Unnamed: 0
int64
0
10k
repository_name
stringlengths
7
54
func_path_in_repository
stringlengths
5
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
100
30.3k
language
stringclasses
1 value
func_code_string
stringlengths
100
30.3k
func_code_tokens
stringlengths
138
33.2k
func_documentation_string
stringlengths
1
15k
func_documentation_tokens
stringlengths
5
5.14k
split_name
stringclasses
1 value
func_code_url
stringlengths
91
315
3,600
zhanglab/psamm
psamm/fluxanalysis.py
consistency_check
def consistency_check(model, subset, epsilon, tfba, solver): """Check that reaction subset of model is consistent using FBA. Yields all reactions that are *not* flux consistent. A reaction is consistent if there is at least one flux solution to the model that both respects the model constraints and also allows the reaction in question to have non-zero flux. This can be determined by running FBA on each reaction in turn and checking whether the flux in the solution is non-zero. Since FBA only tries to maximize the flux (and the flux can be negative for reversible reactions), we have to try to both maximize and minimize the flux. An optimization to this method is implemented such that if checking one reaction results in flux in another unchecked reaction, that reaction will immediately be marked flux consistent. Args: model: MetabolicModel to check for consistency. subset: Subset of model reactions to check. epsilon: The threshold at which the flux is considered non-zero. tfba: If True enable thermodynamic constraints. solver: LP solver instance to use. Returns: An iterator of flux inconsistent reactions in the subset. """ fba = _get_fba_problem(model, tfba, solver) subset = set(subset) while len(subset) > 0: reaction = next(iter(subset)) logger.info('{} left, checking {}...'.format(len(subset), reaction)) fba.maximize(reaction) subset = set(reaction_id for reaction_id in subset if abs(fba.get_flux(reaction_id)) <= epsilon) if reaction not in subset: continue elif model.is_reversible(reaction): fba.maximize({reaction: -1}) subset = set(reaction_id for reaction_id in subset if abs(fba.get_flux(reaction_id)) <= epsilon) if reaction not in subset: continue logger.info('{} not consistent!'.format(reaction)) yield reaction subset.remove(reaction)
python
def consistency_check(model, subset, epsilon, tfba, solver): """Check that reaction subset of model is consistent using FBA. Yields all reactions that are *not* flux consistent. A reaction is consistent if there is at least one flux solution to the model that both respects the model constraints and also allows the reaction in question to have non-zero flux. This can be determined by running FBA on each reaction in turn and checking whether the flux in the solution is non-zero. Since FBA only tries to maximize the flux (and the flux can be negative for reversible reactions), we have to try to both maximize and minimize the flux. An optimization to this method is implemented such that if checking one reaction results in flux in another unchecked reaction, that reaction will immediately be marked flux consistent. Args: model: MetabolicModel to check for consistency. subset: Subset of model reactions to check. epsilon: The threshold at which the flux is considered non-zero. tfba: If True enable thermodynamic constraints. solver: LP solver instance to use. Returns: An iterator of flux inconsistent reactions in the subset. """ fba = _get_fba_problem(model, tfba, solver) subset = set(subset) while len(subset) > 0: reaction = next(iter(subset)) logger.info('{} left, checking {}...'.format(len(subset), reaction)) fba.maximize(reaction) subset = set(reaction_id for reaction_id in subset if abs(fba.get_flux(reaction_id)) <= epsilon) if reaction not in subset: continue elif model.is_reversible(reaction): fba.maximize({reaction: -1}) subset = set(reaction_id for reaction_id in subset if abs(fba.get_flux(reaction_id)) <= epsilon) if reaction not in subset: continue logger.info('{} not consistent!'.format(reaction)) yield reaction subset.remove(reaction)
['def', 'consistency_check', '(', 'model', ',', 'subset', ',', 'epsilon', ',', 'tfba', ',', 'solver', ')', ':', 'fba', '=', '_get_fba_problem', '(', 'model', ',', 'tfba', ',', 'solver', ')', 'subset', '=', 'set', '(', 'subset', ')', 'while', 'len', '(', 'subset', ')', '>', '0', ':', 'reaction', '=', 'next', '(', 'iter', '(', 'subset', ')', ')', 'logger', '.', 'info', '(', "'{} left, checking {}...'", '.', 'format', '(', 'len', '(', 'subset', ')', ',', 'reaction', ')', ')', 'fba', '.', 'maximize', '(', 'reaction', ')', 'subset', '=', 'set', '(', 'reaction_id', 'for', 'reaction_id', 'in', 'subset', 'if', 'abs', '(', 'fba', '.', 'get_flux', '(', 'reaction_id', ')', ')', '<=', 'epsilon', ')', 'if', 'reaction', 'not', 'in', 'subset', ':', 'continue', 'elif', 'model', '.', 'is_reversible', '(', 'reaction', ')', ':', 'fba', '.', 'maximize', '(', '{', 'reaction', ':', '-', '1', '}', ')', 'subset', '=', 'set', '(', 'reaction_id', 'for', 'reaction_id', 'in', 'subset', 'if', 'abs', '(', 'fba', '.', 'get_flux', '(', 'reaction_id', ')', ')', '<=', 'epsilon', ')', 'if', 'reaction', 'not', 'in', 'subset', ':', 'continue', 'logger', '.', 'info', '(', "'{} not consistent!'", '.', 'format', '(', 'reaction', ')', ')', 'yield', 'reaction', 'subset', '.', 'remove', '(', 'reaction', ')']
Check that reaction subset of model is consistent using FBA. Yields all reactions that are *not* flux consistent. A reaction is consistent if there is at least one flux solution to the model that both respects the model constraints and also allows the reaction in question to have non-zero flux. This can be determined by running FBA on each reaction in turn and checking whether the flux in the solution is non-zero. Since FBA only tries to maximize the flux (and the flux can be negative for reversible reactions), we have to try to both maximize and minimize the flux. An optimization to this method is implemented such that if checking one reaction results in flux in another unchecked reaction, that reaction will immediately be marked flux consistent. Args: model: MetabolicModel to check for consistency. subset: Subset of model reactions to check. epsilon: The threshold at which the flux is considered non-zero. tfba: If True enable thermodynamic constraints. solver: LP solver instance to use. Returns: An iterator of flux inconsistent reactions in the subset.
