.putrequest('POST', selector)
h.putheader('content-type', content_type)
h.putheader('content-length', str(len(body)))
h.endheaders()
h.send(body)
errcode, errmsg, headers = h.getreply()
return h.file.read() | python | def post_multipart(host, selector, fields, files):
"""
Post fields and files to an http host as multipart/form-data.
fields is a sequence of (name, value) elements for regular form fields.
files is a sequence of (name, filename, value) elements for data to be uploaded as files
Return the server's response page.
"""
content_type, body = encode_multipart_formdata(fields, files)
h = httplib.HTTP(host)
h.putrequest('POST', selector)
h.putheader('content-type', content_type)
h.putheader('content-length', str(len(body)))
h.endheaders()
h.send(body)
errcode, errmsg, headers = h.getreply()
return h.file.read() | ['def', 'post_multipart', '(', 'host', ',', 'selector', ',', 'fields', ',', 'files', ')', ':', 'content_type', ',', 'body', '=', 'encode_multipart_formdata', '(', 'fields', ',', 'files', ')', 'h', '=', 'httplib', '.', 'HTTP', '(', 'host', ')', 'h', '.', 'putrequest', '(', "'POST'", ',', 'selector', ')', 'h', '.', 'putheader', '(', "'content-type'", ',', 'content_type', ')', 'h', '.', 'putheader', '(', "'content-length'", ',', 'str', '(', 'len', '(', 'body', ')', ')', ')', 'h', '.', 'endheaders', '(', ')', 'h', '.', 'send', '(', 'body', ')', 'errcode', ',', 'errmsg', ',', 'headers', '=', 'h', '.', 'getreply', '(', ')', 'return', 'h', '.', 'file', '.', 'read', '(', ')'] | Post fields and files to an http host as multipart/form-data.
fields is a sequence of (name, value) elements for regular form fields.
files is a sequence of (name, filename, value) elements for data to be uploaded as files
Return the server's response page. | ['Post', 'fields', 'and', 'files', 'to', 'an', 'http', 'host', 'as', 'multipart', '/', 'form', '-', 'data', '.', 'fields', 'is', 'a', 'sequence', 'of', '(', 'name', 'value', ')', 'elements', 'for', 'regular', 'form', 'fields', '.', 'files', 'is', 'a', 'sequence', 'of', '(', 'name', 'filename', 'value', ')', 'elements', 'for', 'data', 'to', 'be', 'uploaded', 'as', 'files', 'Return', 'the', 'server', 's', 'response', 'page', '.'] | train | https://github.com/SwoopSearch/pyaddress/blob/62ebb07a6840e710d256406a8ec1d06abec0e1c4/address/dstk.py#L208-L223 |
6,966 | Komnomnomnom/swigibpy | swigibpy.py | EWrapper.tickEFP | def tickEFP(self, tickerId, tickType, basisPoints, formattedBasisPoints, totalDividends, holdDays, futureExpiry, dividendImpact, dividendsToExpiry):
"""tickEFP(EWrapper self, TickerId tickerId, TickType tickType, double basisPoints, IBString const & formattedBasisPoints, double totalDividends, int holdDays, IBString const & futureExpiry, double dividendImpact, double dividendsToExpiry)"""
return _swigibpy.EWrapper_tickEFP(self, tickerId, tickType, basisPoints, formattedBasisPoints, totalDividends, holdDays, futureExpiry, dividendImpact, dividendsToExpiry) | python | def tickEFP(self, tickerId, tickType, basisPoints, formattedBasisPoints, totalDividends, holdDays, futureExpiry, dividendImpact, dividendsToExpiry):
"""tickEFP(EWrapper self, TickerId tickerId, TickType tickType, double basisPoints, IBString const & formattedBasisPoints, double totalDividends, int holdDays, IBString const & futureExpiry, double dividendImpact, double dividendsToExpiry)"""
return _swigibpy.EWrapper_tickEFP(self, tickerId, tickType, basisPoints, formattedBasisPoints, totalDividends, holdDays, futureExpiry, dividendImpact, dividendsToExpiry) | ['def', 'tickEFP', '(', 'self', ',', 'tickerId', ',', 'tickType', ',', 'basisPoints', ',', 'formattedBasisPoints', ',', 'totalDividends', ',', 'holdDays', ',', 'futureExpiry', ',', 'dividendImpact', ',', 'dividendsToExpiry', ')', ':', 'return', '_swigibpy', '.', 'EWrapper_tickEFP', '(', 'self', ',', 'tickerId', ',', 'tickType', ',', 'basisPoints', ',', 'formattedBasisPoints', ',', 'totalDividends', ',', 'holdDays', ',', 'futureExpiry', ',', 'dividendImpact', ',', 'dividendsToExpiry', ')'] | tickEFP(EWrapper self, TickerId tickerId, TickType tickType, double basisPoints, IBString const & formattedBasisPoints, double totalDividends, int holdDays, IBString const & futureExpiry, double dividendImpact, double dividendsToExpiry) | ['tickEFP', '(', 'EWrapper', 'self', 'TickerId', 'tickerId', 'TickType', 'tickType', 'double', 'basisPoints', 'IBString', 'const', '&', 'formattedBasisPoints', 'double', 'totalDividends', 'int', 'holdDays', 'IBString', 'const', '&', 'futureExpiry', 'double', 'dividendImpact', 'double', 'dividendsToExpiry', ')'] | train | https://github.com/Komnomnomnom/swigibpy/blob/cfd307fdbfaffabc69a2dc037538d7e34a8b8daf/swigibpy.py#L2446-L2448 |
6,967 | eyurtsev/FlowCytometryTools | FlowCytometryTools/core/transforms.py | transform_frame | def transform_frame(frame, transform, columns=None, direction='forward',
return_all=True, args=(), **kwargs):
"""
Apply transform to specified columns.
direction: 'forward' | 'inverse'
return_all: bool
True - return all columns, with specified ones transformed.
False - return only specified columns.
.. warning:: deprecated
"""
tfun, tname = parse_transform(transform, direction)
columns = to_list(columns)
if columns is None:
columns = frame.columns
if return_all:
transformed = frame.copy()
for c in columns:
transformed[c] = tfun(frame[c], *args, **kwargs)
else:
transformed = frame.filter(columns).apply(tfun, *args, **kwargs)
return transformed | python | def transform_frame(frame, transform, columns=None, direction='forward',
return_all=True, args=(), **kwargs):
"""
Apply transform to specified columns.
direction: 'forward' | 'inverse'
return_all: bool
True - return all columns, with specified ones transformed.
False - return only specified columns.
.. warning:: deprecated
"""
tfun, tname = parse_transform(transform, direction)
columns = to_list(columns)
if columns is None:
columns = frame.columns
if return_all:
transformed = frame.copy()
for c in columns:
transformed[c] = tfun(frame[c], *args, **kwargs)
else:
transformed = frame.filter(columns).apply(tfun, *args, **kwargs)
return transformed | ['def', 'transform_frame', '(', 'frame', ',', 'transform', ',', 'columns', '=', 'None', ',', 'direction', '=', "'forward'", ',', 'return_all', '=', 'True', ',', 'args', '=', '(', ')', ',', '*', '*', 'kwargs', ')', ':', 'tfun', ',', 'tname', '=', 'parse_transform', '(', 'transform', ',', 'direction', ')', 'columns', '=', 'to_list', '(', 'columns', ')', 'if', 'columns', 'is', 'None', ':', 'columns', '=', 'frame', '.', 'columns', 'if', 'return_all', ':', 'transformed', '=', 'frame', '.', 'copy', '(', ')', 'for', 'c', 'in', 'columns', ':', 'transformed', '[', 'c', ']', '=', 'tfun', '(', 'frame', '[', 'c', ']', ',', '*', 'args', ',', '*', '*', 'kwargs', ')', 'else', ':', 'transformed', '=', 'frame', '.', 'filter', '(', 'columns', ')', '.', 'apply', '(', 'tfun', ',', '*', 'args', ',', '*', '*', 'kwargs', ')', 'return', 'transformed'] | Apply transform to specified columns.
direction: 'forward' | 'inverse'
return_all: bool
True - return all columns, with specified ones transformed.
False - return only specified columns.
.. warning:: deprecated | ['Apply', 'transform', 'to', 'specified', 'columns', '.'] | train | https://github.com/eyurtsev/FlowCytometryTools/blob/4355632508b875273d68c7e2972c17668bcf7b40/FlowCytometryTools/core/transforms.py#L303-L325 |
6,968 | ethereum/py-evm | eth/vm/base.py | VM.validate_header | def validate_header(cls,
header: BlockHeader,
parent_header: BlockHeader,
check_seal: bool = True) -> None:
"""
:raise eth.exceptions.ValidationError: if the header is not valid
"""
if parent_header is None:
# to validate genesis header, check if it equals canonical header at block number 0
raise ValidationError("Must have access to parent header to validate current header")
else:
validate_length_lte(header.extra_data, 32, title="BlockHeader.extra_data")
validate_gas_limit(header.gas_limit, parent_header.gas_limit)
if header.block_number != parent_header.block_number + 1:
raise ValidationError(
"Blocks must be numbered consecutively. Block number #{} has parent #{}".format(
header.block_number,
parent_header.block_number,
)
)
# timestamp
if header.timestamp <= parent_header.timestamp:
raise ValidationError(
"timestamp must be strictly later than parent, but is {} seconds before.\n"
"- child : {}\n"
"- parent : {}. ".format(
parent_header.timestamp - header.timestamp,
header.timestamp,
parent_header.timestamp,
)
)
if check_seal:
cls.validate_seal(header) | python | def validate_header(cls,
header: BlockHeader,
parent_header: BlockHeader,
check_seal: bool = True) -> None:
"""
:raise eth.exceptions.ValidationError: if the header is not valid
"""
if parent_header is None:
# to validate genesis header, check if it equals canonical header at block number 0
raise ValidationError("Must have access to parent header to validate current header")
else:
validate_length_lte(header.extra_data, 32, title="BlockHeader.extra_data")
validate_gas_limit(header.gas_limit, parent_header.gas_limit)
if header.block_number != parent_header.block_number + 1:
raise ValidationError(
"Blocks must be numbered consecutively. Block number #{} has parent #{}".format(
header.block_number,
parent_header.block_number,
)
)
# timestamp
if header.timestamp <= parent_header.timestamp:
raise ValidationError(
"timestamp must be strictly later than parent, but is {} seconds before.\n"
"- child : {}\n"
"- parent : {}. ".format(
parent_header.timestamp - header.timestamp,
header.timestamp,
parent_header.timestamp,
)
)
if check_seal:
cls.validate_seal(header) | ['def', 'validate_header', '(', 'cls', ',', 'header', ':', 'BlockHeader', ',', 'parent_header', ':', 'BlockHeader', ',', 'check_seal', ':', 'bool', '=', 'True', ')', '->', 'None', ':', 'if', 'parent_header', 'is', 'None', ':', '# to validate genesis header, check if it equals canonical header at block number 0', 'raise', 'ValidationError', '(', '"Must have access to parent header to validate current header"', ')', 'else', ':', 'validate_length_lte', '(', 'header', '.', 'extra_data', ',', '32', ',', 'title', '=', '"BlockHeader.extra_data"', ')', 'validate_gas_limit', '(', 'header', '.', 'gas_limit', ',', 'parent_header', '.', 'gas_limit', ')', 'if', 'header', '.', 'block_number', '!=', 'parent_header', '.', 'block_number', '+', '1', ':', 'raise', 'ValidationError', '(', '"Blocks must be numbered consecutively. Block number #{} has parent #{}"', '.', 'format', '(', 'header', '.', 'block_number', ',', 'parent_header', '.', 'block_number', ',', ')', ')', '# timestamp', 'if', 'header', '.', 'timestamp', '<=', 'parent_header', '.', 'timestamp', ':', 'raise', 'ValidationError', '(', '"timestamp must be strictly later than parent, but is {} seconds before.\\n"', '"- child : {}\\n"', '"- parent : {}. "', '.', 'format', '(', 'parent_header', '.', 'timestamp', '-', 'header', '.', 'timestamp', ',', 'header', '.', 'timestamp', ',', 'parent_header', '.', 'timestamp', ',', ')', ')', 'if', 'check_seal', ':', 'cls', '.', 'validate_seal', '(', 'header', ')'] | :raise eth.exceptions.ValidationError: if the header is not valid | [':', 'raise', 'eth', '.', 'exceptions', '.', 'ValidationError', ':', 'if', 'the', 'header', 'is', 'not', 'valid'] | train | https://github.com/ethereum/py-evm/blob/58346848f076116381d3274bbcea96b9e2cfcbdf/eth/vm/base.py#L879-L915 |
6,969 | seequent/properties | properties/base/instance.py | Instance.assert_valid | def assert_valid(self, instance, value=None):
"""Checks if valid, including HasProperty instances pass validation"""
valid = super(Instance, self).assert_valid(instance, value)
if not valid:
return False
if value is None:
value = instance._get(self.name)
if isinstance(value, HasProperties):
value.validate()
return True | python | def assert_valid(self, instance, value=None):
"""Checks if valid, including HasProperty instances pass validation"""
valid = super(Instance, self).assert_valid(instance, value)
if not valid:
return False
if value is None:
value = instance._get(self.name)
if isinstance(value, HasProperties):
value.validate()
return True | ['def', 'assert_valid', '(', 'self', ',', 'instance', ',', 'value', '=', 'None', ')', ':', 'valid', '=', 'super', '(', 'Instance', ',', 'self', ')', '.', 'assert_valid', '(', 'instance', ',', 'value', ')', 'if', 'not', 'valid', ':', 'return', 'False', 'if', 'value', 'is', 'None', ':', 'value', '=', 'instance', '.', '_get', '(', 'self', '.', 'name', ')', 'if', 'isinstance', '(', 'value', ',', 'HasProperties', ')', ':', 'value', '.', 'validate', '(', ')', 'return', 'True'] | Checks if valid, including HasProperty instances pass validation | ['Checks', 'if', 'valid', 'including', 'HasProperty', 'instances', 'pass', 'validation'] | train | https://github.com/seequent/properties/blob/096b07012fff86b0a880c8c018320c3b512751b9/properties/base/instance.py#L113-L122 |
6,970 | jssimporter/python-jss | jss/jamf_software_server.py | JSS.from_pickle | def from_pickle(cls, path):
"""Load all objects from pickle file and return as dict.
The dict returned will have keys named the same as the
JSSObject classes contained, and the values will be
JSSObjectLists of all full objects of that class (for example,
the equivalent of my_jss.Computer().retrieve_all()).
This method can potentially take a very long time!
Pickling is Python's method for serializing/deserializing
Python objects. This allows you to save a fully functional
JSSObject to disk, and then load it later, without having to
retrieve it from the JSS.
Args:
path: String file path to the file you wish to load from.
Path will have ~ expanded prior to opening.
"""
with open(os.path.expanduser(path), "rb") as pickle:
return cPickle.Unpickler(pickle).load() | python | def from_pickle(cls, path):
"""Load all objects from pickle file and return as dict.
The dict returned will have keys named the same as the
JSSObject classes contained, and the values will be
JSSObjectLists of all full objects of that class (for example,
the equivalent of my_jss.Computer().retrieve_all()).
This method can potentially take a very long time!
Pickling is Python's method for serializing/deserializing
Python objects. This allows you to save a fully functional
JSSObject to disk, and then load it later, without having to
retrieve it from the JSS.
Args:
path: String file path to the file you wish to load from.
Path will have ~ expanded prior to opening.
"""
with open(os.path.expanduser(path), "rb") as pickle:
return cPickle.Unpickler(pickle).load() | ['def', 'from_pickle', '(', 'cls', ',', 'path', ')', ':', 'with', 'open', '(', 'os', '.', 'path', '.', 'expanduser', '(', 'path', ')', ',', '"rb"', ')', 'as', 'pickle', ':', 'return', 'cPickle', '.', 'Unpickler', '(', 'pickle', ')', '.', 'load', '(', ')'] | Load all objects from pickle file and return as dict.
The dict returned will have keys named the same as the
JSSObject classes contained, and the values will be
JSSObjectLists of all full objects of that class (for example,
the equivalent of my_jss.Computer().retrieve_all()).
This method can potentially take a very long time!