['Check', 'that', 'reaction', 'subset', 'of', 'model', 'is', 'consistent', 'using', 'FBA', '.']
train
https://github.com/zhanglab/psamm/blob/dc427848c4f9d109ca590f0afa024c63b685b3f4/psamm/fluxanalysis.py#L420-L470
3,601
apple/turicreate
deps/src/boost_1_68_0/libs/metaparse/tools/benchmark/generate.py
Template.range
def range(self): """Returns the range for N""" match = self._match(in_comment( 'n[ \t]+in[ \t]*\\[([0-9]+)\\.\\.([0-9]+)\\),[ \t]+' 'step[ \t]+([0-9]+)' )) return range( int(match.group(1)), int(match.group(2)), int(match.group(3)) )
python
def range(self): """Returns the range for N""" match = self._match(in_comment( 'n[ \t]+in[ \t]*\\[([0-9]+)\\.\\.([0-9]+)\\),[ \t]+' 'step[ \t]+([0-9]+)' )) return range( int(match.group(1)), int(match.group(2)), int(match.group(3)) )
['def', 'range', '(', 'self', ')', ':', 'match', '=', 'self', '.', '_match', '(', 'in_comment', '(', "'n[ \\t]+in[ \\t]*\\\\[([0-9]+)\\\\.\\\\.([0-9]+)\\\\),[ \\t]+'", "'step[ \\t]+([0-9]+)'", ')', ')', 'return', 'range', '(', 'int', '(', 'match', '.', 'group', '(', '1', ')', ')', ',', 'int', '(', 'match', '.', 'group', '(', '2', ')', ')', ',', 'int', '(', 'match', '.', 'group', '(', '3', ')', ')', ')']
Returns the range for N
['Returns', 'the', 'range', 'for', 'N']
train
https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/deps/src/boost_1_68_0/libs/metaparse/tools/benchmark/generate.py#L143-L153
3,602
ten10solutions/Geist
geist/backends/_x11_common.py
GeistXBase.create_process
def create_process(self, command, shell=True, stdout=None, stderr=None, env=None): """ Execute a process using subprocess.Popen, setting the backend's DISPLAY """ env = env if env is not None else dict(os.environ) env['DISPLAY'] = self.display return subprocess.Popen(command, shell=shell, stdout=stdout, stderr=stderr, env=env)
python
def create_process(self, command, shell=True, stdout=None, stderr=None, env=None): """ Execute a process using subprocess.Popen, setting the backend's DISPLAY """ env = env if env is not None else dict(os.environ) env['DISPLAY'] = self.display return subprocess.Popen(command, shell=shell, stdout=stdout, stderr=stderr, env=env)
['def', 'create_process', '(', 'self', ',', 'command', ',', 'shell', '=', 'True', ',', 'stdout', '=', 'None', ',', 'stderr', '=', 'None', ',', 'env', '=', 'None', ')', ':', 'env', '=', 'env', 'if', 'env', 'is', 'not', 'None', 'else', 'dict', '(', 'os', '.', 'environ', ')', 'env', '[', "'DISPLAY'", ']', '=', 'self', '.', 'display', 'return', 'subprocess', '.', 'Popen', '(', 'command', ',', 'shell', '=', 'shell', ',', 'stdout', '=', 'stdout', ',', 'stderr', '=', 'stderr', ',', 'env', '=', 'env', ')']
Execute a process using subprocess.Popen, setting the backend's DISPLAY
['Execute', 'a', 'process', 'using', 'subprocess', '.', 'Popen', 'setting', 'the', 'backend', 's', 'DISPLAY']
train
https://github.com/ten10solutions/Geist/blob/a1ef16d8b4c3777735008b671a50acfde3ce7bf1/geist/backends/_x11_common.py#L54-L63
3,603
olitheolix/qtmacs
qtmacs/logging_handler.py
QtmacsLoggingHandler.fetch
def fetch(self, start=None, stop=None): """ Fetch log records and return them as a list. |Args| * ``start`` (**int**): non-negative index of the first log record to return. * ``stop`` (**int**): non-negative index of the last log record to return. |Returns| * **list**: list of log records (see ``logger`` module for definition of log record). |Raises| * **None** """ # Set defaults if no explicit indices were provided. if not start: start = 0 if not stop: stop = len(self.log) # Sanity check: indices must be valid. if start < 0: start = 0 if stop > len(self.log): stop = len(self.log) # Clear the fetch flag. It will be set again in the emit() # method once new data arrives. self.waitForFetch = False # Return the specified range of log records. return self.log[start:stop]
python
def fetch(self, start=None, stop=None): """ Fetch log records and return them as a list. |Args| * ``start`` (**int**): non-negative index of the first log record to return. * ``stop`` (**int**): non-negative index of the last log record to return. |Returns| * **list**: list of log records (see ``logger`` module for definition of log record). |Raises| * **None** """ # Set defaults if no explicit indices were provided. if not start: start = 0 if not stop: stop = len(self.log) # Sanity check: indices must be valid. if start < 0: start = 0 if stop > len(self.log): stop = len(self.log) # Clear the fetch flag. It will be set again in the emit() # method once new data arrives. self.waitForFetch = False # Return the specified range of log records. return self.log[start:stop]
['def', 'fetch', '(', 'self', ',', 'start', '=', 'None', ',', 'stop', '=', 'None', ')', ':', '# Set defaults if no explicit indices were provided.', 'if', 'not', 'start', ':', 'start', '=', '0', 'if', 'not', 'stop', ':', 'stop', '=', 'len', '(', 'self', '.', 'log', ')', '# Sanity check: indices must be valid.', 'if', 'start', '<', '0', ':', 'start', '=', '0', 'if', 'stop', '>', 'len', '(', 'self', '.', 'log', ')', ':', 'stop', '=', 'len', '(', 'self', '.', 'log', ')', '# Clear the fetch flag. It will be set again in the emit()', '# method once new data arrives.', 'self', '.', 'waitForFetch', '=', 'False', '# Return the specified range of log records.', 'return', 'self', '.', 'log', '[', 'start', ':', 'stop', ']']
Fetch log records and return them as a list. |Args| * ``start`` (**int**): non-negative index of the first log record to return. * ``stop`` (**int**): non-negative index of the last log record to return. |Returns| * **list**: list of log records (see ``logger`` module for definition of log record). |Raises| * **None**
['Fetch', 'log', 'records', 'and', 'return', 'them', 'as', 'a', 'list', '.']