Pickling is Python's method for serializing/deserializing
Python objects. This allows you to save a fully functional
JSSObject to disk, and then load it later, without having to
retrieve it from the JSS.
Args:
path: String file path to the file you wish to load from.
Path will have ~ expanded prior to opening. | ['Load', 'all', 'objects', 'from', 'pickle', 'file', 'and', 'return', 'as', 'dict', '.'] | train | https://github.com/jssimporter/python-jss/blob/b95185d74e0c0531b0b563f280d4129e21d5fe5d/jss/jamf_software_server.py#L393-L413 |
6,971 | rodluger/everest | everest/missions/k2/pipelines.py | plot | def plot(ID, pipeline='everest2', show=True, campaign=None):
'''
Plots the de-trended flux for the given EPIC `ID` and for
the specified `pipeline`.
'''
# Get the data
time, flux = get(ID, pipeline=pipeline, campaign=campaign)
# Remove nans
mask = np.where(np.isnan(flux))[0]
time = np.delete(time, mask)
flux = np.delete(flux, mask)
# Plot it
fig, ax = pl.subplots(1, figsize=(10, 4))
fig.subplots_adjust(bottom=0.15)
ax.plot(time, flux, "k.", markersize=3, alpha=0.5)
# Axis limits
N = int(0.995 * len(flux))
hi, lo = flux[np.argsort(flux)][[N, -N]]
pad = (hi - lo) * 0.1
ylim = (lo - pad, hi + pad)
ax.set_ylim(ylim)
# Show the CDPP
from .k2 import CDPP
ax.annotate('%.2f ppm' % CDPP(flux),
xy=(0.98, 0.975), xycoords='axes fraction',
ha='right', va='top', fontsize=12, color='r', zorder=99)
# Appearance
ax.margins(0, None)
ax.set_xlabel("Time (BJD - 2454833)", fontsize=16)
ax.set_ylabel("%s Flux" % pipeline.upper(), fontsize=16)
fig.canvas.set_window_title("%s: EPIC %d" % (pipeline.upper(), ID))
if show:
pl.show()
pl.close()
else:
return fig, ax | python | def plot(ID, pipeline='everest2', show=True, campaign=None):
'''
Plots the de-trended flux for the given EPIC `ID` and for
the specified `pipeline`.
'''
# Get the data
time, flux = get(ID, pipeline=pipeline, campaign=campaign)
# Remove nans
mask = np.where(np.isnan(flux))[0]
time = np.delete(time, mask)
flux = np.delete(flux, mask)
# Plot it
fig, ax = pl.subplots(1, figsize=(10, 4))
fig.subplots_adjust(bottom=0.15)
ax.plot(time, flux, "k.", markersize=3, alpha=0.5)
# Axis limits
N = int(0.995 * len(flux))
hi, lo = flux[np.argsort(flux)][[N, -N]]
pad = (hi - lo) * 0.1
ylim = (lo - pad, hi + pad)
ax.set_ylim(ylim)
# Show the CDPP
from .k2 import CDPP
ax.annotate('%.2f ppm' % CDPP(flux),
xy=(0.98, 0.975), xycoords='axes fraction',
ha='right', va='top', fontsize=12, color='r', zorder=99)
# Appearance
ax.margins(0, None)
ax.set_xlabel("Time (BJD - 2454833)", fontsize=16)
ax.set_ylabel("%s Flux" % pipeline.upper(), fontsize=16)
fig.canvas.set_window_title("%s: EPIC %d" % (pipeline.upper(), ID))
if show:
pl.show()
pl.close()
else:
return fig, ax | ['def', 'plot', '(', 'ID', ',', 'pipeline', '=', "'everest2'", ',', 'show', '=', 'True', ',', 'campaign', '=', 'None', ')', ':', '# Get the data', 'time', ',', 'flux', '=', 'get', '(', 'ID', ',', 'pipeline', '=', 'pipeline', ',', 'campaign', '=', 'campaign', ')', '# Remove nans', 'mask', '=', 'np', '.', 'where', '(', 'np', '.', 'isnan', '(', 'flux', ')', ')', '[', '0', ']', 'time', '=', 'np', '.', 'delete', '(', 'time', ',', 'mask', ')', 'flux', '=', 'np', '.', 'delete', '(', 'flux', ',', 'mask', ')', '# Plot it', 'fig', ',', 'ax', '=', 'pl', '.', 'subplots', '(', '1', ',', 'figsize', '=', '(', '10', ',', '4', ')', ')', 'fig', '.', 'subplots_adjust', '(', 'bottom', '=', '0.15', ')', 'ax', '.', 'plot', '(', 'time', ',', 'flux', ',', '"k."', ',', 'markersize', '=', '3', ',', 'alpha', '=', '0.5', ')', '# Axis limits', 'N', '=', 'int', '(', '0.995', '*', 'len', '(', 'flux', ')', ')', 'hi', ',', 'lo', '=', 'flux', '[', 'np', '.', 'argsort', '(', 'flux', ')', ']', '[', '[', 'N', ',', '-', 'N', ']', ']', 'pad', '=', '(', 'hi', '-', 'lo', ')', '*', '0.1', 'ylim', '=', '(', 'lo', '-', 'pad', ',', 'hi', '+', 'pad', ')', 'ax', '.', 'set_ylim', '(', 'ylim', ')', '# Show the CDPP', 'from', '.', 'k2', 'import', 'CDPP', 'ax', '.', 'annotate', '(', "'%.2f ppm'", '%', 'CDPP', '(', 'flux', ')', ',', 'xy', '=', '(', '0.98', ',', '0.975', ')', ',', 'xycoords', '=', "'axes fraction'", ',', 'ha', '=', "'right'", ',', 'va', '=', "'top'", ',', 'fontsize', '=', '12', ',', 'color', '=', "'r'", ',', 'zorder', '=', '99', ')', '# Appearance', 'ax', '.', 'margins', '(', '0', ',', 'None', ')', 'ax', '.', 'set_xlabel', '(', '"Time (BJD - 2454833)"', ',', 'fontsize', '=', '16', ')', 'ax', '.', 'set_ylabel', '(', '"%s Flux"', '%', 'pipeline', '.', 'upper', '(', ')', ',', 'fontsize', '=', '16', ')', 'fig', '.', 'canvas', '.', 'set_window_title', '(', '"%s: EPIC %d"', '%', '(', 'pipeline', '.', 'upper', '(', ')', ',', 'ID', ')', ')', 'if', 'show', ':', 'pl', '.', 'show', '(', ')', 'pl', '.', 'close', '(', ')', 'else', ':', 'return', 'fig', ',', 'ax'] | Plots the de-trended flux for the given EPIC `ID` and for
the specified `pipeline`. | ['Plots', 'the', 'de', '-', 'trended', 'flux', 'for', 'the', 'given', 'EPIC', 'ID', 'and', 'for', 'the', 'specified', 'pipeline', '.'] | train | https://github.com/rodluger/everest/blob/6779591f9f8b3556847e2fbf761bdfac7520eaea/everest/missions/k2/pipelines.py#L91-L134 |
6,972 | Neurosim-lab/netpyne | doc/source/code/HHCellFile.py | Cell.createNetcon | def createNetcon(self, thresh=10):
""" created netcon to record spikes """
nc = h.NetCon(self.soma(0.5)._ref_v, None, sec = self.soma)
nc.threshold = thresh
return nc | python | def createNetcon(self, thresh=10):
""" created netcon to record spikes """
nc = h.NetCon(self.soma(0.5)._ref_v, None, sec = self.soma)
nc.threshold = thresh
return nc | ['def', 'createNetcon', '(', 'self', ',', 'thresh', '=', '10', ')', ':', 'nc', '=', 'h', '.', 'NetCon', '(', 'self', '.', 'soma', '(', '0.5', ')', '.', '_ref_v', ',', 'None', ',', 'sec', '=', 'self', '.', 'soma', ')', 'nc', '.', 'threshold', '=', 'thresh', 'return', 'nc'] | created netcon to record spikes | ['created', 'netcon', 'to', 'record', 'spikes'] | train | https://github.com/Neurosim-lab/netpyne/blob/edb67b5098b2e7923d55010ded59ad1bf75c0f18/doc/source/code/HHCellFile.py#L42-L46 |
6,973 | jpscaletti/solution | solution/fields/select.py | MultiSelect._clean_data | def _clean_data(self, str_value, file_data, obj_value):
"""This overwrite is neccesary for work with multivalues"""
str_value = str_value or None
obj_value = obj_value or None
return (str_value, None, obj_value) | python | def _clean_data(self, str_value, file_data, obj_value):
"""This overwrite is neccesary for work with multivalues"""
str_value = str_value or None
obj_value = obj_value or None
return (str_value, None, obj_value) | ['def', '_clean_data', '(', 'self', ',', 'str_value', ',', 'file_data', ',', 'obj_value', ')', ':', 'str_value', '=', 'str_value', 'or', 'None', 'obj_value', '=', 'obj_value', 'or', 'None', 'return', '(', 'str_value', ',', 'None', ',', 'obj_value', ')'] | This overwrite is neccesary for work with multivalues | ['This', 'overwrite', 'is', 'neccesary', 'for', 'work', 'with', 'multivalues'] | train | https://github.com/jpscaletti/solution/blob/eabafd8e695bbb0209242e002dbcc05ffb327f43/solution/fields/select.py#L286-L290 |
6,974 | clalancette/pycdlib | pycdlib/udf.py | UDFTimestamp.parse | def parse(self, data):
# type: (bytes) -> None
'''
Parse the passed in data into a UDF Timestamp.
Parameters:
data - The data to parse.
Returns:
Nothing.
'''
if self._initialized:
raise pycdlibexception.PyCdlibInternalError('UDF Timestamp already initialized')
(tz, timetype, self.year, self.month, self.day, self.hour, self.minute,
self.second, self.centiseconds, self.hundreds_microseconds,
self.microseconds) = struct.unpack_from(self.FMT, data, 0)
self.timetype = timetype >> 4
def twos_comp(val, bits):
# type: (int, int) -> int
'''
Compute the 2's complement of int value val
'''
if (val & (1 << (bits - 1))) != 0: # if sign bit is set e.g., 8bit: 128-255
val = val - (1 << bits) # compute negative value
return val # return positive value as is
self.tz = twos_comp(((timetype & 0xf) << 8) | tz, 12)
if self.tz < -1440 or self.tz > 1440:
if self.tz != -2047:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF timezone')
if self.year < 1 or self.year > 9999:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF year')
if self.month < 1 or self.month > 12:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF month')
if self.day < 1 or self.day > 31:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF day')
if self.hour < 0 or self.hour > 23:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF hour')
if self.minute < 0 or self.minute > 59:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF minute')
if self.second < 0 or self.second > 59:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF second')
self._initialized = True | python | def parse(self, data):
# type: (bytes) -> None
'''
Parse the passed in data into a UDF Timestamp.
Parameters:
data - The data to parse.
Returns:
Nothing.
'''
if self._initialized:
raise pycdlibexception.PyCdlibInternalError('UDF Timestamp already initialized')
(tz, timetype, self.year, self.month, self.day, self.hour, self.minute,
self.second, self.centiseconds, self.hundreds_microseconds,
self.microseconds) = struct.unpack_from(self.FMT, data, 0)
self.timetype = timetype >> 4
def twos_comp(val, bits):
# type: (int, int) -> int
'''
Compute the 2's complement of int value val
'''
if (val & (1 << (bits - 1))) != 0: # if sign bit is set e.g., 8bit: 128-255
val = val - (1 << bits) # compute negative value
return val # return positive value as is
self.tz = twos_comp(((timetype & 0xf) << 8) | tz, 12)
if self.tz < -1440 or self.tz > 1440:
if self.tz != -2047:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF timezone')
if self.year < 1 or self.year > 9999:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF year')
if self.month < 1 or self.month > 12:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF month')
if self.day < 1 or self.day > 31:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF day')
if self.hour < 0 or self.hour > 23:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF hour')
if self.minute < 0 or self.minute > 59:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF minute')
if self.second < 0 or self.second > 59:
raise pycdlibexception.PyCdlibInvalidISO('Invalid UDF second')
self._initialized = True | ['def', 'parse', '(', 'self', ',', 'data', ')', ':', '# type: (bytes) -> None', 'if', 'self', '.', '_initialized', ':', 'raise', 'pycdlibexception', '.', 'PyCdlibInternalError', '(', "'UDF Timestamp already initialized'", ')', '(', 'tz', ',', 'timetype', ',', 'self', '.', 'year', ',', 'self', '.', 'month', ',', 'self', '.', 'day', ',', 'self', '.', 'hour', ',', 'self', '.', 'minute', ',', 'self', '.', 'second', ',', 'self', '.', 'centiseconds', ',', 'self', '.', 'hundreds_microseconds', ',', 'self', '.', 'microseconds', ')', '=', 'struct', '.', 'unpack_from', '(', 'self', '.', 'FMT', ',', 'data', ',', '0', ')', 'self', '.', 'timetype', '=', 'timetype', '>>', '4', 'def', 'twos_comp', '(', 'val', ',', 'bits', ')', ':', '# type: (int, int) -> int', "'''\n Compute the 2's complement of int value val\n '''", 'if', '(', 'val', '&', '(', '1', '<<', '(', 'bits', '-', '1', ')', ')', ')', '!=', '0', ':', '# if sign bit is set e.g., 8bit: 128-255', 'val', '=', 'val', '-', '(', '1', '<<', 'bits', ')', '# compute negative value', 'return', 'val', '# return positive value as is', 'self', '.', 'tz', '=', 'twos_comp', '(', '(', '(', 'timetype', '&', '0xf', ')', '<<', '8', ')', '|', 'tz', ',', '12', ')', 'if', 'self', '.', 'tz', '<', '-', '1440', 'or', 'self', '.', 'tz', '>', '1440', ':', 'if', 'self', '.', 'tz', '!=', '-', '2047', ':', 'raise', 'pycdlibexception', '.', 'PyCdlibInvalidISO', '(', "'Invalid UDF timezone'", ')', 'if', 'self', '.', 'year', '<', '1', 'or', 'self', '.', 'year', '>', '9999', ':', 'raise', 'pycdlibexception', '.', 'PyCdlibInvalidISO', '(', "'Invalid UDF year'", ')', 'if', 'self', '.', 'month', '<', '1', 'or', 'self', '.', 'month', '>', '12', ':', 'raise', 'pycdlibexception', '.', 'PyCdlibInvalidISO', '(', "'Invalid UDF month'", ')', 'if', 'self', '.', 'day', '<', '1', 'or', 'self', '.', 'day', '>', '31', ':', 'raise', 'pycdlibexception', '.', 'PyCdlibInvalidISO', '(', "'Invalid UDF day'", ')', 'if', 'self', '.', 'hour', '<', '0', 'or', 'self', '.', 'hour', '>', '23', ':', 'raise', 'pycdlibexception', '.', 'PyCdlibInvalidISO', '(', "'Invalid UDF hour'", ')', 'if', 'self', '.', 'minute', '<', '0', 'or', 'self', '.', 'minute', '>', '59', ':', 'raise', 'pycdlibexception', '.', 'PyCdlibInvalidISO', '(', "'Invalid UDF minute'", ')', 'if', 'self', '.', 'second', '<', '0', 'or', 'self', '.', 'second', '>', '59', ':', 'raise', 'pycdlibexception', '.', 'PyCdlibInvalidISO', '(', "'Invalid UDF second'", ')', 'self', '.', '_initialized', '=', 'True'] | Parse the passed in data into a UDF Timestamp.
Parameters:
data - The data to parse.