train
https://github.com/olitheolix/qtmacs/blob/36253b082b82590f183fe154b053eb3a1e741be2/qtmacs/logging_handler.py#L127-L165
3,604
alexras/bread
bread/utils.py
indent_text
def indent_text(string, indent_level=2): """Indent every line of text in a newline-delimited string""" indented_lines = [] indent_spaces = ' ' * indent_level for line in string.split('\n'): indented_lines.append(indent_spaces + line) return '\n'.join(indented_lines)
python
def indent_text(string, indent_level=2): """Indent every line of text in a newline-delimited string""" indented_lines = [] indent_spaces = ' ' * indent_level for line in string.split('\n'): indented_lines.append(indent_spaces + line) return '\n'.join(indented_lines)
['def', 'indent_text', '(', 'string', ',', 'indent_level', '=', '2', ')', ':', 'indented_lines', '=', '[', ']', 'indent_spaces', '=', "' '", '*', 'indent_level', 'for', 'line', 'in', 'string', '.', 'split', '(', "'\\n'", ')', ':', 'indented_lines', '.', 'append', '(', 'indent_spaces', '+', 'line', ')', 'return', "'\\n'", '.', 'join', '(', 'indented_lines', ')']
Indent every line of text in a newline-delimited string
['Indent', 'every', 'line', 'of', 'text', 'in', 'a', 'newline', '-', 'delimited', 'string']
train
https://github.com/alexras/bread/blob/2e131380878c07500167fc12685e7bff1df258a4/bread/utils.py#L1-L10
3,605
muckamuck/stackility
stackility/CloudStackUtility.py
CloudStackUtility._fill_parameters
def _fill_parameters(self): """ Fill in the _parameters dict from the properties file. Args: None Returns: True Todo: Figure out what could go wrong and at least acknowledge the the fact that Murphy was an optimist. """ self._parameters = self._config.get('parameters', {}) self._fill_defaults() for k in self._parameters.keys(): try: if self._parameters[k].startswith(self.SSM) and self._parameters[k].endswith(']'): parts = self._parameters[k].split(':') tmp = parts[1].replace(']', '') val = self._get_ssm_parameter(tmp) if val: self._parameters[k] = val else: logging.error('SSM parameter {} not found'.format(tmp)) return False elif self._parameters[k] == self.ASK: val = None a1 = '__x___' a2 = '__y___' prompt1 = "Enter value for '{}': ".format(k) prompt2 = "Confirm value for '{}': ".format(k) while a1 != a2: a1 = getpass.getpass(prompt=prompt1) a2 = getpass.getpass(prompt=prompt2) if a1 == a2: val = a1 else: print('values do not match, try again') self._parameters[k] = val except: pass return True
python
def _fill_parameters(self): """ Fill in the _parameters dict from the properties file. Args: None Returns: True Todo: Figure out what could go wrong and at least acknowledge the the fact that Murphy was an optimist. """ self._parameters = self._config.get('parameters', {}) self._fill_defaults() for k in self._parameters.keys(): try: if self._parameters[k].startswith(self.SSM) and self._parameters[k].endswith(']'): parts = self._parameters[k].split(':') tmp = parts[1].replace(']', '') val = self._get_ssm_parameter(tmp) if val: self._parameters[k] = val else: logging.error('SSM parameter {} not found'.format(tmp)) return False elif self._parameters[k] == self.ASK: val = None a1 = '__x___' a2 = '__y___' prompt1 = "Enter value for '{}': ".format(k) prompt2 = "Confirm value for '{}': ".format(k) while a1 != a2: a1 = getpass.getpass(prompt=prompt1) a2 = getpass.getpass(prompt=prompt2) if a1 == a2: val = a1 else: print('values do not match, try again') self._parameters[k] = val except: pass return True
['def', '_fill_parameters', '(', 'self', ')', ':', 'self', '.', '_parameters', '=', 'self', '.', '_config', '.', 'get', '(', "'parameters'", ',', '{', '}', ')', 'self', '.', '_fill_defaults', '(', ')', 'for', 'k', 'in', 'self', '.', '_parameters', '.', 'keys', '(', ')', ':', 'try', ':', 'if', 'self', '.', '_parameters', '[', 'k', ']', '.', 'startswith', '(', 'self', '.', 'SSM', ')', 'and', 'self', '.', '_parameters', '[', 'k', ']', '.', 'endswith', '(', "']'", ')', ':', 'parts', '=', 'self', '.', '_parameters', '[', 'k', ']', '.', 'split', '(', "':'", ')', 'tmp', '=', 'parts', '[', '1', ']', '.', 'replace', '(', "']'", ',', "''", ')', 'val', '=', 'self', '.', '_get_ssm_parameter', '(', 'tmp', ')', 'if', 'val', ':', 'self', '.', '_parameters', '[', 'k', ']', '=', 'val', 'else', ':', 'logging', '.', 'error', '(', "'SSM parameter {} not found'", '.', 'format', '(', 'tmp', ')', ')', 'return', 'False', 'elif', 'self', '.', '_parameters', '[', 'k', ']', '==', 'self', '.', 'ASK', ':', 'val', '=', 'None', 'a1', '=', "'__x___'", 'a2', '=', "'__y___'", 'prompt1', '=', '"Enter value for \'{}\': "', '.', 'format', '(', 'k', ')', 'prompt2', '=', '"Confirm value for \'{}\': "', '.', 'format', '(', 'k', ')', 'while', 'a1', '!=', 'a2', ':', 'a1', '=', 'getpass', '.', 'getpass', '(', 'prompt', '=', 'prompt1', ')', 'a2', '=', 'getpass', '.', 'getpass', '(', 'prompt', '=', 'prompt2', ')', 'if', 'a1', '==', 'a2', ':', 'val', '=', 'a1', 'else', ':', 'print', '(', "'values do not match, try again'", ')', 'self', '.', '_parameters', '[', 'k', ']', '=', 'val', 'except', ':', 'pass', 'return', 'True']
Fill in the _parameters dict from the properties file. Args: None Returns: True Todo: Figure out what could go wrong and at least acknowledge the the fact that Murphy was an optimist.
['Fill', 'in', 'the', '_parameters', 'dict', 'from', 'the', 'properties', 'file', '.']
train
https://github.com/muckamuck/stackility/blob/b1696f02661134d31b99b4dea7c0d21d09482d33/stackility/CloudStackUtility.py#L453-L498
3,606
fabioz/PyDev.Debugger
_pydevd_bundle/pydevd_console.py
ConsoleMessage.add_console_message
def add_console_message(self, message_type, message): """add messages in the console_messages list """ for m in message.split("\n"): if m.strip(): self.console_messages.append((message_type, m))
python
def add_console_message(self, message_type, message): """add messages in the console_messages list """ for m in message.split("\n"): if m.strip(): self.console_messages.append((message_type, m))
['def', 'add_console_message', '(', 'self', ',', 'message_type', ',', 'message', ')', ':', 'for', 'm', 'in', 'message', '.', 'split', '(', '"\\n"', ')', ':', 'if', 'm', '.', 'strip', '(', ')', ':', 'self', '.', 'console_messages', '.', 'append', '(', '(', 'message_type', ',', 'm', ')', ')']
add messages in the console_messages list
['add', 'messages', 'in', 'the', 'console_messages', 'list']
train
https://github.com/fabioz/PyDev.Debugger/blob/ed9c4307662a5593b8a7f1f3389ecd0e79b8c503/_pydevd_bundle/pydevd_console.py#L31-L36
3,607
ska-sa/katcp-python
katcp/kattypes.py
Parameter.unpack
def unpack(self, value): """Unpack the parameter using its kattype. Parameters ---------- packed_value : str The unescaped KATCP string to unpack. Returns ------- value : object The unpacked value. """ # Wrap errors in FailReplies with information identifying the parameter try: return self._kattype.unpack(value, self.major) except ValueError, message: raise FailReply("Error in parameter %s (%s): %s" % (self.position, self.name, message))
python
def unpack(self, value): """Unpack the parameter using its kattype. Parameters ---------- packed_value : str The unescaped KATCP string to unpack. Returns ------- value : object The unpacked value. """ # Wrap errors in FailReplies with information identifying the parameter try: return self._kattype.unpack(value, self.major) except ValueError, message: raise FailReply("Error in parameter %s (%s): %s" % (self.position, self.name, message))
['def', 'unpack', '(', 'self', ',', 'value', ')', ':', '# Wrap errors in FailReplies with information identifying the parameter', 'try', ':', 'return', 'self', '.', '_kattype', '.', 'unpack', '(', 'value', ',', 'self', '.', 'major', ')', 'except', 'ValueError', ',', 'message', ':', 'raise', 'FailReply', '(', '"Error in parameter %s (%s): %s"', '%', '(', 'self', '.', 'position', ',', 'self', '.', 'name', ',', 'message', ')', ')']
Unpack the parameter using its kattype. Parameters ---------- packed_value : str The unescaped KATCP string to unpack. Returns ------- value : object The unpacked value.
['Unpack', 'the', 'parameter', 'using', 'its', 'kattype', '.']
train
https://github.com/ska-sa/katcp-python/blob/9127c826a1d030c53b84d0e95743e20e5c5ea153/katcp/kattypes.py#L586-L605
3,608
bcbio/bcbio-nextgen
bcbio/bam/trim.py
_cutadapt_se_cmd
def _cutadapt_se_cmd(fastq_files, out_files, base_cmd, data): """ this has to use the -o option, not redirect to stdout in order for gzipping to be supported """ min_length = dd.get_min_read_length(data) cmd = base_cmd + " --minimum-length={min_length} ".format(**locals()) fq1 = objectstore.cl_input(fastq_files[0]) of1 = out_files[0] cmd += " -o {of1_tx} " + str(fq1) cmd = "%s | tee > {log_tx}" % cmd return cmd
python
def _cutadapt_se_cmd(fastq_files, out_files, base_cmd, data): """ this has to use the -o option, not redirect to stdout in order for gzipping to be supported """ min_length = dd.get_min_read_length(data) cmd = base_cmd + " --minimum-length={min_length} ".format(**locals()) fq1 = objectstore.cl_input(fastq_files[0]) of1 = out_files[0] cmd += " -o {of1_tx} " + str(fq1) cmd = "%s | tee > {log_tx}" % cmd return cmd
['def', '_cutadapt_se_cmd', '(', 'fastq_files', ',', 'out_files', ',', 'base_cmd', ',', 'data', ')', ':', 'min_length', '=', 'dd', '.', 'get_min_read_length', '(', 'data', ')', 'cmd', '=', 'base_cmd', '+', '" --minimum-length={min_length} "', '.', 'format', '(', '*', '*', 'locals', '(', ')', ')', 'fq1', '=', 'objectstore', '.', 'cl_input', '(', 'fastq_files', '[', '0', ']', ')', 'of1', '=', 'out_files', '[', '0', ']', 'cmd', '+=', '" -o {of1_tx} "', '+', 'str', '(', 'fq1', ')', 'cmd', '=', '"%s | tee > {log_tx}"', '%', 'cmd', 'return', 'cmd']
this has to use the -o option, not redirect to stdout in order for gzipping to be supported
['this', 'has', 'to', 'use', 'the', '-', 'o', 'option', 'not', 'redirect', 'to', 'stdout', 'in', 'order', 'for', 'gzipping', 'to', 'be', 'supported']
train
https://github.com/bcbio/bcbio-nextgen/blob/6a9348c0054ccd5baffd22f1bb7d0422f6978b20/bcbio/bam/trim.py#L246-L257
3,609
ewels/MultiQC
multiqc/modules/fastqc/fastqc.py
MultiqcModule.sequence_quality_plot
def sequence_quality_plot (self): """ Create the HTML for the phred quality score plot """ data = dict() for s_name in self.fastqc_data: try: data[s_name] = {self.avg_bp_from_range(d['base']): d['mean'] for d in self.fastqc_data[s_name]['per_base_sequence_quality']} except KeyError: pass if len(data) == 0: log.debug('sequence_quality not found in FastQC reports') return None pconfig = { 'id': 'fastqc_per_base_sequence_quality_plot', 'title': 'FastQC: Mean Quality Scores', 'ylab': 'Phred Score', 'xlab': 'Position (bp)', 'ymin': 0, 'xDecimals': False, 'tt_label': '<b>Base {point.x}</b>: {point.y:.2f}', 'colors': self.get_status_cols('per_base_sequence_quality'), 'yPlotBands': [ {'from': 28, 'to': 100, 'color': '#c3e6c3'}, {'from': 20, 'to': 28, 'color': '#e6dcc3'}, {'from': 0, 'to': 20, 'color': '#e6c3c3'}, ] } self.add_section ( name = 'Sequence Quality Histograms', anchor = 'fastqc_per_base_sequence_quality', description = 'The mean quality value across each base position in the read.', helptext = ''' To enable multiple samples to be plotted on the same graph, only the mean quality scores are plotted (unlike the box plots seen in FastQC reports). Taken from the [FastQC help](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/2%20Per%20Base%20Sequence%20Quality.html): _The y-axis on the graph shows the quality scores. The higher the score, the better the base call. The background of the graph divides the y axis into very good quality calls (green), calls of reasonable quality (orange), and calls of poor quality (red). The quality of calls on most platforms will degrade as the run progresses, so it is common to see base calls falling into the orange area towards the end of a read._ ''', plot = linegraph.plot(data, pconfig) )