Returns:
Nothing. | ['Parse', 'the', 'passed', 'in', 'data', 'into', 'a', 'UDF', 'Timestamp', '.'] | train | https://github.com/clalancette/pycdlib/blob/1e7b77a809e905d67dc71e12d70e850be26b6233/pycdlib/udf.py#L763-L808 |
6,975 | romaryd/python-jsonrepo | jsonrepo/record.py | namedtuple_asdict | def namedtuple_asdict(obj):
"""
Serializing a nested namedtuple into a Python dict
"""
if obj is None:
return obj
if hasattr(obj, "_asdict"): # detect namedtuple
return OrderedDict(zip(obj._fields, (namedtuple_asdict(item)
for item in obj)))
if isinstance(obj, str): # iterables - strings
return obj
if hasattr(obj, "keys"): # iterables - mapping
return OrderedDict(zip(obj.keys(), (namedtuple_asdict(item)
for item in obj.values())))
if hasattr(obj, "__iter__"): # iterables - sequence
return type(obj)((namedtuple_asdict(item) for item in obj))
# non-iterable cannot contain namedtuples
return obj | python | def namedtuple_asdict(obj):
"""
Serializing a nested namedtuple into a Python dict
"""
if obj is None:
return obj
if hasattr(obj, "_asdict"): # detect namedtuple
return OrderedDict(zip(obj._fields, (namedtuple_asdict(item)
for item in obj)))
if isinstance(obj, str): # iterables - strings
return obj
if hasattr(obj, "keys"): # iterables - mapping
return OrderedDict(zip(obj.keys(), (namedtuple_asdict(item)
for item in obj.values())))
if hasattr(obj, "__iter__"): # iterables - sequence
return type(obj)((namedtuple_asdict(item) for item in obj))
# non-iterable cannot contain namedtuples
return obj | ['def', 'namedtuple_asdict', '(', 'obj', ')', ':', 'if', 'obj', 'is', 'None', ':', 'return', 'obj', 'if', 'hasattr', '(', 'obj', ',', '"_asdict"', ')', ':', '# detect namedtuple', 'return', 'OrderedDict', '(', 'zip', '(', 'obj', '.', '_fields', ',', '(', 'namedtuple_asdict', '(', 'item', ')', 'for', 'item', 'in', 'obj', ')', ')', ')', 'if', 'isinstance', '(', 'obj', ',', 'str', ')', ':', '# iterables - strings', 'return', 'obj', 'if', 'hasattr', '(', 'obj', ',', '"keys"', ')', ':', '# iterables - mapping', 'return', 'OrderedDict', '(', 'zip', '(', 'obj', '.', 'keys', '(', ')', ',', '(', 'namedtuple_asdict', '(', 'item', ')', 'for', 'item', 'in', 'obj', '.', 'values', '(', ')', ')', ')', ')', 'if', 'hasattr', '(', 'obj', ',', '"__iter__"', ')', ':', '# iterables - sequence', 'return', 'type', '(', 'obj', ')', '(', '(', 'namedtuple_asdict', '(', 'item', ')', 'for', 'item', 'in', 'obj', ')', ')', '# non-iterable cannot contain namedtuples', 'return', 'obj'] | Serializing a nested namedtuple into a Python dict | ['Serializing', 'a', 'nested', 'namedtuple', 'into', 'a', 'Python', 'dict'] | train | https://github.com/romaryd/python-jsonrepo/blob/08a9c039a5bd21e93e9a6d1bce77d43e6e10b57d/jsonrepo/record.py#L11-L28 |
6,976 | kata198/AdvancedHTMLParser | AdvancedHTMLParser/Parser.py | AdvancedHTMLParser.handle_data | def handle_data(self, data):
'''
Internal for parsing
'''
if data:
inTag = self._inTag
if len(inTag) > 0:
inTag[-1].appendText(data)
elif data.strip(): #and not self.getRoot():
# Must be text prior to or after root node
raise MultipleRootNodeException() | python | def handle_data(self, data):
'''
Internal for parsing
'''
if data:
inTag = self._inTag
if len(inTag) > 0:
inTag[-1].appendText(data)
elif data.strip(): #and not self.getRoot():
# Must be text prior to or after root node
raise MultipleRootNodeException() | ['def', 'handle_data', '(', 'self', ',', 'data', ')', ':', 'if', 'data', ':', 'inTag', '=', 'self', '.', '_inTag', 'if', 'len', '(', 'inTag', ')', '>', '0', ':', 'inTag', '[', '-', '1', ']', '.', 'appendText', '(', 'data', ')', 'elif', 'data', '.', 'strip', '(', ')', ':', '#and not self.getRoot():', '# Must be text prior to or after root node', 'raise', 'MultipleRootNodeException', '(', ')'] | Internal for parsing | ['Internal', 'for', 'parsing'] | train | https://github.com/kata198/AdvancedHTMLParser/blob/06aeea5d8e2ea86e155aae0fc237623d3e9b7f9d/AdvancedHTMLParser/Parser.py#L176-L186 |
6,977 | rochacbruno/dynaconf | dynaconf/utils/__init__.py | object_merge | def object_merge(old, new, unique=False):
"""
Recursively merge two data structures.
:param unique: When set to True existing list items are not set.
"""
if isinstance(old, list) and isinstance(new, list):
if old == new:
return
for item in old[::-1]:
if unique and item in new:
continue
new.insert(0, item)
if isinstance(old, dict) and isinstance(new, dict):
for key, value in old.items():
if key not in new:
new[key] = value
else:
object_merge(value, new[key]) | python | def object_merge(old, new, unique=False):
"""
Recursively merge two data structures.
:param unique: When set to True existing list items are not set.
"""
if isinstance(old, list) and isinstance(new, list):
if old == new:
return
for item in old[::-1]:
if unique and item in new:
continue
new.insert(0, item)
if isinstance(old, dict) and isinstance(new, dict):
for key, value in old.items():
if key not in new:
new[key] = value
else:
object_merge(value, new[key]) | ['def', 'object_merge', '(', 'old', ',', 'new', ',', 'unique', '=', 'False', ')', ':', 'if', 'isinstance', '(', 'old', ',', 'list', ')', 'and', 'isinstance', '(', 'new', ',', 'list', ')', ':', 'if', 'old', '==', 'new', ':', 'return', 'for', 'item', 'in', 'old', '[', ':', ':', '-', '1', ']', ':', 'if', 'unique', 'and', 'item', 'in', 'new', ':', 'continue', 'new', '.', 'insert', '(', '0', ',', 'item', ')', 'if', 'isinstance', '(', 'old', ',', 'dict', ')', 'and', 'isinstance', '(', 'new', ',', 'dict', ')', ':', 'for', 'key', ',', 'value', 'in', 'old', '.', 'items', '(', ')', ':', 'if', 'key', 'not', 'in', 'new', ':', 'new', '[', 'key', ']', '=', 'value', 'else', ':', 'object_merge', '(', 'value', ',', 'new', '[', 'key', ']', ')'] | Recursively merge two data structures.
:param unique: When set to True existing list items are not set. | ['Recursively', 'merge', 'two', 'data', 'structures', '.'] | train | https://github.com/rochacbruno/dynaconf/blob/5a7cc8f8252251cbdf4f4112965801f9dfe2831d/dynaconf/utils/__init__.py#L20-L38 |
6,978 | qiniu/python-sdk | qiniu/services/storage/bucket.py | BucketManager.move | def move(self, bucket, key, bucket_to, key_to, force='false'):
"""移动文件:
将资源从一个空间到另一个空间,具体规格参考:
http://developer.qiniu.com/docs/v6/api/reference/rs/move.html
Args:
bucket: 待操作资源所在空间
bucket_to: 目标资源空间名
key: 待操作资源文件名
key_to: 目标资源文件名
Returns:
一个dict变量,成功返回NULL,失败返回{"error": "<errMsg string>"}
一个ResponseInfo对象
"""
resource = entry(bucket, key)
to = entry(bucket_to, key_to)
return self.__rs_do('move', resource, to, 'force/{0}'.format(force)) | python | def move(self, bucket, key, bucket_to, key_to, force='false'):
"""移动文件:
将资源从一个空间到另一个空间,具体规格参考:
http://developer.qiniu.com/docs/v6/api/reference/rs/move.html
Args:
bucket: 待操作资源所在空间
bucket_to: 目标资源空间名
key: 待操作资源文件名
key_to: 目标资源文件名
Returns:
一个dict变量,成功返回NULL,失败返回{"error": "<errMsg string>"}
一个ResponseInfo对象
"""
resource = entry(bucket, key)
to = entry(bucket_to, key_to)
return self.__rs_do('move', resource, to, 'force/{0}'.format(force)) | ['def', 'move', '(', 'self', ',', 'bucket', ',', 'key', ',', 'bucket_to', ',', 'key_to', ',', 'force', '=', "'false'", ')', ':', 'resource', '=', 'entry', '(', 'bucket', ',', 'key', ')', 'to', '=', 'entry', '(', 'bucket_to', ',', 'key_to', ')', 'return', 'self', '.', '__rs_do', '(', "'move'", ',', 'resource', ',', 'to', ',', "'force/{0}'", '.', 'format', '(', 'force', ')', ')'] | 移动文件:
将资源从一个空间到另一个空间,具体规格参考:
http://developer.qiniu.com/docs/v6/api/reference/rs/move.html
Args:
bucket: 待操作资源所在空间
bucket_to: 目标资源空间名
key: 待操作资源文件名
key_to: 目标资源文件名
Returns:
一个dict变量,成功返回NULL,失败返回{"error": "<errMsg string>"}
一个ResponseInfo对象 | ['移动文件', ':'] | train | https://github.com/qiniu/python-sdk/blob/a69fbef4e3e6ea1ebe09f4610a5b18bb2c17de59/qiniu/services/storage/bucket.py#L124-L142 |
6,979 | mapbox/mapboxgl-jupyter | mapboxgl/viz.py | VectorMixin.generate_vector_color_map | def generate_vector_color_map(self):
"""Generate color stops array for use with match expression in mapbox template"""
vector_stops = []
# if join data specified as filename or URL, parse JSON to list of Python dicts
if type(self.data) == str:
self.data = geojson_to_dict_list(self.data)
# loop through features in self.data to create join-data map
for row in self.data:
# map color to JSON feature using color_property
color = color_map(row[self.color_property], self.color_stops, self.color_default)
# link to vector feature using data_join_property (from JSON object)
vector_stops.append([row[self.data_join_property], color])
return vector_stops | python | def generate_vector_color_map(self):
"""Generate color stops array for use with match expression in mapbox template"""
vector_stops = []
# if join data specified as filename or URL, parse JSON to list of Python dicts
if type(self.data) == str:
self.data = geojson_to_dict_list(self.data)
# loop through features in self.data to create join-data map
for row in self.data:
# map color to JSON feature using color_property
color = color_map(row[self.color_property], self.color_stops, self.color_default)
# link to vector feature using data_join_property (from JSON object)
vector_stops.append([row[self.data_join_property], color])
return vector_stops | ['def', 'generate_vector_color_map', '(', 'self', ')', ':', 'vector_stops', '=', '[', ']', '# if join data specified as filename or URL, parse JSON to list of Python dicts', 'if', 'type', '(', 'self', '.', 'data', ')', '==', 'str', ':', 'self', '.', 'data', '=', 'geojson_to_dict_list', '(', 'self', '.', 'data', ')', '# loop through features in self.data to create join-data map', 'for', 'row', 'in', 'self', '.', 'data', ':', '# map color to JSON feature using color_property', 'color', '=', 'color_map', '(', 'row', '[', 'self', '.', 'color_property', ']', ',', 'self', '.', 'color_stops', ',', 'self', '.', 'color_default', ')', '# link to vector feature using data_join_property (from JSON object)', 'vector_stops', '.', 'append', '(', '[', 'row', '[', 'self', '.', 'data_join_property', ']', ',', 'color', ']', ')', 'return', 'vector_stops'] | Generate color stops array for use with match expression in mapbox template | ['Generate', 'color', 'stops', 'array', 'for', 'use', 'with', 'match', 'expression', 'in', 'mapbox', 'template'] | train | https://github.com/mapbox/mapboxgl-jupyter/blob/f6e403c13eaa910e70659c7d179e8e32ce95ae34/mapboxgl/viz.py#L20-L37 |
6,980 | peergradeio/flask-mongo-profiler | flask_mongo_profiler/contrib/flask_admin/formatters/profiling.py | profiling_query_formatter | def profiling_query_formatter(view, context, query_document, name):
"""Format a ProfilingQuery entry for a ProfilingRequest detail field
Parameters
----------
query_document : model.ProfilingQuery
"""
return Markup(
''.join(
[
'<div class="pymongo-query row">',
'<div class="col-md-1">',
'<a href="{}">'.format(query_document.get_admin_url(_external=True)),
mongo_command_name_formatter(
view, context, query_document, 'command_name'
),
# '<span class="label {}">{}</span>'.format(
# command_name_map.get(query_document.command_name, 'label-default'),
# query_document.command_name,
# ),
'</div>',
'<div class="col-md-10">',
profiling_pure_query_formatter(
None, None, query_document, 'command', tag='pre'
),
'</div>',
'<div class="col-md-1">',
'<small>{} ms</small>'.format(query_document.duration),
'</a>',
'</div>',
'</div>',
]
)
) | python | def profiling_query_formatter(view, context, query_document, name):
"""Format a ProfilingQuery entry for a ProfilingRequest detail field
Parameters
----------
query_document : model.ProfilingQuery
"""
return Markup(
''.join(
[
'<div class="pymongo-query row">',
'<div class="col-md-1">',
'<a href="{}">'.format(query_document.get_admin_url(_external=True)),
mongo_command_name_formatter(
view, context, query_document, 'command_name'
),
# '<span class="label {}">{}</span>'.format(
# command_name_map.get(query_document.command_name, 'label-default'),
# query_document.command_name,
# ),
'</div>',
'<div class="col-md-10">',
profiling_pure_query_formatter(
None, None, query_document, 'command', tag='pre'
),
'</div>',
'<div class="col-md-1">',
'<small>{} ms</small>'.format(query_document.duration),
'</a>',
'</div>',
'</div>',
]
)
) | ['def', 'profiling_query_formatter', '(', 'view', ',', 'context', ',', 'query_document', ',', 'name', ')', ':', 'return', 'Markup', '(', "''", '.', 'join', '(', '[', '\'<div class="pymongo-query row">\'', ',', '\'<div class="col-md-1">\'', ',', '\'<a href="{}">\'', '.', 'format', '(', 'query_document', '.', 'get_admin_url', '(', '_external', '=', 'True', ')', ')', ',', 'mongo_command_name_formatter', '(', 'view', ',', 'context', ',', 'query_document', ',', "'command_name'", ')', ',', '# \'<span class="label {}">{}</span>\'.format(', "# command_name_map.get(query_document.command_name, 'label-default'),", '# query_document.command_name,', '# ),', "'</div>'", ',', '\'<div class="col-md-10">\'', ',', 'profiling_pure_query_formatter', '(', 'None', ',', 'None', ',', 'query_document', ',', "'command'", ',', 'tag', '=', "'pre'", ')', ',', "'</div>'", ',', '\'<div class="col-md-1">\'', ',', "'<small>{} ms</small>'", '.', 'format', '(', 'query_document', '.', 'duration', ')', ',', "'</a>'", ',', "'</div>'", ',', "'</div>'", ',', ']', ')', ')'] | Format a ProfilingQuery entry for a ProfilingRequest detail field
Parameters
----------
query_document : model.ProfilingQuery | ['Format', 'a', 'ProfilingQuery', 'entry', 'for', 'a', 'ProfilingRequest', 'detail', 'field'] | train | https://github.com/peergradeio/flask-mongo-profiler/blob/a267eeb49fea07c9a24fb370bd9d7a90ed313ccf/flask_mongo_profiler/contrib/flask_admin/formatters/profiling.py#L94-L127 |
6,981 | StackStorm/pybind | pybind/slxos/v17s_1_02/__init__.py | brocade_pw_profile._set_pw_profile | def _set_pw_profile(self, v, load=False):
"""
Setter method for pw_profile, mapped from YANG variable /pw_profile (list)
If this variable is read-only (config: false) in the
source YANG file, then _set_pw_profile is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_pw_profile() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=YANGListType("pw_profile_name",pw_profile.pw_profile, yang_name="pw-profile", rest_name="pw-profile", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='pw-profile-name', extensions={u'tailf-common': {u'info': u'pw-profile for Node Specific configuration', u'callpoint': u'PWProfileBasicCallpoint', u'cli-mode-name': u'config-pw-profile-$(pw-profile-name)'}}), is_container='list', yang_name="pw-profile", rest_name="pw-profile", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'pw-profile for Node Specific configuration', u'callpoint': u'PWProfileBasicCallpoint', u'cli-mode-name': u'config-pw-profile-$(pw-profile-name)'}}, namespace='urn:brocade.com:mgmt:brocade-pw-profile', defining_module='brocade-pw-profile', yang_type='list', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """pw_profile must be of a type compatible with list""",