python
def sequence_quality_plot (self): """ Create the HTML for the phred quality score plot """ data = dict() for s_name in self.fastqc_data: try: data[s_name] = {self.avg_bp_from_range(d['base']): d['mean'] for d in self.fastqc_data[s_name]['per_base_sequence_quality']} except KeyError: pass if len(data) == 0: log.debug('sequence_quality not found in FastQC reports') return None pconfig = { 'id': 'fastqc_per_base_sequence_quality_plot', 'title': 'FastQC: Mean Quality Scores', 'ylab': 'Phred Score', 'xlab': 'Position (bp)', 'ymin': 0, 'xDecimals': False, 'tt_label': '<b>Base {point.x}</b>: {point.y:.2f}', 'colors': self.get_status_cols('per_base_sequence_quality'), 'yPlotBands': [ {'from': 28, 'to': 100, 'color': '#c3e6c3'}, {'from': 20, 'to': 28, 'color': '#e6dcc3'}, {'from': 0, 'to': 20, 'color': '#e6c3c3'}, ] } self.add_section ( name = 'Sequence Quality Histograms', anchor = 'fastqc_per_base_sequence_quality', description = 'The mean quality value across each base position in the read.', helptext = ''' To enable multiple samples to be plotted on the same graph, only the mean quality scores are plotted (unlike the box plots seen in FastQC reports). Taken from the [FastQC help](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/2%20Per%20Base%20Sequence%20Quality.html): _The y-axis on the graph shows the quality scores. The higher the score, the better the base call. The background of the graph divides the y axis into very good quality calls (green), calls of reasonable quality (orange), and calls of poor quality (red). The quality of calls on most platforms will degrade as the run progresses, so it is common to see base calls falling into the orange area towards the end of a read._ ''', plot = linegraph.plot(data, pconfig) )
['def', 'sequence_quality_plot', '(', 'self', ')', ':', 'data', '=', 'dict', '(', ')', 'for', 's_name', 'in', 'self', '.', 'fastqc_data', ':', 'try', ':', 'data', '[', 's_name', ']', '=', '{', 'self', '.', 'avg_bp_from_range', '(', 'd', '[', "'base'", ']', ')', ':', 'd', '[', "'mean'", ']', 'for', 'd', 'in', 'self', '.', 'fastqc_data', '[', 's_name', ']', '[', "'per_base_sequence_quality'", ']', '}', 'except', 'KeyError', ':', 'pass', 'if', 'len', '(', 'data', ')', '==', '0', ':', 'log', '.', 'debug', '(', "'sequence_quality not found in FastQC reports'", ')', 'return', 'None', 'pconfig', '=', '{', "'id'", ':', "'fastqc_per_base_sequence_quality_plot'", ',', "'title'", ':', "'FastQC: Mean Quality Scores'", ',', "'ylab'", ':', "'Phred Score'", ',', "'xlab'", ':', "'Position (bp)'", ',', "'ymin'", ':', '0', ',', "'xDecimals'", ':', 'False', ',', "'tt_label'", ':', "'<b>Base {point.x}</b>: {point.y:.2f}'", ',', "'colors'", ':', 'self', '.', 'get_status_cols', '(', "'per_base_sequence_quality'", ')', ',', "'yPlotBands'", ':', '[', '{', "'from'", ':', '28', ',', "'to'", ':', '100', ',', "'color'", ':', "'#c3e6c3'", '}', ',', '{', "'from'", ':', '20', ',', "'to'", ':', '28', ',', "'color'", ':', "'#e6dcc3'", '}', ',', '{', "'from'", ':', '0', ',', "'to'", ':', '20', ',', "'color'", ':', "'#e6c3c3'", '}', ',', ']', '}', 'self', '.', 'add_section', '(', 'name', '=', "'Sequence Quality Histograms'", ',', 'anchor', '=', "'fastqc_per_base_sequence_quality'", ',', 'description', '=', "'The mean quality value across each base position in the read.'", ',', 'helptext', '=', "'''\n To enable multiple samples to be plotted on the same graph, only the mean quality\n scores are plotted (unlike the box plots seen in FastQC reports).\n\n Taken from the [FastQC help](http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/2%20Per%20Base%20Sequence%20Quality.html):\n\n _The y-axis on the graph shows the quality scores. The higher the score, the better\n the base call. The background of the graph divides the y axis into very good quality\n calls (green), calls of reasonable quality (orange), and calls of poor quality (red).\n The quality of calls on most platforms will degrade as the run progresses, so it is\n common to see base calls falling into the orange area towards the end of a read._\n '''", ',', 'plot', '=', 'linegraph', '.', 'plot', '(', 'data', ',', 'pconfig', ')', ')']
Create the HTML for the phred quality score plot
['Create', 'the', 'HTML', 'for', 'the', 'phred', 'quality', 'score', 'plot']
train
https://github.com/ewels/MultiQC/blob/2037d6322b2554146a74efbf869156ad20d4c4ec/multiqc/modules/fastqc/fastqc.py#L324-L369
3,610
honzajavorek/redis-collections
redis_collections/base.py
RedisCollection._normalize_index
def _normalize_index(self, index, pipe=None): """Convert negative indexes into their positive equivalents.""" pipe = self.redis if pipe is None else pipe len_self = self.__len__(pipe) positive_index = index if index >= 0 else len_self + index return len_self, positive_index
python
def _normalize_index(self, index, pipe=None): """Convert negative indexes into their positive equivalents.""" pipe = self.redis if pipe is None else pipe len_self = self.__len__(pipe) positive_index = index if index >= 0 else len_self + index return len_self, positive_index
['def', '_normalize_index', '(', 'self', ',', 'index', ',', 'pipe', '=', 'None', ')', ':', 'pipe', '=', 'self', '.', 'redis', 'if', 'pipe', 'is', 'None', 'else', 'pipe', 'len_self', '=', 'self', '.', '__len__', '(', 'pipe', ')', 'positive_index', '=', 'index', 'if', 'index', '>=', '0', 'else', 'len_self', '+', 'index', 'return', 'len_self', ',', 'positive_index']
Convert negative indexes into their positive equivalents.