'defined-type': "list",
'generated-type': """YANGDynClass(base=YANGListType("pw_profile_name",pw_profile.pw_profile, yang_name="pw-profile", rest_name="pw-profile", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='pw-profile-name', extensions={u'tailf-common': {u'info': u'pw-profile for Node Specific configuration', u'callpoint': u'PWProfileBasicCallpoint', u'cli-mode-name': u'config-pw-profile-$(pw-profile-name)'}}), is_container='list', yang_name="pw-profile", rest_name="pw-profile", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'pw-profile for Node Specific configuration', u'callpoint': u'PWProfileBasicCallpoint', u'cli-mode-name': u'config-pw-profile-$(pw-profile-name)'}}, namespace='urn:brocade.com:mgmt:brocade-pw-profile', defining_module='brocade-pw-profile', yang_type='list', is_config=True)""",
})
self.__pw_profile = t
if hasattr(self, '_set'):
self._set() | python | def _set_pw_profile(self, v, load=False):
"""
Setter method for pw_profile, mapped from YANG variable /pw_profile (list)
If this variable is read-only (config: false) in the
source YANG file, then _set_pw_profile is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_pw_profile() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=YANGListType("pw_profile_name",pw_profile.pw_profile, yang_name="pw-profile", rest_name="pw-profile", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='pw-profile-name', extensions={u'tailf-common': {u'info': u'pw-profile for Node Specific configuration', u'callpoint': u'PWProfileBasicCallpoint', u'cli-mode-name': u'config-pw-profile-$(pw-profile-name)'}}), is_container='list', yang_name="pw-profile", rest_name="pw-profile", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'pw-profile for Node Specific configuration', u'callpoint': u'PWProfileBasicCallpoint', u'cli-mode-name': u'config-pw-profile-$(pw-profile-name)'}}, namespace='urn:brocade.com:mgmt:brocade-pw-profile', defining_module='brocade-pw-profile', yang_type='list', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """pw_profile must be of a type compatible with list""",
'defined-type': "list",
'generated-type': """YANGDynClass(base=YANGListType("pw_profile_name",pw_profile.pw_profile, yang_name="pw-profile", rest_name="pw-profile", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='pw-profile-name', extensions={u'tailf-common': {u'info': u'pw-profile for Node Specific configuration', u'callpoint': u'PWProfileBasicCallpoint', u'cli-mode-name': u'config-pw-profile-$(pw-profile-name)'}}), is_container='list', yang_name="pw-profile", rest_name="pw-profile", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'pw-profile for Node Specific configuration', u'callpoint': u'PWProfileBasicCallpoint', u'cli-mode-name': u'config-pw-profile-$(pw-profile-name)'}}, namespace='urn:brocade.com:mgmt:brocade-pw-profile', defining_module='brocade-pw-profile', yang_type='list', is_config=True)""",
})
self.__pw_profile = t
if hasattr(self, '_set'):
self._set() | ['def', '_set_pw_profile', '(', 'self', ',', 'v', ',', 'load', '=', 'False', ')', ':', 'if', 'hasattr', '(', 'v', ',', '"_utype"', ')', ':', 'v', '=', 'v', '.', '_utype', '(', 'v', ')', 'try', ':', 't', '=', 'YANGDynClass', '(', 'v', ',', 'base', '=', 'YANGListType', '(', '"pw_profile_name"', ',', 'pw_profile', '.', 'pw_profile', ',', 'yang_name', '=', '"pw-profile"', ',', 'rest_name', '=', '"pw-profile"', ',', 'parent', '=', 'self', ',', 'is_container', '=', "'list'", ',', 'user_ordered', '=', 'False', ',', 'path_helper', '=', 'self', '.', '_path_helper', ',', 'yang_keys', '=', "'pw-profile-name'", ',', 'extensions', '=', '{', "u'tailf-common'", ':', '{', "u'info'", ':', "u'pw-profile for Node Specific configuration'", ',', "u'callpoint'", ':', "u'PWProfileBasicCallpoint'", ',', "u'cli-mode-name'", ':', "u'config-pw-profile-$(pw-profile-name)'", '}', '}', ')', ',', 'is_container', '=', "'list'", ',', 'yang_name', '=', '"pw-profile"', ',', 'rest_name', '=', '"pw-profile"', ',', 'parent', '=', 'self', ',', 'path_helper', '=', 'self', '.', '_path_helper', ',', 'extmethods', '=', 'self', '.', '_extmethods', ',', 'register_paths', '=', 'True', ',', 'extensions', '=', '{', "u'tailf-common'", ':', '{', "u'info'", ':', "u'pw-profile for Node Specific configuration'", ',', "u'callpoint'", ':', "u'PWProfileBasicCallpoint'", ',', "u'cli-mode-name'", ':', "u'config-pw-profile-$(pw-profile-name)'", '}', '}', ',', 'namespace', '=', "'urn:brocade.com:mgmt:brocade-pw-profile'", ',', 'defining_module', '=', "'brocade-pw-profile'", ',', 'yang_type', '=', "'list'", ',', 'is_config', '=', 'True', ')', 'except', '(', 'TypeError', ',', 'ValueError', ')', ':', 'raise', 'ValueError', '(', '{', "'error-string'", ':', '"""pw_profile must be of a type compatible with list"""', ',', "'defined-type'", ':', '"list"', ',', "'generated-type'", ':', '"""YANGDynClass(base=YANGListType("pw_profile_name",pw_profile.pw_profile, yang_name="pw-profile", rest_name="pw-profile", parent=self, is_container=\'list\', user_ordered=False, path_helper=self._path_helper, yang_keys=\'pw-profile-name\', extensions={u\'tailf-common\': {u\'info\': u\'pw-profile for Node Specific configuration\', u\'callpoint\': u\'PWProfileBasicCallpoint\', u\'cli-mode-name\': u\'config-pw-profile-$(pw-profile-name)\'}}), is_container=\'list\', yang_name="pw-profile", rest_name="pw-profile", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u\'tailf-common\': {u\'info\': u\'pw-profile for Node Specific configuration\', u\'callpoint\': u\'PWProfileBasicCallpoint\', u\'cli-mode-name\': u\'config-pw-profile-$(pw-profile-name)\'}}, namespace=\'urn:brocade.com:mgmt:brocade-pw-profile\', defining_module=\'brocade-pw-profile\', yang_type=\'list\', is_config=True)"""', ',', '}', ')', 'self', '.', '__pw_profile', '=', 't', 'if', 'hasattr', '(', 'self', ',', "'_set'", ')', ':', 'self', '.', '_set', '(', ')'] | Setter method for pw_profile, mapped from YANG variable /pw_profile (list)
If this variable is read-only (config: false) in the
source YANG file, then _set_pw_profile is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_pw_profile() directly. | ['Setter', 'method', 'for', 'pw_profile', 'mapped', 'from', 'YANG', 'variable', '/', 'pw_profile', '(', 'list', ')', 'If', 'this', 'variable', 'is', 'read', '-', 'only', '(', 'config', ':', 'false', ')', 'in', 'the', 'source', 'YANG', 'file', 'then', '_set_pw_profile', 'is', 'considered', 'as', 'a', 'private', 'method', '.', 'Backends', 'looking', 'to', 'populate', 'this', 'variable', 'should', 'do', 'so', 'via', 'calling', 'thisObj', '.', '_set_pw_profile', '()', 'directly', '.'] | train | https://github.com/StackStorm/pybind/blob/44c467e71b2b425be63867aba6e6fa28b2cfe7fb/pybind/slxos/v17s_1_02/__init__.py#L11394-L11415 |
6,982 | rigetti/quantumflow | quantumflow/backend/numpybk.py | inner | def inner(tensor0: BKTensor, tensor1: BKTensor) -> BKTensor:
"""Return the inner product between two tensors"""
# Note: Relying on fact that vdot flattens arrays
return np.vdot(tensor0, tensor1) | python | def inner(tensor0: BKTensor, tensor1: BKTensor) -> BKTensor:
"""Return the inner product between two tensors"""
# Note: Relying on fact that vdot flattens arrays
return np.vdot(tensor0, tensor1) | ['def', 'inner', '(', 'tensor0', ':', 'BKTensor', ',', 'tensor1', ':', 'BKTensor', ')', '->', 'BKTensor', ':', '# Note: Relying on fact that vdot flattens arrays', 'return', 'np', '.', 'vdot', '(', 'tensor0', ',', 'tensor1', ')'] | Return the inner product between two tensors | ['Return', 'the', 'inner', 'product', 'between', 'two', 'tensors'] | train | https://github.com/rigetti/quantumflow/blob/13a66cabbe8aabf6e023cc675f4a4ebe6ccda8fb/quantumflow/backend/numpybk.py#L125-L128 |
6,983 | SHTOOLS/SHTOOLS | pyshtools/utils/datetime.py | _yyyymmdd_to_year_fraction | def _yyyymmdd_to_year_fraction(date):
"""Convert YYYMMDD.DD date string or float to YYYY.YYY"""
date = str(date)
if '.' in date:
date, residual = str(date).split('.')
residual = float('0.' + residual)
else:
residual = 0.0
date = _datetime.datetime.strptime(date, '%Y%m%d')
date += _datetime.timedelta(days=residual)
year = date.year
year_start = _datetime.datetime(year=year, month=1, day=1)
next_year_start = _datetime.datetime(year=year + 1, month=1, day=1)
year_duration = next_year_start - year_start
year_elapsed = date - year_start
fraction = year_elapsed / year_duration
return year + fraction | python | def _yyyymmdd_to_year_fraction(date):
"""Convert YYYMMDD.DD date string or float to YYYY.YYY"""
date = str(date)
if '.' in date:
date, residual = str(date).split('.')
residual = float('0.' + residual)
else:
residual = 0.0
date = _datetime.datetime.strptime(date, '%Y%m%d')
date += _datetime.timedelta(days=residual)
year = date.year
year_start = _datetime.datetime(year=year, month=1, day=1)
next_year_start = _datetime.datetime(year=year + 1, month=1, day=1)
year_duration = next_year_start - year_start
year_elapsed = date - year_start
fraction = year_elapsed / year_duration
return year + fraction | ['def', '_yyyymmdd_to_year_fraction', '(', 'date', ')', ':', 'date', '=', 'str', '(', 'date', ')', 'if', "'.'", 'in', 'date', ':', 'date', ',', 'residual', '=', 'str', '(', 'date', ')', '.', 'split', '(', "'.'", ')', 'residual', '=', 'float', '(', "'0.'", '+', 'residual', ')', 'else', ':', 'residual', '=', '0.0', 'date', '=', '_datetime', '.', 'datetime', '.', 'strptime', '(', 'date', ',', "'%Y%m%d'", ')', 'date', '+=', '_datetime', '.', 'timedelta', '(', 'days', '=', 'residual', ')', 'year', '=', 'date', '.', 'year', 'year_start', '=', '_datetime', '.', 'datetime', '(', 'year', '=', 'year', ',', 'month', '=', '1', ',', 'day', '=', '1', ')', 'next_year_start', '=', '_datetime', '.', 'datetime', '(', 'year', '=', 'year', '+', '1', ',', 'month', '=', '1', ',', 'day', '=', '1', ')', 'year_duration', '=', 'next_year_start', '-', 'year_start', 'year_elapsed', '=', 'date', '-', 'year_start', 'fraction', '=', 'year_elapsed', '/', 'year_duration', 'return', 'year', '+', 'fraction'] | Convert YYYMMDD.DD date string or float to YYYY.YYY | ['Convert', 'YYYMMDD', '.', 'DD', 'date', 'string', 'or', 'float', 'to', 'YYYY', '.', 'YYY'] | train | https://github.com/SHTOOLS/SHTOOLS/blob/9a115cf83002df2ddec6b7f41aeb6be688e285de/pyshtools/utils/datetime.py#L11-L31 |
6,984 | bachya/py17track | py17track/client.py | Client._request | async def _request(
self,
method: str,
url: str,
*,
headers: dict = None,
params: dict = None,
json: dict = None) -> dict:
"""Make a request against the RainMachine device."""
if not headers:
headers = {}
try:
async with self._websession.request(method, url, headers=headers,
params=params,
json=json) as resp:
resp.raise_for_status()
data = await resp.json(content_type=None)
return data
except ClientError as err:
raise RequestError(
'Error requesting data from {}: {}'.format(url, err)) | python | async def _request(
self,
method: str,
url: str,
*,
headers: dict = None,
params: dict = None,
json: dict = None) -> dict:
"""Make a request against the RainMachine device."""
if not headers:
headers = {}
try:
async with self._websession.request(method, url, headers=headers,
params=params,
json=json) as resp:
resp.raise_for_status()
data = await resp.json(content_type=None)
return data
except ClientError as err:
raise RequestError(
'Error requesting data from {}: {}'.format(url, err)) | ['async', 'def', '_request', '(', 'self', ',', 'method', ':', 'str', ',', 'url', ':', 'str', ',', '*', ',', 'headers', ':', 'dict', '=', 'None', ',', 'params', ':', 'dict', '=', 'None', ',', 'json', ':', 'dict', '=', 'None', ')', '->', 'dict', ':', 'if', 'not', 'headers', ':', 'headers', '=', '{', '}', 'try', ':', 'async', 'with', 'self', '.', '_websession', '.', 'request', '(', 'method', ',', 'url', ',', 'headers', '=', 'headers', ',', 'params', '=', 'params', ',', 'json', '=', 'json', ')', 'as', 'resp', ':', 'resp', '.', 'raise_for_status', '(', ')', 'data', '=', 'await', 'resp', '.', 'json', '(', 'content_type', '=', 'None', ')', 'return', 'data', 'except', 'ClientError', 'as', 'err', ':', 'raise', 'RequestError', '(', "'Error requesting data from {}: {}'", '.', 'format', '(', 'url', ',', 'err', ')', ')'] | Make a request against the RainMachine device. | ['Make', 'a', 'request', 'against', 'the', 'RainMachine', 'device', '.'] | train | https://github.com/bachya/py17track/blob/e6e64f2a79571433df7ee702cb4ebc4127b7ad6d/py17track/client.py#L22-L43 |
6,985 | PGower/PyCanvas | pycanvas/apis/assignment_groups.py | AssignmentGroupsAPI.create_assignment_group | def create_assignment_group(self, course_id, group_weight=None, integration_data=None, name=None, position=None, rules=None, sis_source_id=None):
"""
Create an Assignment Group.
Create a new assignment group for this course.
"""
path = {}
data = {}
params = {}
# REQUIRED - PATH - course_id
"""ID"""
path["course_id"] = course_id
# OPTIONAL - name
"""The assignment group's name"""
if name is not None:
data["name"] = name
# OPTIONAL - position
"""The position of this assignment group in relation to the other assignment groups"""
if position is not None:
data["position"] = position
# OPTIONAL - group_weight
"""The percent of the total grade that this assignment group represents"""
if group_weight is not None:
data["group_weight"] = group_weight
# OPTIONAL - sis_source_id
"""The sis source id of the Assignment Group"""
if sis_source_id is not None:
data["sis_source_id"] = sis_source_id
# OPTIONAL - integration_data
"""The integration data of the Assignment Group"""
if integration_data is not None:
data["integration_data"] = integration_data
# OPTIONAL - rules
"""The grading rules that are applied within this assignment group
See the Assignment Group object definition for format"""
if rules is not None:
data["rules"] = rules
self.logger.debug("POST /api/v1/courses/{course_id}/assignment_groups with query params: {params} and form data: {data}".format(params=params, data=data, **path))
return self.generic_request("POST", "/api/v1/courses/{course_id}/assignment_groups".format(**path), data=data, params=params, single_item=True) | python | def create_assignment_group(self, course_id, group_weight=None, integration_data=None, name=None, position=None, rules=None, sis_source_id=None):
"""
Create an Assignment Group.
Create a new assignment group for this course.