['Convert', 'negative', 'indexes', 'into', 'their', 'positive', 'equivalents', '.']
train
https://github.com/honzajavorek/redis-collections/blob/07ca8efe88fb128f7dc7319dfa6a26cd39b3776b/redis_collections/base.py#L152-L158
3,611
leancloud/python-sdk
leancloud/user.py
User.sign_up
def sign_up(self, username=None, password=None): """ 创建一个新用户。新创建的 User 对象,应该使用此方法来将数据保存至服务器,而不是使用 save 方法。 用户对象上必须包含 username 和 password 两个字段 """ if username: self.set('username', username) if password: self.set('password', password) username = self.get('username') if not username: raise TypeError('invalid username: {0}'.format(username)) password = self.get('password') if not password: raise TypeError('invalid password') self.save(make_current=True)
python
def sign_up(self, username=None, password=None): """ 创建一个新用户。新创建的 User 对象,应该使用此方法来将数据保存至服务器,而不是使用 save 方法。 用户对象上必须包含 username 和 password 两个字段 """ if username: self.set('username', username) if password: self.set('password', password) username = self.get('username') if not username: raise TypeError('invalid username: {0}'.format(username)) password = self.get('password') if not password: raise TypeError('invalid password') self.save(make_current=True)
['def', 'sign_up', '(', 'self', ',', 'username', '=', 'None', ',', 'password', '=', 'None', ')', ':', 'if', 'username', ':', 'self', '.', 'set', '(', "'username'", ',', 'username', ')', 'if', 'password', ':', 'self', '.', 'set', '(', "'password'", ',', 'password', ')', 'username', '=', 'self', '.', 'get', '(', "'username'", ')', 'if', 'not', 'username', ':', 'raise', 'TypeError', '(', "'invalid username: {0}'", '.', 'format', '(', 'username', ')', ')', 'password', '=', 'self', '.', 'get', '(', "'password'", ')', 'if', 'not', 'password', ':', 'raise', 'TypeError', '(', "'invalid password'", ')', 'self', '.', 'save', '(', 'make_current', '=', 'True', ')']
创建一个新用户。新创建的 User 对象,应该使用此方法来将数据保存至服务器,而不是使用 save 方法。 用户对象上必须包含 username 和 password 两个字段
['创建一个新用户。新创建的', 'User', '对象,应该使用此方法来将数据保存至服务器,而不是使用', 'save', '方法。', '用户对象上必须包含', 'username', '和', 'password', '两个字段']
train
https://github.com/leancloud/python-sdk/blob/fea3240257ce65e6a32c7312a5cee1f94a51a587/leancloud/user.py#L114-L131
3,612
hellock/icrawler
icrawler/utils/proxy_pool.py
ProxyPool.load
def load(self, filename): """Load proxies from file""" with open(filename, 'r') as fin: proxies = json.load(fin) for protocol in proxies: for proxy in proxies[protocol]: self.proxies[protocol][proxy['addr']] = Proxy( proxy['addr'], proxy['protocol'], proxy['weight'], proxy['last_checked']) self.addr_list[protocol].append(proxy['addr'])
python
def load(self, filename): """Load proxies from file""" with open(filename, 'r') as fin: proxies = json.load(fin) for protocol in proxies: for proxy in proxies[protocol]: self.proxies[protocol][proxy['addr']] = Proxy( proxy['addr'], proxy['protocol'], proxy['weight'], proxy['last_checked']) self.addr_list[protocol].append(proxy['addr'])
['def', 'load', '(', 'self', ',', 'filename', ')', ':', 'with', 'open', '(', 'filename', ',', "'r'", ')', 'as', 'fin', ':', 'proxies', '=', 'json', '.', 'load', '(', 'fin', ')', 'for', 'protocol', 'in', 'proxies', ':', 'for', 'proxy', 'in', 'proxies', '[', 'protocol', ']', ':', 'self', '.', 'proxies', '[', 'protocol', ']', '[', 'proxy', '[', "'addr'", ']', ']', '=', 'Proxy', '(', 'proxy', '[', "'addr'", ']', ',', 'proxy', '[', "'protocol'", ']', ',', 'proxy', '[', "'weight'", ']', ',', 'proxy', '[', "'last_checked'", ']', ')', 'self', '.', 'addr_list', '[', 'protocol', ']', '.', 'append', '(', 'proxy', '[', "'addr'", ']', ')']
Load proxies from file
['Load', 'proxies', 'from', 'file']
train
https://github.com/hellock/icrawler/blob/38c925758fd3d3e568d3ecc993f77bc0acfa4788/icrawler/utils/proxy_pool.py#L166-L175
3,613
inasafe/inasafe
safe/impact_function/impact_function.py
ImpactFunction.style
def style(self): """Function to apply some styles to the layers.""" LOGGER.info('ANALYSIS : Styling') classes = generate_classified_legend( self.analysis_impacted, self.exposure, self.hazard, self.use_rounding, self.debug_mode) # Let's style layers which have a geometry and have hazard_class hazard_class = hazard_class_field['key'] for layer in self._outputs(): without_geometries = [ QgsWkbTypes.NullGeometry, QgsWkbTypes.UnknownGeometry] if layer.geometryType() not in without_geometries: display_not_exposed = False if layer == self.impact or self.debug_mode: display_not_exposed = True if layer.keywords['inasafe_fields'].get(hazard_class): hazard_class_style(layer, classes, display_not_exposed) # Let's style the aggregation and analysis layer. simple_polygon_without_brush( self.aggregation_summary, aggregation_width, aggregation_color) simple_polygon_without_brush( self.analysis_impacted, analysis_width, analysis_color) # Styling is finished, save them as QML for layer in self._outputs(): layer.saveDefaultStyle()
python
def style(self): """Function to apply some styles to the layers.""" LOGGER.info('ANALYSIS : Styling') classes = generate_classified_legend( self.analysis_impacted, self.exposure, self.hazard, self.use_rounding, self.debug_mode) # Let's style layers which have a geometry and have hazard_class hazard_class = hazard_class_field['key'] for layer in self._outputs(): without_geometries = [ QgsWkbTypes.NullGeometry, QgsWkbTypes.UnknownGeometry] if layer.geometryType() not in without_geometries: display_not_exposed = False if layer == self.impact or self.debug_mode: display_not_exposed = True if layer.keywords['inasafe_fields'].get(hazard_class): hazard_class_style(layer, classes, display_not_exposed) # Let's style the aggregation and analysis layer. simple_polygon_without_brush( self.aggregation_summary, aggregation_width, aggregation_color) simple_polygon_without_brush( self.analysis_impacted, analysis_width, analysis_color) # Styling is finished, save them as QML for layer in self._outputs(): layer.saveDefaultStyle()