"""
path = {}
data = {}
params = {}
# REQUIRED - PATH - course_id
"""ID"""
path["course_id"] = course_id
# OPTIONAL - name
"""The assignment group's name"""
if name is not None:
data["name"] = name
# OPTIONAL - position
"""The position of this assignment group in relation to the other assignment groups"""
if position is not None:
data["position"] = position
# OPTIONAL - group_weight
"""The percent of the total grade that this assignment group represents"""
if group_weight is not None:
data["group_weight"] = group_weight
# OPTIONAL - sis_source_id
"""The sis source id of the Assignment Group"""
if sis_source_id is not None:
data["sis_source_id"] = sis_source_id
# OPTIONAL - integration_data
"""The integration data of the Assignment Group"""
if integration_data is not None:
data["integration_data"] = integration_data
# OPTIONAL - rules
"""The grading rules that are applied within this assignment group
See the Assignment Group object definition for format"""
if rules is not None:
data["rules"] = rules
self.logger.debug("POST /api/v1/courses/{course_id}/assignment_groups with query params: {params} and form data: {data}".format(params=params, data=data, **path))
return self.generic_request("POST", "/api/v1/courses/{course_id}/assignment_groups".format(**path), data=data, params=params, single_item=True) | ['def', 'create_assignment_group', '(', 'self', ',', 'course_id', ',', 'group_weight', '=', 'None', ',', 'integration_data', '=', 'None', ',', 'name', '=', 'None', ',', 'position', '=', 'None', ',', 'rules', '=', 'None', ',', 'sis_source_id', '=', 'None', ')', ':', 'path', '=', '{', '}', 'data', '=', '{', '}', 'params', '=', '{', '}', '# REQUIRED - PATH - course_id\r', '"""ID"""', 'path', '[', '"course_id"', ']', '=', 'course_id', '# OPTIONAL - name\r', '"""The assignment group\'s name"""', 'if', 'name', 'is', 'not', 'None', ':', 'data', '[', '"name"', ']', '=', 'name', '# OPTIONAL - position\r', '"""The position of this assignment group in relation to the other assignment groups"""', 'if', 'position', 'is', 'not', 'None', ':', 'data', '[', '"position"', ']', '=', 'position', '# OPTIONAL - group_weight\r', '"""The percent of the total grade that this assignment group represents"""', 'if', 'group_weight', 'is', 'not', 'None', ':', 'data', '[', '"group_weight"', ']', '=', 'group_weight', '# OPTIONAL - sis_source_id\r', '"""The sis source id of the Assignment Group"""', 'if', 'sis_source_id', 'is', 'not', 'None', ':', 'data', '[', '"sis_source_id"', ']', '=', 'sis_source_id', '# OPTIONAL - integration_data\r', '"""The integration data of the Assignment Group"""', 'if', 'integration_data', 'is', 'not', 'None', ':', 'data', '[', '"integration_data"', ']', '=', 'integration_data', '# OPTIONAL - rules\r', '"""The grading rules that are applied within this assignment group\r\n See the Assignment Group object definition for format"""', 'if', 'rules', 'is', 'not', 'None', ':', 'data', '[', '"rules"', ']', '=', 'rules', 'self', '.', 'logger', '.', 'debug', '(', '"POST /api/v1/courses/{course_id}/assignment_groups with query params: {params} and form data: {data}"', '.', 'format', '(', 'params', '=', 'params', ',', 'data', '=', 'data', ',', '*', '*', 'path', ')', ')', 'return', 'self', '.', 'generic_request', '(', '"POST"', ',', '"/api/v1/courses/{course_id}/assignment_groups"', '.', 'format', '(', '*', '*', 'path', ')', ',', 'data', '=', 'data', ',', 'params', '=', 'params', ',', 'single_item', '=', 'True', ')'] | Create an Assignment Group.
Create a new assignment group for this course. | ['Create', 'an', 'Assignment', 'Group', '.', 'Create', 'a', 'new', 'assignment', 'group', 'for', 'this', 'course', '.'] | train | https://github.com/PGower/PyCanvas/blob/68520005382b440a1e462f9df369f54d364e21e8/pycanvas/apis/assignment_groups.py#L112-L158 |
6,986 | bwohlberg/sporco | sporco/admm/cbpdn.py | GenericConvBPDN.ystep | def ystep(self):
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
If this method is not overridden, the problem is solved without
any regularisation other than the option enforcement of
non-negativity of the solution and filter boundary crossing
supression. When it is overridden, it should be explicitly
called at the end of the overriding method.
"""
if self.opt['NonNegCoef']:
self.Y[self.Y < 0.0] = 0.0
if self.opt['NoBndryCross']:
for n in range(0, self.cri.dimN):
self.Y[(slice(None),) * n +
(slice(1 - self.D.shape[n], None),)] = 0.0 | python | def ystep(self):
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
If this method is not overridden, the problem is solved without
any regularisation other than the option enforcement of
non-negativity of the solution and filter boundary crossing
supression. When it is overridden, it should be explicitly
called at the end of the overriding method.
"""
if self.opt['NonNegCoef']:
self.Y[self.Y < 0.0] = 0.0
if self.opt['NoBndryCross']:
for n in range(0, self.cri.dimN):
self.Y[(slice(None),) * n +
(slice(1 - self.D.shape[n], None),)] = 0.0 | ['def', 'ystep', '(', 'self', ')', ':', 'if', 'self', '.', 'opt', '[', "'NonNegCoef'", ']', ':', 'self', '.', 'Y', '[', 'self', '.', 'Y', '<', '0.0', ']', '=', '0.0', 'if', 'self', '.', 'opt', '[', "'NoBndryCross'", ']', ':', 'for', 'n', 'in', 'range', '(', '0', ',', 'self', '.', 'cri', '.', 'dimN', ')', ':', 'self', '.', 'Y', '[', '(', 'slice', '(', 'None', ')', ',', ')', '*', 'n', '+', '(', 'slice', '(', '1', '-', 'self', '.', 'D', '.', 'shape', '[', 'n', ']', ',', 'None', ')', ',', ')', ']', '=', '0.0'] | r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
If this method is not overridden, the problem is solved without
any regularisation other than the option enforcement of
non-negativity of the solution and filter boundary crossing
supression. When it is overridden, it should be explicitly
called at the end of the overriding method. | ['r', 'Minimise', 'Augmented', 'Lagrangian', 'with', 'respect', 'to', ':', 'math', ':', '\\', 'mathbf', '{', 'y', '}', '.', 'If', 'this', 'method', 'is', 'not', 'overridden', 'the', 'problem', 'is', 'solved', 'without', 'any', 'regularisation', 'other', 'than', 'the', 'option', 'enforcement', 'of', 'non', '-', 'negativity', 'of', 'the', 'solution', 'and', 'filter', 'boundary', 'crossing', 'supression', '.', 'When', 'it', 'is', 'overridden', 'it', 'should', 'be', 'explicitly', 'called', 'at', 'the', 'end', 'of', 'the', 'overriding', 'method', '.'] | train | https://github.com/bwohlberg/sporco/blob/8946a04331106f4e39904fbdf2dc7351900baa04/sporco/admm/cbpdn.py#L287-L301 |
6,987 | Cognexa/cxflow | cxflow/cli/eval.py | predict | def predict(config_path: str, restore_from: Optional[str], cl_arguments: Iterable[str], output_root: str) -> None:
"""
Run prediction from the specified config path.
If the config contains a ``predict`` section:
- override hooks with ``predict.hooks`` if present
- update dataset, model and main loop sections if the respective sections are present
:param config_path: path to the config file or the directory in which it is stored
:param restore_from: backend-specific path to the already trained model to be restored from.
If ``None`` is passed, it is inferred from the configuration file location as the directory
it is located in.
:param cl_arguments: additional command line arguments which will update the configuration
:param output_root: output root in which the training directory will be created
"""
config = None
try:
config_path = find_config(config_path)
restore_from = restore_from or path.dirname(config_path)
config = load_config(config_file=config_path, additional_args=cl_arguments)
if 'predict' in config:
for section in ['dataset', 'model', 'main_loop']:
if section in config['predict']:
config[section].update(config['predict'][section])
if 'hooks' in config['predict']:
config['hooks'] = config['predict']['hooks']
else:
logging.warning('Config does not contain `predict.hooks` section. '
'No hook will be employed during the prediction.')
config['hooks'] = []
validate_config(config)
logging.debug('\tLoaded config: %s', config)
except Exception as ex: # pylint: disable=broad-except
fallback('Loading config failed', ex)
run(config=config, output_root=output_root, restore_from=restore_from, eval='predict') | python | def predict(config_path: str, restore_from: Optional[str], cl_arguments: Iterable[str], output_root: str) -> None:
"""
Run prediction from the specified config path.
If the config contains a ``predict`` section:
- override hooks with ``predict.hooks`` if present
- update dataset, model and main loop sections if the respective sections are present
:param config_path: path to the config file or the directory in which it is stored
:param restore_from: backend-specific path to the already trained model to be restored from.
If ``None`` is passed, it is inferred from the configuration file location as the directory
it is located in.
:param cl_arguments: additional command line arguments which will update the configuration
:param output_root: output root in which the training directory will be created
"""
config = None
try:
config_path = find_config(config_path)
restore_from = restore_from or path.dirname(config_path)
config = load_config(config_file=config_path, additional_args=cl_arguments)
if 'predict' in config:
for section in ['dataset', 'model', 'main_loop']:
if section in config['predict']:
config[section].update(config['predict'][section])
if 'hooks' in config['predict']:
config['hooks'] = config['predict']['hooks']
else:
logging.warning('Config does not contain `predict.hooks` section. '
'No hook will be employed during the prediction.')
config['hooks'] = []
validate_config(config)
logging.debug('\tLoaded config: %s', config)
except Exception as ex: # pylint: disable=broad-except
fallback('Loading config failed', ex)
run(config=config, output_root=output_root, restore_from=restore_from, eval='predict') | ['def', 'predict', '(', 'config_path', ':', 'str', ',', 'restore_from', ':', 'Optional', '[', 'str', ']', ',', 'cl_arguments', ':', 'Iterable', '[', 'str', ']', ',', 'output_root', ':', 'str', ')', '->', 'None', ':', 'config', '=', 'None', 'try', ':', 'config_path', '=', 'find_config', '(', 'config_path', ')', 'restore_from', '=', 'restore_from', 'or', 'path', '.', 'dirname', '(', 'config_path', ')', 'config', '=', 'load_config', '(', 'config_file', '=', 'config_path', ',', 'additional_args', '=', 'cl_arguments', ')', 'if', "'predict'", 'in', 'config', ':', 'for', 'section', 'in', '[', "'dataset'", ',', "'model'", ',', "'main_loop'", ']', ':', 'if', 'section', 'in', 'config', '[', "'predict'", ']', ':', 'config', '[', 'section', ']', '.', 'update', '(', 'config', '[', "'predict'", ']', '[', 'section', ']', ')', 'if', "'hooks'", 'in', 'config', '[', "'predict'", ']', ':', 'config', '[', "'hooks'", ']', '=', 'config', '[', "'predict'", ']', '[', "'hooks'", ']', 'else', ':', 'logging', '.', 'warning', '(', "'Config does not contain `predict.hooks` section. '", "'No hook will be employed during the prediction.'", ')', 'config', '[', "'hooks'", ']', '=', '[', ']', 'validate_config', '(', 'config', ')', 'logging', '.', 'debug', '(', "'\\tLoaded config: %s'", ',', 'config', ')', 'except', 'Exception', 'as', 'ex', ':', '# pylint: disable=broad-except', 'fallback', '(', "'Loading config failed'", ',', 'ex', ')', 'run', '(', 'config', '=', 'config', ',', 'output_root', '=', 'output_root', ',', 'restore_from', '=', 'restore_from', ',', 'eval', '=', "'predict'", ')'] | Run prediction from the specified config path.
If the config contains a ``predict`` section:
- override hooks with ``predict.hooks`` if present
- update dataset, model and main loop sections if the respective sections are present
:param config_path: path to the config file or the directory in which it is stored
:param restore_from: backend-specific path to the already trained model to be restored from.
If ``None`` is passed, it is inferred from the configuration file location as the directory
it is located in.
:param cl_arguments: additional command line arguments which will update the configuration
:param output_root: output root in which the training directory will be created | ['Run', 'prediction', 'from', 'the', 'specified', 'config', 'path', '.'] | train | https://github.com/Cognexa/cxflow/blob/dd609e6b0bd854424a8f86781dd77801a13038f9/cxflow/cli/eval.py#L60-L99 |
6,988 | tanghaibao/jcvi | jcvi/assembly/syntenypath.py | bed | def bed(args):
"""
%prog bed anchorsfile
Convert ANCHORS file to BED format.
"""
from collections import defaultdict
from jcvi.compara.synteny import AnchorFile, check_beds
from jcvi.formats.bed import Bed
from jcvi.formats.base import get_number
p = OptionParser(bed.__doc__)
p.add_option("--switch", default=False, action="store_true",
help="Switch reference and aligned map elements")
p.add_option("--scale", type="float",
help="Scale the aligned map distance by factor")
p.set_beds()
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
anchorsfile, = args
switch = opts.switch
scale = opts.scale
ac = AnchorFile(anchorsfile)
pairs = defaultdict(list)
for a, b, block_id in ac.iter_pairs():
pairs[a].append(b)
qbed, sbed, qorder, sorder, is_self = check_beds(anchorsfile, p, opts)
bd = Bed()
for q in qbed:
qseqid, qstart, qend, qaccn = q.seqid, q.start, q.end, q.accn
if qaccn not in pairs:
continue
for s in pairs[qaccn]:
si, s = sorder[s]
sseqid, sstart, send, saccn = s.seqid, s.start, s.end, s.accn
if switch:
qseqid, sseqid = sseqid, qseqid
qstart, sstart = sstart, qstart
qend, send = send, qend
qaccn, saccn = saccn, qaccn
if scale:
sstart /= scale
try:
newsseqid = get_number(sseqid)
except ValueError:
raise ValueError("`{0}` is on `{1}` with no number to extract".\
format(saccn, sseqid))
bedline = "\t".join(str(x) for x in (qseqid, qstart - 1, qend,
"{0}:{1}".format(newsseqid, sstart)))
bd.add(bedline)
bd.print_to_file(filename=opts.outfile, sorted=True) | python | def bed(args):
"""
%prog bed anchorsfile
Convert ANCHORS file to BED format.
"""
from collections import defaultdict
from jcvi.compara.synteny import AnchorFile, check_beds
from jcvi.formats.bed import Bed
from jcvi.formats.base import get_number
p = OptionParser(bed.__doc__)
p.add_option("--switch", default=False, action="store_true",
help="Switch reference and aligned map elements")
p.add_option("--scale", type="float",
help="Scale the aligned map distance by factor")
p.set_beds()
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
anchorsfile, = args
switch = opts.switch
scale = opts.scale
ac = AnchorFile(anchorsfile)
pairs = defaultdict(list)
for a, b, block_id in ac.iter_pairs():
pairs[a].append(b)
qbed, sbed, qorder, sorder, is_self = check_beds(anchorsfile, p, opts)
bd = Bed()
for q in qbed:
qseqid, qstart, qend, qaccn = q.seqid, q.start, q.end, q.accn
if qaccn not in pairs:
continue
for s in pairs[qaccn]:
si, s = sorder[s]
sseqid, sstart, send, saccn = s.seqid, s.start, s.end, s.accn
if switch:
qseqid, sseqid = sseqid, qseqid
qstart, sstart = sstart, qstart
qend, send = send, qend
qaccn, saccn = saccn, qaccn
if scale:
sstart /= scale
try:
newsseqid = get_number(sseqid)
except ValueError:
raise ValueError("`{0}` is on `{1}` with no number to extract".\
format(saccn, sseqid))
bedline = "\t".join(str(x) for x in (qseqid, qstart - 1, qend,
"{0}:{1}".format(newsseqid, sstart)))
bd.add(bedline)
bd.print_to_file(filename=opts.outfile, sorted=True) | ['def', 'bed', '(', 'args', ')', ':', 'from', 'collections', 'import', 'defaultdict', 'from', 'jcvi', '.', 'compara', '.', 'synteny', 'import', 'AnchorFile', ',', 'check_beds', 'from', 'jcvi', '.', 'formats', '.', 'bed', 'import', 'Bed', 'from', 'jcvi', '.', 'formats', '.', 'base', 'import', 'get_number', 'p', '=', 'OptionParser', '(', 'bed', '.', '__doc__', ')', 'p', '.', 'add_option', '(', '"--switch"', ',', 'default', '=', 'False', ',', 'action', '=', '"store_true"', ',', 'help', '=', '"Switch reference and aligned map elements"', ')', 'p', '.', 'add_option', '(', '"--scale"', ',', 'type', '=', '"float"', ',', 'help', '=', '"Scale the aligned map distance by factor"', ')', 'p', '.', 'set_beds', '(', ')', 'p', '.', 'set_outfile', '(', ')', 'opts', ',', 'args', '=', 'p', '.', 'parse_args', '(', 'args', ')', 'if', 'len', '(', 'args', ')', '!=', '1', ':', 'sys', '.', 'exit', '(', 'not', 'p', '.', 'print_help', '(', ')', ')', 'anchorsfile', ',', '=', 'args', 'switch', '=', 'opts', '.', 'switch', 'scale', '=', 'opts', '.', 'scale', 'ac', '=', 'AnchorFile', '(', 'anchorsfile', ')', 'pairs', '=', 'defaultdict', '(', 'list', ')', 'for', 'a', ',', 'b', ',', 'block_id', 'in', 'ac', '.', 'iter_pairs', '(', ')', ':', 'pairs', '[', 'a', ']', '.', 'append', '(', 'b', ')', 'qbed', ',', 'sbed', ',', 'qorder', ',', 'sorder', ',', 'is_self', '=', 'check_beds', '(', 'anchorsfile', ',', 'p', ',', 'opts', ')', 'bd', '=', 'Bed', '(', ')', 'for', 'q', 'in', 'qbed', ':', 'qseqid', ',', 'qstart', ',', 'qend', ',', 'qaccn', '=', 'q', '.', 'seqid', ',', 'q', '.', 'start', ',', 'q', '.', 'end', ',', 'q', '.', 'accn', 'if', 'qaccn', 'not', 'in', 'pairs', ':', 'continue', 'for', 's', 'in', 'pairs', '[', 'qaccn', ']', ':', 'si', ',', 's', '=', 'sorder', '[', 's', ']', 'sseqid', ',', 'sstart', ',', 'send', ',', 'saccn', '=', 's', '.', 'seqid', ',', 's', '.', 'start', ',', 's', '.', 'end', ',', 's', '.', 'accn', 'if', 'switch', ':', 'qseqid', ',', 'sseqid', '=', 'sseqid', ',', 'qseqid', 'qstart', ',', 'sstart', '=', 'sstart', ',', 'qstart', 'qend', ',', 'send', '=', 'send', ',', 'qend', 'qaccn', ',', 'saccn', '=', 'saccn', ',', 'qaccn', 'if', 'scale', ':', 'sstart', '/=', 'scale', 'try', ':', 'newsseqid', '=', 'get_number', '(', 'sseqid', ')', 'except', 'ValueError', ':', 'raise', 'ValueError', '(', '"`{0}` is on `{1}` with no number to extract"', '.', 'format', '(', 'saccn', ',', 'sseqid', ')', ')', 'bedline', '=', '"\\t"', '.', 'join', '(', 'str', '(', 'x', ')', 'for', 'x', 'in', '(', 'qseqid', ',', 'qstart', '-', '1', ',', 'qend', ',', '"{0}:{1}"', '.', 'format', '(', 'newsseqid', ',', 'sstart', ')', ')', ')', 'bd', '.', 'add', '(', 'bedline', ')', 'bd', '.', 'print_to_file', '(', 'filename', '=', 'opts', '.', 'outfile', ',', 'sorted', '=', 'True', ')'] | %prog bed anchorsfile
Convert ANCHORS file to BED format. | ['%prog', 'bed', 'anchorsfile'] | train | https://github.com/tanghaibao/jcvi/blob/d2e31a77b6ade7f41f3b321febc2b4744d1cdeca/jcvi/assembly/syntenypath.py#L128-L184 |
6,989 | ssanderson/interface | interface/interface.py | InterfaceMeta._invalid_implementation | def _invalid_implementation(self, t, missing, mistyped, mismatched):
"""
Make a TypeError explaining why ``t`` doesn't implement our interface.
"""
assert missing or mistyped or mismatched, "Implementation wasn't invalid."
message = "\nclass {C} failed to implement interface {I}:".format(
C=getname(t),
I=getname(self),
)
if missing:
message += dedent(
"""
The following methods of {I} were not implemented:
{missing_methods}"""
).format(
I=getname(self),
missing_methods=self._format_missing_methods(missing)
)
if mistyped:
message += dedent(
"""
The following methods of {I} were implemented with incorrect types:
{mismatched_types}"""
).format(
I=getname(self),
mismatched_types=self._format_mismatched_types(mistyped),
)
if mismatched:
message += dedent(
"""
The following methods of {I} were implemented with invalid signatures:
{mismatched_methods}"""
).format(
I=getname(self),
mismatched_methods=self._format_mismatched_methods(mismatched),
)
return InvalidImplementation(message) | python | def _invalid_implementation(self, t, missing, mistyped, mismatched):
"""
Make a TypeError explaining why ``t`` doesn't implement our interface.
"""
assert missing or mistyped or mismatched, "Implementation wasn't invalid."
message = "\nclass {C} failed to implement interface {I}:".format(
C=getname(t),
I=getname(self),
)
if missing:
message += dedent(
"""
The following methods of {I} were not implemented:
{missing_methods}"""
).format(
I=getname(self),
missing_methods=self._format_missing_methods(missing)
)
if mistyped:
message += dedent(
"""
The following methods of {I} were implemented with incorrect types:
{mismatched_types}"""
).format(
I=getname(self),
mismatched_types=self._format_mismatched_types(mistyped),
)
if mismatched:
message += dedent(
"""
The following methods of {I} were implemented with invalid signatures:
{mismatched_methods}"""
).format(
I=getname(self),
mismatched_methods=self._format_mismatched_methods(mismatched),
)
return InvalidImplementation(message) | ['def', '_invalid_implementation', '(', 'self', ',', 't', ',', 'missing', ',', 'mistyped', ',', 'mismatched', ')', ':', 'assert', 'missing', 'or', 'mistyped', 'or', 'mismatched', ',', '"Implementation wasn\'t invalid."', 'message', '=', '"\\nclass {C} failed to implement interface {I}:"', '.', 'format', '(', 'C', '=', 'getname', '(', 't', ')', ',', 'I', '=', 'getname', '(', 'self', ')', ',', ')', 'if', 'missing', ':', 'message', '+=', 'dedent', '(', '"""\n\n The following methods of {I} were not implemented:\n {missing_methods}"""', ')', '.', 'format', '(', 'I', '=', 'getname', '(', 'self', ')', ',', 'missing_methods', '=', 'self', '.', '_format_missing_methods', '(', 'missing', ')', ')', 'if', 'mistyped', ':', 'message', '+=', 'dedent', '(', '"""\n\n The following methods of {I} were implemented with incorrect types:\n {mismatched_types}"""', ')', '.', 'format', '(', 'I', '=', 'getname', '(', 'self', ')', ',', 'mismatched_types', '=', 'self', '.', '_format_mismatched_types', '(', 'mistyped', ')', ',', ')', 'if', 'mismatched', ':', 'message', '+=', 'dedent', '(', '"""\n\n The following methods of {I} were implemented with invalid signatures:\n {mismatched_methods}"""', ')', '.', 'format', '(', 'I', '=', 'getname', '(', 'self', ')', ',', 'mismatched_methods', '=', 'self', '.', '_format_mismatched_methods', '(', 'mismatched', ')', ',', ')', 'return', 'InvalidImplementation', '(', 'message', ')'] | Make a TypeError explaining why ``t`` doesn't implement our interface. | ['Make', 'a', 'TypeError', 'explaining', 'why', 't', 'doesn', 't', 'implement', 'our', 'interface', '.'] | train | https://github.com/ssanderson/interface/blob/b1dabab8556848fd473e388e28399886321b6127/interface/interface.py#L189-L231 |
6,990 | ArduPilot/MAVProxy | MAVProxy/modules/mavproxy_tracker.py | TrackerModule.mavlink_packet | def mavlink_packet(self, m):
'''handle an incoming mavlink packet from the master vehicle. Relay it to the tracker
if it is a GLOBAL_POSITION_INT'''
if m.get_type() in ['GLOBAL_POSITION_INT', 'SCALED_PRESSURE']:
connection = self.find_connection()
if not connection:
return
if m.get_srcSystem() != connection.target_system:
connection.mav.send(m) | python | def mavlink_packet(self, m):
'''handle an incoming mavlink packet from the master vehicle. Relay it to the tracker
if it is a GLOBAL_POSITION_INT'''
if m.get_type() in ['GLOBAL_POSITION_INT', 'SCALED_PRESSURE']:
connection = self.find_connection()
if not connection:
return
if m.get_srcSystem() != connection.target_system:
connection.mav.send(m) | ['def', 'mavlink_packet', '(', 'self', ',', 'm', ')', ':', 'if', 'm', '.', 'get_type', '(', ')', 'in', '[', "'GLOBAL_POSITION_INT'", ',', "'SCALED_PRESSURE'", ']', ':', 'connection', '=', 'self', '.', 'find_connection', '(', ')', 'if', 'not', 'connection', ':', 'return', 'if', 'm', '.', 'get_srcSystem', '(', ')', '!=', 'connection', '.', 'target_system', ':', 'connection', '.', 'mav', '.', 'send', '(', 'm', ')'] | handle an incoming mavlink packet from the master vehicle. Relay it to the tracker
if it is a GLOBAL_POSITION_INT | ['handle', 'an', 'incoming', 'mavlink', 'packet', 'from', 'the', 'master', 'vehicle', '.', 'Relay', 'it', 'to', 'the', 'tracker', 'if', 'it', 'is', 'a', 'GLOBAL_POSITION_INT'] | train | https://github.com/ArduPilot/MAVProxy/blob/f50bdeff33064876f7dc8dc4683d278ff47f75d5/MAVProxy/modules/mavproxy_tracker.py#L131-L139 |
6,991 | bykof/billomapy | billomapy/billomapy.py | Billomapy.get_all_reminders | def get_all_reminders(self, params=None):
"""
Get all reminders
This will iterate over all pages until it gets all elements.
So if the rate limit exceeded it will throw an Exception and you will get nothing
:param params: search params
:return: list
"""
if not params:
params = {}
return self._iterate_through_pages(self.get_reminders_per_page, resource=REMINDERS, **{'params': params}) | python | def get_all_reminders(self, params=None):
"""
Get all reminders
This will iterate over all pages until it gets all elements.
So if the rate limit exceeded it will throw an Exception and you will get nothing
:param params: search params
:return: list
"""
if not params:
params = {}
return self._iterate_through_pages(self.get_reminders_per_page, resource=REMINDERS, **{'params': params}) | ['def', 'get_all_reminders', '(', 'self', ',', 'params', '=', 'None', ')', ':', 'if', 'not', 'params', ':', 'params', '=', '{', '}', 'return', 'self', '.', '_iterate_through_pages', '(', 'self', '.', 'get_reminders_per_page', ',', 'resource', '=', 'REMINDERS', ',', '*', '*', '{', "'params'", ':', 'params', '}', ')'] | Get all reminders
This will iterate over all pages until it gets all elements.
So if the rate limit exceeded it will throw an Exception and you will get nothing
:param params: search params
:return: list | ['Get', 'all', 'reminders', 'This', 'will', 'iterate', 'over', 'all', 'pages', 'until', 'it', 'gets', 'all', 'elements', '.', 'So', 'if', 'the', 'rate', 'limit', 'exceeded', 'it', 'will', 'throw', 'an', 'Exception', 'and', 'you', 'will', 'get', 'nothing'] | train | https://github.com/bykof/billomapy/blob/a28ba69fd37654fa145d0411d52c200e7f8984ab/billomapy/billomapy.py#L3250-L3261 |
6,992 | tensorflow/tensorboard | tensorboard/plugins/graph/graphs_plugin.py | GraphsPlugin.info_impl | def info_impl(self):
"""Returns a dict of all runs and tags and their data availabilities."""
result = {}
def add_row_item(run, tag=None):
run_item = result.setdefault(run, {
'run': run,
'tags': {},
# A run-wide GraphDef of ops.
'run_graph': False})
tag_item = None
if tag:
tag_item = run_item.get('tags').setdefault(tag, {
'tag': tag,
'conceptual_graph': False,
# A tagged GraphDef of ops.
'op_graph': False,
'profile': False})
return (run_item, tag_item)
mapping = self._multiplexer.PluginRunToTagToContent(
_PLUGIN_NAME_RUN_METADATA_WITH_GRAPH)
for run_name, tag_to_content in six.iteritems(mapping):
for (tag, content) in six.iteritems(tag_to_content):
# The Summary op is defined in TensorFlow and does not use a stringified proto
# as a content of plugin data. It contains single string that denotes a version.
# https://github.com/tensorflow/tensorflow/blob/11f4ecb54708865ec757ca64e4805957b05d7570/tensorflow/python/ops/summary_ops_v2.py#L789-L790
if content != b'1':
logger.warn('Ignoring unrecognizable version of RunMetadata.')
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item['op_graph'] = True
# Tensors associated with plugin name _PLUGIN_NAME_RUN_METADATA contain
# both op graph and profile information.
mapping = self._multiplexer.PluginRunToTagToContent(
_PLUGIN_NAME_RUN_METADATA)
for run_name, tag_to_content in six.iteritems(mapping):
for (tag, content) in six.iteritems(tag_to_content):
if content != b'1':
logger.warn('Ignoring unrecognizable version of RunMetadata.')
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item['profile'] = True
tag_item['op_graph'] = True
# Tensors associated with plugin name _PLUGIN_NAME_KERAS_MODEL contain
# serialized Keras model in JSON format.
mapping = self._multiplexer.PluginRunToTagToContent(
_PLUGIN_NAME_KERAS_MODEL)
for run_name, tag_to_content in six.iteritems(mapping):
for (tag, content) in six.iteritems(tag_to_content):
if content != b'1':
logger.warn('Ignoring unrecognizable version of RunMetadata.')
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item['conceptual_graph'] = True
for (run_name, run_data) in six.iteritems(self._multiplexer.Runs()):
if run_data.get(event_accumulator.GRAPH):
(run_item, _) = add_row_item(run_name, None)
run_item['run_graph'] = True
for (run_name, run_data) in six.iteritems(self._multiplexer.Runs()):
if event_accumulator.RUN_METADATA in run_data:
for tag in run_data[event_accumulator.RUN_METADATA]:
(_, tag_item) = add_row_item(run_name, tag)
tag_item['profile'] = True
return result | python | def info_impl(self):
"""Returns a dict of all runs and tags and their data availabilities."""
result = {}
def add_row_item(run, tag=None):
run_item = result.setdefault(run, {
'run': run,
'tags': {},
# A run-wide GraphDef of ops.
'run_graph': False})
tag_item = None
if tag:
tag_item = run_item.get('tags').setdefault(tag, {
'tag': tag,
'conceptual_graph': False,
# A tagged GraphDef of ops.
'op_graph': False,
'profile': False})
return (run_item, tag_item)
mapping = self._multiplexer.PluginRunToTagToContent(
_PLUGIN_NAME_RUN_METADATA_WITH_GRAPH)
for run_name, tag_to_content in six.iteritems(mapping):
for (tag, content) in six.iteritems(tag_to_content):
# The Summary op is defined in TensorFlow and does not use a stringified proto
# as a content of plugin data. It contains single string that denotes a version.
# https://github.com/tensorflow/tensorflow/blob/11f4ecb54708865ec757ca64e4805957b05d7570/tensorflow/python/ops/summary_ops_v2.py#L789-L790
if content != b'1':
logger.warn('Ignoring unrecognizable version of RunMetadata.')
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item['op_graph'] = True
# Tensors associated with plugin name _PLUGIN_NAME_RUN_METADATA contain
# both op graph and profile information.
mapping = self._multiplexer.PluginRunToTagToContent(
_PLUGIN_NAME_RUN_METADATA)
for run_name, tag_to_content in six.iteritems(mapping):
for (tag, content) in six.iteritems(tag_to_content):
if content != b'1':
logger.warn('Ignoring unrecognizable version of RunMetadata.')