['def', 'style', '(', 'self', ')', ':', 'LOGGER', '.', 'info', '(', "'ANALYSIS : Styling'", ')', 'classes', '=', 'generate_classified_legend', '(', 'self', '.', 'analysis_impacted', ',', 'self', '.', 'exposure', ',', 'self', '.', 'hazard', ',', 'self', '.', 'use_rounding', ',', 'self', '.', 'debug_mode', ')', "# Let's style layers which have a geometry and have hazard_class", 'hazard_class', '=', 'hazard_class_field', '[', "'key'", ']', 'for', 'layer', 'in', 'self', '.', '_outputs', '(', ')', ':', 'without_geometries', '=', '[', 'QgsWkbTypes', '.', 'NullGeometry', ',', 'QgsWkbTypes', '.', 'UnknownGeometry', ']', 'if', 'layer', '.', 'geometryType', '(', ')', 'not', 'in', 'without_geometries', ':', 'display_not_exposed', '=', 'False', 'if', 'layer', '==', 'self', '.', 'impact', 'or', 'self', '.', 'debug_mode', ':', 'display_not_exposed', '=', 'True', 'if', 'layer', '.', 'keywords', '[', "'inasafe_fields'", ']', '.', 'get', '(', 'hazard_class', ')', ':', 'hazard_class_style', '(', 'layer', ',', 'classes', ',', 'display_not_exposed', ')', "# Let's style the aggregation and analysis layer.", 'simple_polygon_without_brush', '(', 'self', '.', 'aggregation_summary', ',', 'aggregation_width', ',', 'aggregation_color', ')', 'simple_polygon_without_brush', '(', 'self', '.', 'analysis_impacted', ',', 'analysis_width', ',', 'analysis_color', ')', '# Styling is finished, save them as QML', 'for', 'layer', 'in', 'self', '.', '_outputs', '(', ')', ':', 'layer', '.', 'saveDefaultStyle', '(', ')']
Function to apply some styles to the layers.
['Function', 'to', 'apply', 'some', 'styles', 'to', 'the', 'layers', '.']
train
https://github.com/inasafe/inasafe/blob/831d60abba919f6d481dc94a8d988cc205130724/safe/impact_function/impact_function.py#L2478-L2510
3,614
saltstack/salt
salt/returners/couchbase_return.py
get_jids
def get_jids(): ''' Return a list of all job ids ''' cb_ = _get_connection() _verify_views() ret = {} for result in cb_.query(DESIGN_NAME, 'jids', include_docs=True): ret[result.key] = _format_jid_instance(result.key, result.doc.value['load']) return ret
python
def get_jids(): ''' Return a list of all job ids ''' cb_ = _get_connection() _verify_views() ret = {} for result in cb_.query(DESIGN_NAME, 'jids', include_docs=True): ret[result.key] = _format_jid_instance(result.key, result.doc.value['load']) return ret
['def', 'get_jids', '(', ')', ':', 'cb_', '=', '_get_connection', '(', ')', '_verify_views', '(', ')', 'ret', '=', '{', '}', 'for', 'result', 'in', 'cb_', '.', 'query', '(', 'DESIGN_NAME', ',', "'jids'", ',', 'include_docs', '=', 'True', ')', ':', 'ret', '[', 'result', '.', 'key', ']', '=', '_format_jid_instance', '(', 'result', '.', 'key', ',', 'result', '.', 'doc', '.', 'value', '[', "'load'", ']', ')', 'return', 'ret']
Return a list of all job ids
['Return', 'a', 'list', 'of', 'all', 'job', 'ids']
train
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/returners/couchbase_return.py#L297-L309
3,615
geographika/mappyfile
mappyfile/validator.py
Validator.validate
def validate(self, value, add_comments=False, schema_name="map"): """ verbose - also return the jsonschema error details """ validator = self.get_schema_validator(schema_name) error_messages = [] if isinstance(value, list): for d in value: error_messages += self._validate(d, validator, add_comments, schema_name) else: error_messages = self._validate(value, validator, add_comments, schema_name) return error_messages
python
def validate(self, value, add_comments=False, schema_name="map"): """ verbose - also return the jsonschema error details """ validator = self.get_schema_validator(schema_name) error_messages = [] if isinstance(value, list): for d in value: error_messages += self._validate(d, validator, add_comments, schema_name) else: error_messages = self._validate(value, validator, add_comments, schema_name) return error_messages
['def', 'validate', '(', 'self', ',', 'value', ',', 'add_comments', '=', 'False', ',', 'schema_name', '=', '"map"', ')', ':', 'validator', '=', 'self', '.', 'get_schema_validator', '(', 'schema_name', ')', 'error_messages', '=', '[', ']', 'if', 'isinstance', '(', 'value', ',', 'list', ')', ':', 'for', 'd', 'in', 'value', ':', 'error_messages', '+=', 'self', '.', '_validate', '(', 'd', ',', 'validator', ',', 'add_comments', ',', 'schema_name', ')', 'else', ':', 'error_messages', '=', 'self', '.', '_validate', '(', 'value', ',', 'validator', ',', 'add_comments', ',', 'schema_name', ')', 'return', 'error_messages']
verbose - also return the jsonschema error details
['verbose', '-', 'also', 'return', 'the', 'jsonschema', 'error', 'details']
train
https://github.com/geographika/mappyfile/blob/aecbc5e66ec06896bc4c5db41313503468829d00/mappyfile/validator.py#L169-L183
3,616
goshuirc/irc
girc/imapping.py
IDict.copy
def copy(self): """Return a copy of ourself.""" new_dict = IDict(std=self._std) new_dict.update(self.store) return new_dict
python
def copy(self): """Return a copy of ourself.""" new_dict = IDict(std=self._std) new_dict.update(self.store) return new_dict
['def', 'copy', '(', 'self', ')', ':', 'new_dict', '=', 'IDict', '(', 'std', '=', 'self', '.', '_std', ')', 'new_dict', '.', 'update', '(', 'self', '.', 'store', ')', 'return', 'new_dict']
Return a copy of ourself.