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item['profile'] = True
tag_item['op_graph'] = True
# Tensors associated with plugin name _PLUGIN_NAME_KERAS_MODEL contain
# serialized Keras model in JSON format.
mapping = self._multiplexer.PluginRunToTagToContent(
_PLUGIN_NAME_KERAS_MODEL)
for run_name, tag_to_content in six.iteritems(mapping):
for (tag, content) in six.iteritems(tag_to_content):
if content != b'1':
logger.warn('Ignoring unrecognizable version of RunMetadata.')
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item['conceptual_graph'] = True
for (run_name, run_data) in six.iteritems(self._multiplexer.Runs()):
if run_data.get(event_accumulator.GRAPH):
(run_item, _) = add_row_item(run_name, None)
run_item['run_graph'] = True
for (run_name, run_data) in six.iteritems(self._multiplexer.Runs()):
if event_accumulator.RUN_METADATA in run_data:
for tag in run_data[event_accumulator.RUN_METADATA]:
(_, tag_item) = add_row_item(run_name, tag)
tag_item['profile'] = True
return result | ['def', 'info_impl', '(', 'self', ')', ':', 'result', '=', '{', '}', 'def', 'add_row_item', '(', 'run', ',', 'tag', '=', 'None', ')', ':', 'run_item', '=', 'result', '.', 'setdefault', '(', 'run', ',', '{', "'run'", ':', 'run', ',', "'tags'", ':', '{', '}', ',', '# A run-wide GraphDef of ops.', "'run_graph'", ':', 'False', '}', ')', 'tag_item', '=', 'None', 'if', 'tag', ':', 'tag_item', '=', 'run_item', '.', 'get', '(', "'tags'", ')', '.', 'setdefault', '(', 'tag', ',', '{', "'tag'", ':', 'tag', ',', "'conceptual_graph'", ':', 'False', ',', '# A tagged GraphDef of ops.', "'op_graph'", ':', 'False', ',', "'profile'", ':', 'False', '}', ')', 'return', '(', 'run_item', ',', 'tag_item', ')', 'mapping', '=', 'self', '.', '_multiplexer', '.', 'PluginRunToTagToContent', '(', '_PLUGIN_NAME_RUN_METADATA_WITH_GRAPH', ')', 'for', 'run_name', ',', 'tag_to_content', 'in', 'six', '.', 'iteritems', '(', 'mapping', ')', ':', 'for', '(', 'tag', ',', 'content', ')', 'in', 'six', '.', 'iteritems', '(', 'tag_to_content', ')', ':', '# The Summary op is defined in TensorFlow and does not use a stringified proto', '# as a content of plugin data. It contains single string that denotes a version.', '# https://github.com/tensorflow/tensorflow/blob/11f4ecb54708865ec757ca64e4805957b05d7570/tensorflow/python/ops/summary_ops_v2.py#L789-L790', 'if', 'content', '!=', "b'1'", ':', 'logger', '.', 'warn', '(', "'Ignoring unrecognizable version of RunMetadata.'", ')', 'continue', '(', '_', ',', 'tag_item', ')', '=', 'add_row_item', '(', 'run_name', ',', 'tag', ')', 'tag_item', '[', "'op_graph'", ']', '=', 'True', '# Tensors associated with plugin name _PLUGIN_NAME_RUN_METADATA contain', '# both op graph and profile information.', 'mapping', '=', 'self', '.', '_multiplexer', '.', 'PluginRunToTagToContent', '(', '_PLUGIN_NAME_RUN_METADATA', ')', 'for', 'run_name', ',', 'tag_to_content', 'in', 'six', '.', 'iteritems', '(', 'mapping', ')', ':', 'for', '(', 'tag', ',', 'content', ')', 'in', 'six', '.', 'iteritems', '(', 'tag_to_content', ')', ':', 'if', 'content', '!=', "b'1'", ':', 'logger', '.', 'warn', '(', "'Ignoring unrecognizable version of RunMetadata.'", ')', 'continue', '(', '_', ',', 'tag_item', ')', '=', 'add_row_item', '(', 'run_name', ',', 'tag', ')', 'tag_item', '[', "'profile'", ']', '=', 'True', 'tag_item', '[', "'op_graph'", ']', '=', 'True', '# Tensors associated with plugin name _PLUGIN_NAME_KERAS_MODEL contain', '# serialized Keras model in JSON format.', 'mapping', '=', 'self', '.', '_multiplexer', '.', 'PluginRunToTagToContent', '(', '_PLUGIN_NAME_KERAS_MODEL', ')', 'for', 'run_name', ',', 'tag_to_content', 'in', 'six', '.', 'iteritems', '(', 'mapping', ')', ':', 'for', '(', 'tag', ',', 'content', ')', 'in', 'six', '.', 'iteritems', '(', 'tag_to_content', ')', ':', 'if', 'content', '!=', "b'1'", ':', 'logger', '.', 'warn', '(', "'Ignoring unrecognizable version of RunMetadata.'", ')', 'continue', '(', '_', ',', 'tag_item', ')', '=', 'add_row_item', '(', 'run_name', ',', 'tag', ')', 'tag_item', '[', "'conceptual_graph'", ']', '=', 'True', 'for', '(', 'run_name', ',', 'run_data', ')', 'in', 'six', '.', 'iteritems', '(', 'self', '.', '_multiplexer', '.', 'Runs', '(', ')', ')', ':', 'if', 'run_data', '.', 'get', '(', 'event_accumulator', '.', 'GRAPH', ')', ':', '(', 'run_item', ',', '_', ')', '=', 'add_row_item', '(', 'run_name', ',', 'None', ')', 'run_item', '[', "'run_graph'", ']', '=', 'True', 'for', '(', 'run_name', ',', 'run_data', ')', 'in', 'six', '.', 'iteritems', '(', 'self', '.', '_multiplexer', '.', 'Runs', '(', ')', ')', ':', 'if', 'event_accumulator', '.', 'RUN_METADATA', 'in', 'run_data', ':', 'for', 'tag', 'in', 'run_data', '[', 'event_accumulator', '.', 'RUN_METADATA', ']', ':', '(', '_', ',', 'tag_item', ')', '=', 'add_row_item', '(', 'run_name', ',', 'tag', ')', 'tag_item', '[', "'profile'", ']', '=', 'True', 'return', 'result'] | Returns a dict of all runs and tags and their data availabilities. | ['Returns', 'a', 'dict', 'of', 'all', 'runs', 'and', 'tags', 'and', 'their', 'data', 'availabilities', '.'] | train | https://github.com/tensorflow/tensorboard/blob/8e5f497b48e40f2a774f85416b8a35ac0693c35e/tensorboard/plugins/graph/graphs_plugin.py#L74-L143 |
6,993 | rootpy/rootpy | rootpy/stats/histfactory/utils.py | make_measurement | def make_measurement(name,
channels,
lumi=1.0, lumi_rel_error=0.1,
output_prefix='./histfactory',
POI=None,
const_params=None,
verbose=False):
"""
Create a Measurement from a list of Channels
"""
if verbose:
llog = log['make_measurement']
llog.info("creating measurement {0}".format(name))
if not isinstance(channels, (list, tuple)):
channels = [channels]
# Create the measurement
meas = Measurement('measurement_{0}'.format(name), '')
meas.SetOutputFilePrefix(output_prefix)
if POI is not None:
if isinstance(POI, string_types):
if verbose:
llog.info("setting POI {0}".format(POI))
meas.SetPOI(POI)
else:
if verbose:
llog.info("adding POIs {0}".format(', '.join(POI)))
for p in POI:
meas.AddPOI(p)
if verbose:
llog.info("setting lumi={0:f} +/- {1:f}".format(lumi, lumi_rel_error))
meas.lumi = lumi
meas.lumi_rel_error = lumi_rel_error
for channel in channels:
if verbose:
llog.info("adding channel {0}".format(channel.GetName()))
meas.AddChannel(channel)
if const_params is not None:
if verbose:
llog.info("adding constant parameters {0}".format(
', '.join(const_params)))
for param in const_params:
meas.AddConstantParam(param)
return meas | python | def make_measurement(name,
channels,
lumi=1.0, lumi_rel_error=0.1,
output_prefix='./histfactory',
POI=None,
const_params=None,
verbose=False):
"""
Create a Measurement from a list of Channels
"""
if verbose:
llog = log['make_measurement']
llog.info("creating measurement {0}".format(name))
if not isinstance(channels, (list, tuple)):
channels = [channels]
# Create the measurement
meas = Measurement('measurement_{0}'.format(name), '')
meas.SetOutputFilePrefix(output_prefix)
if POI is not None:
if isinstance(POI, string_types):
if verbose:
llog.info("setting POI {0}".format(POI))
meas.SetPOI(POI)
else:
if verbose:
llog.info("adding POIs {0}".format(', '.join(POI)))
for p in POI:
meas.AddPOI(p)
if verbose:
llog.info("setting lumi={0:f} +/- {1:f}".format(lumi, lumi_rel_error))
meas.lumi = lumi
meas.lumi_rel_error = lumi_rel_error
for channel in channels:
if verbose:
llog.info("adding channel {0}".format(channel.GetName()))
meas.AddChannel(channel)
if const_params is not None:
if verbose:
llog.info("adding constant parameters {0}".format(
', '.join(const_params)))
for param in const_params:
meas.AddConstantParam(param)
return meas | ['def', 'make_measurement', '(', 'name', ',', 'channels', ',', 'lumi', '=', '1.0', ',', 'lumi_rel_error', '=', '0.1', ',', 'output_prefix', '=', "'./histfactory'", ',', 'POI', '=', 'None', ',', 'const_params', '=', 'None', ',', 'verbose', '=', 'False', ')', ':', 'if', 'verbose', ':', 'llog', '=', 'log', '[', "'make_measurement'", ']', 'llog', '.', 'info', '(', '"creating measurement {0}"', '.', 'format', '(', 'name', ')', ')', 'if', 'not', 'isinstance', '(', 'channels', ',', '(', 'list', ',', 'tuple', ')', ')', ':', 'channels', '=', '[', 'channels', ']', '# Create the measurement', 'meas', '=', 'Measurement', '(', "'measurement_{0}'", '.', 'format', '(', 'name', ')', ',', "''", ')', 'meas', '.', 'SetOutputFilePrefix', '(', 'output_prefix', ')', 'if', 'POI', 'is', 'not', 'None', ':', 'if', 'isinstance', '(', 'POI', ',', 'string_types', ')', ':', 'if', 'verbose', ':', 'llog', '.', 'info', '(', '"setting POI {0}"', '.', 'format', '(', 'POI', ')', ')', 'meas', '.', 'SetPOI', '(', 'POI', ')', 'else', ':', 'if', 'verbose', ':', 'llog', '.', 'info', '(', '"adding POIs {0}"', '.', 'format', '(', "', '", '.', 'join', '(', 'POI', ')', ')', ')', 'for', 'p', 'in', 'POI', ':', 'meas', '.', 'AddPOI', '(', 'p', ')', 'if', 'verbose', ':', 'llog', '.', 'info', '(', '"setting lumi={0:f} +/- {1:f}"', '.', 'format', '(', 'lumi', ',', 'lumi_rel_error', ')', ')', 'meas', '.', 'lumi', '=', 'lumi', 'meas', '.', 'lumi_rel_error', '=', 'lumi_rel_error', 'for', 'channel', 'in', 'channels', ':', 'if', 'verbose', ':', 'llog', '.', 'info', '(', '"adding channel {0}"', '.', 'format', '(', 'channel', '.', 'GetName', '(', ')', ')', ')', 'meas', '.', 'AddChannel', '(', 'channel', ')', 'if', 'const_params', 'is', 'not', 'None', ':', 'if', 'verbose', ':', 'llog', '.', 'info', '(', '"adding constant parameters {0}"', '.', 'format', '(', "', '", '.', 'join', '(', 'const_params', ')', ')', ')', 'for', 'param', 'in', 'const_params', ':', 'meas', '.', 'AddConstantParam', '(', 'param', ')', 'return', 'meas'] | Create a Measurement from a list of Channels | ['Create', 'a', 'Measurement', 'from', 'a', 'list', 'of', 'Channels'] | train | https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/stats/histfactory/utils.py#L56-L104 |
6,994 | joke2k/faker | faker/providers/internet/__init__.py | Provider.ipv4_private | def ipv4_private(self, network=False, address_class=None):
"""
Returns a private IPv4.
:param network: Network address
:param address_class: IPv4 address class (a, b, or c)
:returns: Private IPv4
"""
# compute private networks from given class
supernet = _IPv4Constants._network_classes[
address_class or self.ipv4_network_class()
]
private_networks = [
subnet for subnet in _IPv4Constants._private_networks
if subnet.overlaps(supernet)
]
# exclude special networks
private_networks = self._exclude_ipv4_networks(
private_networks,
_IPv4Constants._excluded_networks,
)
# choose random private network from the list
private_network = self.generator.random.choice(private_networks)
return self._random_ipv4_address_from_subnet(private_network, network) | python | def ipv4_private(self, network=False, address_class=None):
"""
Returns a private IPv4.
:param network: Network address
:param address_class: IPv4 address class (a, b, or c)
:returns: Private IPv4
"""
# compute private networks from given class
supernet = _IPv4Constants._network_classes[
address_class or self.ipv4_network_class()
]
private_networks = [
subnet for subnet in _IPv4Constants._private_networks
if subnet.overlaps(supernet)
]
# exclude special networks
private_networks = self._exclude_ipv4_networks(
private_networks,
_IPv4Constants._excluded_networks,
)
# choose random private network from the list
private_network = self.generator.random.choice(private_networks)
return self._random_ipv4_address_from_subnet(private_network, network) | ['def', 'ipv4_private', '(', 'self', ',', 'network', '=', 'False', ',', 'address_class', '=', 'None', ')', ':', '# compute private networks from given class', 'supernet', '=', '_IPv4Constants', '.', '_network_classes', '[', 'address_class', 'or', 'self', '.', 'ipv4_network_class', '(', ')', ']', 'private_networks', '=', '[', 'subnet', 'for', 'subnet', 'in', '_IPv4Constants', '.', '_private_networks', 'if', 'subnet', '.', 'overlaps', '(', 'supernet', ')', ']', '# exclude special networks', 'private_networks', '=', 'self', '.', '_exclude_ipv4_networks', '(', 'private_networks', ',', '_IPv4Constants', '.', '_excluded_networks', ',', ')', '# choose random private network from the list', 'private_network', '=', 'self', '.', 'generator', '.', 'random', '.', 'choice', '(', 'private_networks', ')', 'return', 'self', '.', '_random_ipv4_address_from_subnet', '(', 'private_network', ',', 'network', ')'] | Returns a private IPv4.
:param network: Network address
:param address_class: IPv4 address class (a, b, or c)
:returns: Private IPv4 | ['Returns', 'a', 'private', 'IPv4', '.'] | train | https://github.com/joke2k/faker/blob/965824b61132e52d92d1a6ce470396dbbe01c96c/faker/providers/internet/__init__.py#L363-L390 |
6,995 | pr-omethe-us/PyKED | pyked/chemked.py | DataPoint.process_quantity | def process_quantity(self, properties):
"""Process the uncertainty information from a given quantity and return it
"""
quant = Q_(properties[0])
if len(properties) > 1:
unc = properties[1]
uncertainty = unc.get('uncertainty', False)
upper_uncertainty = unc.get('upper-uncertainty', False)
lower_uncertainty = unc.get('lower-uncertainty', False)
uncertainty_type = unc.get('uncertainty-type')
if uncertainty_type == 'relative':
if uncertainty:
quant = quant.plus_minus(float(uncertainty), relative=True)
elif upper_uncertainty and lower_uncertainty:
warn('Asymmetric uncertainties are not supported. The '
'maximum of lower-uncertainty and upper-uncertainty '
'has been used as the symmetric uncertainty.')
uncertainty = max(float(upper_uncertainty), float(lower_uncertainty))
quant = quant.plus_minus(uncertainty, relative=True)
else:
raise ValueError('Either "uncertainty" or "upper-uncertainty" and '
'"lower-uncertainty" need to be specified.')
elif uncertainty_type == 'absolute':
if uncertainty:
uncertainty = Q_(uncertainty)
quant = quant.plus_minus(uncertainty.to(quant.units).magnitude)
elif upper_uncertainty and lower_uncertainty:
warn('Asymmetric uncertainties are not supported. The '
'maximum of lower-uncertainty and upper-uncertainty '
'has been used as the symmetric uncertainty.')
uncertainty = max(Q_(upper_uncertainty), Q_(lower_uncertainty))
quant = quant.plus_minus(uncertainty.to(quant.units).magnitude)
else:
raise ValueError('Either "uncertainty" or "upper-uncertainty" and '
'"lower-uncertainty" need to be specified.')
else:
raise ValueError('uncertainty-type must be one of "absolute" or "relative"')
return quant | python | def process_quantity(self, properties):
"""Process the uncertainty information from a given quantity and return it
"""
quant = Q_(properties[0])
if len(properties) > 1:
unc = properties[1]
uncertainty = unc.get('uncertainty', False)
upper_uncertainty = unc.get('upper-uncertainty', False)
lower_uncertainty = unc.get('lower-uncertainty', False)
uncertainty_type = unc.get('uncertainty-type')
if uncertainty_type == 'relative':
if uncertainty:
quant = quant.plus_minus(float(uncertainty), relative=True)
elif upper_uncertainty and lower_uncertainty:
warn('Asymmetric uncertainties are not supported. The '
'maximum of lower-uncertainty and upper-uncertainty '
'has been used as the symmetric uncertainty.')
uncertainty = max(float(upper_uncertainty), float(lower_uncertainty))
quant = quant.plus_minus(uncertainty, relative=True)
else:
raise ValueError('Either "uncertainty" or "upper-uncertainty" and '
'"lower-uncertainty" need to be specified.')
elif uncertainty_type == 'absolute':
if uncertainty:
uncertainty = Q_(uncertainty)
quant = quant.plus_minus(uncertainty.to(quant.units).magnitude)
elif upper_uncertainty and lower_uncertainty:
warn('Asymmetric uncertainties are not supported. The '
'maximum of lower-uncertainty and upper-uncertainty '
'has been used as the symmetric uncertainty.')
uncertainty = max(Q_(upper_uncertainty), Q_(lower_uncertainty))
quant = quant.plus_minus(uncertainty.to(quant.units).magnitude)
else:
raise ValueError('Either "uncertainty" or "upper-uncertainty" and '
'"lower-uncertainty" need to be specified.')
else:
raise ValueError('uncertainty-type must be one of "absolute" or "relative"')
return quant | ['def', 'process_quantity', '(', 'self', ',', 'properties', ')', ':', 'quant', '=', 'Q_', '(', 'properties', '[', '0', ']', ')', 'if', 'len', '(', 'properties', ')', '>', '1', ':', 'unc', '=', 'properties', '[', '1', ']', 'uncertainty', '=', 'unc', '.', 'get', '(', "'uncertainty'", ',', 'False', ')', 'upper_uncertainty', '=', 'unc', '.', 'get', '(', "'upper-uncertainty'", ',', 'False', ')', 'lower_uncertainty', '=', 'unc', '.', 'get', '(', "'lower-uncertainty'", ',', 'False', ')', 'uncertainty_type', '=', 'unc', '.', 'get', '(', "'uncertainty-type'", ')', 'if', 'uncertainty_type', '==', "'relative'", ':', 'if', 'uncertainty', ':', 'quant', '=', 'quant', '.', 'plus_minus', '(', 'float', '(', 'uncertainty', ')', ',', 'relative', '=', 'True', ')', 'elif', 'upper_uncertainty', 'and', 'lower_uncertainty', ':', 'warn', '(', "'Asymmetric uncertainties are not supported. The '", "'maximum of lower-uncertainty and upper-uncertainty '", "'has been used as the symmetric uncertainty.'", ')', 'uncertainty', '=', 'max', '(', 'float', '(', 'upper_uncertainty', ')', ',', 'float', '(', 'lower_uncertainty', ')', ')', 'quant', '=', 'quant', '.', 'plus_minus', '(', 'uncertainty', ',', 'relative', '=', 'True', ')', 'else', ':', 'raise', 'ValueError', '(', '\'Either "uncertainty" or "upper-uncertainty" and \'', '\'"lower-uncertainty" need to be specified.\'', ')', 'elif', 'uncertainty_type', '==', "'absolute'", ':', 'if', 'uncertainty', ':', 'uncertainty', '=', 'Q_', '(', 'uncertainty', ')', 'quant', '=', 'quant', '.', 'plus_minus', '(', 'uncertainty', '.', 'to', '(', 'quant', '.', 'units', ')', '.', 'magnitude', ')', 'elif', 'upper_uncertainty', 'and', 'lower_uncertainty', ':', 'warn', '(', "'Asymmetric uncertainties are not supported. The '", "'maximum of lower-uncertainty and upper-uncertainty '", "'has been used as the symmetric uncertainty.'", ')', 'uncertainty', '=', 'max', '(', 'Q_', '(', 'upper_uncertainty', ')', ',', 'Q_', '(', 'lower_uncertainty', ')', ')', 'quant', '=', 'quant', '.', 'plus_minus', '(', 'uncertainty', '.', 'to', '(', 'quant', '.', 'units', ')', '.', 'magnitude', ')', 'else', ':', 'raise', 'ValueError', '(', '\'Either "uncertainty" or "upper-uncertainty" and \'', '\'"lower-uncertainty" need to be specified.\'', ')', 'else', ':', 'raise', 'ValueError', '(', '\'uncertainty-type must be one of "absolute" or "relative"\'', ')', 'return', 'quant'] | Process the uncertainty information from a given quantity and return it | ['Process', 'the', 'uncertainty', 'information', 'from', 'a', 'given', 'quantity', 'and', 'return', 'it'] | train | https://github.com/pr-omethe-us/PyKED/blob/d9341a068c1099049a3f1de41c512591f342bf64/pyked/chemked.py#L722-L760 |
6,996 | lawsie/guizero | guizero/event.py | EventManager.remove_event | def remove_event(self, ref):
"""
Removes an event for a ref (reference),
"""
# is this reference one which has been setup?
if ref in self._refs:
self._refs[ref].remove_callback(ref) | python | def remove_event(self, ref):
"""
Removes an event for a ref (reference),
"""
# is this reference one which has been setup?
if ref in self._refs:
self._refs[ref].remove_callback(ref) | ['def', 'remove_event', '(', 'self', ',', 'ref', ')', ':', '# is this reference one which has been setup?', 'if', 'ref', 'in', 'self', '.', '_refs', ':', 'self', '.', '_refs', '[', 'ref', ']', '.', 'remove_callback', '(', 'ref', ')'] | Removes an event for a ref (reference), | ['Removes', 'an', 'event', 'for', 'a', 'ref', '(', 'reference', ')'] | train | https://github.com/lawsie/guizero/blob/84c7f0b314fa86f9fc88eb11c9a0f6c4b57155e2/guizero/event.py#L192-L198 |
6,997 | KelSolaar/Umbra | umbra/ui/models.py | GraphModel.vertical_headers | def vertical_headers(self, value):
"""
Setter for **self.__vertical_headers** attribute.
:param value: Attribute value.
:type value: OrderedDict
"""
if value is not None:
assert type(value) is OrderedDict, "'{0}' attribute: '{1}' type is not 'OrderedDict'!".format(
"vertical_headers", value)
self.__vertical_headers = value | python | def vertical_headers(self, value):
"""
Setter for **self.__vertical_headers** attribute.
:param value: Attribute value.
:type value: OrderedDict
"""
if value is not None:
assert type(value) is OrderedDict, "'{0}' attribute: '{1}' type is not 'OrderedDict'!".format(
"vertical_headers", value)
self.__vertical_headers = value | ['def', 'vertical_headers', '(', 'self', ',', 'value', ')', ':', 'if', 'value', 'is', 'not', 'None', ':', 'assert', 'type', '(', 'value', ')', 'is', 'OrderedDict', ',', '"\'{0}\' attribute: \'{1}\' type is not \'OrderedDict\'!"', '.', 'format', '(', '"vertical_headers"', ',', 'value', ')', 'self', '.', '__vertical_headers', '=', 'value'] | Setter for **self.__vertical_headers** attribute.
:param value: Attribute value.
:type value: OrderedDict | ['Setter', 'for', '**', 'self', '.', '__vertical_headers', '**', 'attribute', '.'] | train | https://github.com/KelSolaar/Umbra/blob/66f45f08d9d723787f1191989f8b0dda84b412ce/umbra/ui/models.py#L208-L219 |
6,998 | yyuu/botornado | boto/ec2/autoscale/group.py | AutoScalingGroup.get_activities | def get_activities(self, activity_ids=None, max_records=50):
"""
Get all activies for this group.
"""
return self.connection.get_all_activities(self, activity_ids,
max_records) | python | def get_activities(self, activity_ids=None, max_records=50):
"""
Get all activies for this group.
"""
return self.connection.get_all_activities(self, activity_ids,
max_records) | ['def', 'get_activities', '(', 'self', ',', 'activity_ids', '=', 'None', ',', 'max_records', '=', '50', ')', ':', 'return', 'self', '.', 'connection', '.', 'get_all_activities', '(', 'self', ',', 'activity_ids', ',', 'max_records', ')'] | Get all activies for this group. | ['Get', 'all', 'activies', 'for', 'this', 'group', '.'] | train | https://github.com/yyuu/botornado/blob/fffb056f5ff2324d1d5c1304014cfb1d899f602e/boto/ec2/autoscale/group.py#L266-L271 |
6,999 | dwavesystems/dimod | dimod/binary_quadratic_model.py | BinaryQuadraticModel.from_pandas_dataframe | def from_pandas_dataframe(cls, bqm_df, offset=0.0, interactions=None):
"""Create a binary quadratic model from a QUBO model formatted as a pandas DataFrame.
Args:
bqm_df (:class:`pandas.DataFrame`):
Quadratic unconstrained binary optimization (QUBO) model formatted
as a pandas DataFrame. Row and column indices label the QUBO variables;
values are QUBO coefficients.
offset (optional, default=0.0):
Constant offset for the binary quadratic model.
interactions (iterable, optional, default=[]):
Any additional 0.0-bias interactions to be added to the binary quadratic model.
Returns:
:class:`.BinaryQuadraticModel`: Binary quadratic model with vartype set to
:class:`vartype.BINARY`.
Examples:
This example creates a binary quadratic model from a QUBO in pandas DataFrame format
while adding an interaction and setting a constant offset.
>>> import dimod
>>> import pandas as pd
>>> pd_qubo = pd.DataFrame(data={0: [-1, 0], 1: [2, -1]})
>>> pd_qubo
0 1
0 -1 2
1 0 -1
>>> model = dimod.BinaryQuadraticModel.from_pandas_dataframe(pd_qubo,
... offset = 2.5,
... interactions = {(0,2), (1,2)})
>>> model.linear # doctest: +SKIP
{0: -1, 1: -1.0, 2: 0.0}
>>> model.quadratic # doctest: +SKIP
{(0, 1): 2, (0, 2): 0.0, (1, 2): 0.0}
>>> model.offset
2.5
>>> model.vartype
<Vartype.BINARY: frozenset({0, 1})>
"""
if interactions is None:
interactions = []
bqm = cls({}, {}, offset, Vartype.BINARY)
for u, row in bqm_df.iterrows():
for v, bias in row.iteritems():
if u == v:
bqm.add_variable(u, bias)
elif bias:
bqm.add_interaction(u, v, bias)
for u, v in interactions:
bqm.add_interaction(u, v, 0.0)
return bqm | python | def from_pandas_dataframe(cls, bqm_df, offset=0.0, interactions=None):
"""Create a binary quadratic model from a QUBO model formatted as a pandas DataFrame.
Args:
bqm_df (:class:`pandas.DataFrame`):
Quadratic unconstrained binary optimization (QUBO) model formatted
as a pandas DataFrame. Row and column indices label the QUBO variables;
values are QUBO coefficients.
offset (optional, default=0.0):
Constant offset for the binary quadratic model.
interactions (iterable, optional, default=[]):
Any additional 0.0-bias interactions to be added to the binary quadratic model.
Returns:
:class:`.BinaryQuadraticModel`: Binary quadratic model with vartype set to
:class:`vartype.BINARY`.
Examples:
This example creates a binary quadratic model from a QUBO in pandas DataFrame format
while adding an interaction and setting a constant offset.
>>> import dimod
>>> import pandas as pd
>>> pd_qubo = pd.DataFrame(data={0: [-1, 0], 1: [2, -1]})
>>> pd_qubo
0 1
0 -1 2
1 0 -1
>>> model = dimod.BinaryQuadraticModel.from_pandas_dataframe(pd_qubo,
... offset = 2.5,
... interactions = {(0,2), (1,2)})
>>> model.linear # doctest: +SKIP
{0: -1, 1: -1.0, 2: 0.0}
>>> model.quadratic # doctest: +SKIP
{(0, 1): 2, (0, 2): 0.0, (1, 2): 0.0}
>>> model.offset
2.5
>>> model.vartype
<Vartype.BINARY: frozenset({0, 1})>
"""
if interactions is None:
interactions = []
bqm = cls({}, {}, offset, Vartype.BINARY)
for u, row in bqm_df.iterrows():
for v, bias in row.iteritems():
if u == v:
bqm.add_variable(u, bias)
elif bias:
bqm.add_interaction(u, v, bias)
for u, v in interactions:
bqm.add_interaction(u, v, 0.0)
return bqm | ['def', 'from_pandas_dataframe', '(', 'cls', ',', 'bqm_df', ',', 'offset', '=', '0.0', ',', 'interactions', '=', 'None', ')', ':', 'if', 'interactions', 'is', 'None', ':', 'interactions', '=', '[', ']', 'bqm', '=', 'cls', '(', '{', '}', ',', '{', '}', ',', 'offset', ',', 'Vartype', '.', 'BINARY', ')', 'for', 'u', ',', 'row', 'in', 'bqm_df', '.', 'iterrows', '(', ')', ':', 'for', 'v', ',', 'bias', 'in', 'row', '.', 'iteritems', '(', ')', ':', 'if', 'u', '==', 'v', ':', 'bqm', '.', 'add_variable', '(', 'u', ',', 'bias', ')', 'elif', 'bias', ':', 'bqm', '.', 'add_interaction', '(', 'u', ',', 'v', ',', 'bias', ')', 'for', 'u', ',', 'v', 'in', 'interactions', ':', 'bqm', '.', 'add_interaction', '(', 'u', ',', 'v', ',', '0.0', ')', 'return', 'bqm'] | Create a binary quadratic model from a QUBO model formatted as a pandas DataFrame.
Args:
bqm_df (:class:`pandas.DataFrame`):
Quadratic unconstrained binary optimization (QUBO) model formatted
as a pandas DataFrame. Row and column indices label the QUBO variables;
values are QUBO coefficients.
offset (optional, default=0.0):
Constant offset for the binary quadratic model.
interactions (iterable, optional, default=[]):
Any additional 0.0-bias interactions to be added to the binary quadratic model.
Returns:
:class:`.BinaryQuadraticModel`: Binary quadratic model with vartype set to
:class:`vartype.BINARY`.
Examples:
This example creates a binary quadratic model from a QUBO in pandas DataFrame format
while adding an interaction and setting a constant offset.
>>> import dimod
>>> import pandas as pd
>>> pd_qubo = pd.DataFrame(data={0: [-1, 0], 1: [2, -1]})
>>> pd_qubo
0 1
0 -1 2
1 0 -1
>>> model = dimod.BinaryQuadraticModel.from_pandas_dataframe(pd_qubo,
... offset = 2.5,
... interactions = {(0,2), (1,2)})
>>> model.linear # doctest: +SKIP
{0: -1, 1: -1.0, 2: 0.0}
>>> model.quadratic # doctest: +SKIP
{(0, 1): 2, (0, 2): 0.0, (1, 2): 0.0}
>>> model.offset
2.5
>>> model.vartype
<Vartype.BINARY: frozenset({0, 1})> | ['Create', 'a', 'binary', 'quadratic', 'model', 'from', 'a', 'QUBO', 'model', 'formatted', 'as', 'a', 'pandas', 'DataFrame', '.'] | train | https://github.com/dwavesystems/dimod/blob/beff1b7f86b559d923ac653c1de6d593876d6d38/dimod/binary_quadratic_model.py#L2456-L2514 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.