['Return', 'a', 'copy', 'of', 'ourself', '.']
train
https://github.com/goshuirc/irc/blob/d6a5e3e04d337566c009b087f108cd76f9e122cc/girc/imapping.py#L103-L107
3,617
tonioo/sievelib
sievelib/managesieve.py
Client.setactive
def setactive(self, scriptname): """Define the active script See MANAGESIEVE specifications, section 2.8 If scriptname is empty, the current active script is disabled, ie. there will be no active script anymore. :param scriptname: script's name :rtype: boolean """ code, data = self.__send_command( "SETACTIVE", [scriptname.encode("utf-8")]) if code == "OK": return True return False
python
def setactive(self, scriptname): """Define the active script See MANAGESIEVE specifications, section 2.8 If scriptname is empty, the current active script is disabled, ie. there will be no active script anymore. :param scriptname: script's name :rtype: boolean """ code, data = self.__send_command( "SETACTIVE", [scriptname.encode("utf-8")]) if code == "OK": return True return False
['def', 'setactive', '(', 'self', ',', 'scriptname', ')', ':', 'code', ',', 'data', '=', 'self', '.', '__send_command', '(', '"SETACTIVE"', ',', '[', 'scriptname', '.', 'encode', '(', '"utf-8"', ')', ']', ')', 'if', 'code', '==', '"OK"', ':', 'return', 'True', 'return', 'False']
Define the active script See MANAGESIEVE specifications, section 2.8 If scriptname is empty, the current active script is disabled, ie. there will be no active script anymore. :param scriptname: script's name :rtype: boolean
['Define', 'the', 'active', 'script']
train
https://github.com/tonioo/sievelib/blob/88822d1f1daf30ef3dd9ac74911301b0773ef3c8/sievelib/managesieve.py#L676-L691
3,618
ray-project/ray
python/ray/tune/schedulers/median_stopping_rule.py
MedianStoppingRule.on_trial_result
def on_trial_result(self, trial_runner, trial, result): """Callback for early stopping. This stopping rule stops a running trial if the trial's best objective value by step `t` is strictly worse than the median of the running averages of all completed trials' objectives reported up to step `t`. """ if trial in self._stopped_trials: assert not self._hard_stop return TrialScheduler.CONTINUE # fall back to FIFO time = result[self._time_attr] self._results[trial].append(result) median_result = self._get_median_result(time) best_result = self._best_result(trial) if self._verbose: logger.info("Trial {} best res={} vs median res={} at t={}".format( trial, best_result, median_result, time)) if best_result < median_result and time > self._grace_period: if self._verbose: logger.info("MedianStoppingRule: " "early stopping {}".format(trial)) self._stopped_trials.add(trial) if self._hard_stop: return TrialScheduler.STOP else: return TrialScheduler.PAUSE else: return TrialScheduler.CONTINUE
python
def on_trial_result(self, trial_runner, trial, result): """Callback for early stopping. This stopping rule stops a running trial if the trial's best objective value by step `t` is strictly worse than the median of the running averages of all completed trials' objectives reported up to step `t`. """ if trial in self._stopped_trials: assert not self._hard_stop return TrialScheduler.CONTINUE # fall back to FIFO time = result[self._time_attr] self._results[trial].append(result) median_result = self._get_median_result(time) best_result = self._best_result(trial) if self._verbose: logger.info("Trial {} best res={} vs median res={} at t={}".format( trial, best_result, median_result, time)) if best_result < median_result and time > self._grace_period: if self._verbose: logger.info("MedianStoppingRule: " "early stopping {}".format(trial)) self._stopped_trials.add(trial) if self._hard_stop: return TrialScheduler.STOP else: return TrialScheduler.PAUSE else: return TrialScheduler.CONTINUE
['def', 'on_trial_result', '(', 'self', ',', 'trial_runner', ',', 'trial', ',', 'result', ')', ':', 'if', 'trial', 'in', 'self', '.', '_stopped_trials', ':', 'assert', 'not', 'self', '.', '_hard_stop', 'return', 'TrialScheduler', '.', 'CONTINUE', '# fall back to FIFO', 'time', '=', 'result', '[', 'self', '.', '_time_attr', ']', 'self', '.', '_results', '[', 'trial', ']', '.', 'append', '(', 'result', ')', 'median_result', '=', 'self', '.', '_get_median_result', '(', 'time', ')', 'best_result', '=', 'self', '.', '_best_result', '(', 'trial', ')', 'if', 'self', '.', '_verbose', ':', 'logger', '.', 'info', '(', '"Trial {} best res={} vs median res={} at t={}"', '.', 'format', '(', 'trial', ',', 'best_result', ',', 'median_result', ',', 'time', ')', ')', 'if', 'best_result', '<', 'median_result', 'and', 'time', '>', 'self', '.', '_grace_period', ':', 'if', 'self', '.', '_verbose', ':', 'logger', '.', 'info', '(', '"MedianStoppingRule: "', '"early stopping {}"', '.', 'format', '(', 'trial', ')', ')', 'self', '.', '_stopped_trials', '.', 'add', '(', 'trial', ')', 'if', 'self', '.', '_hard_stop', ':', 'return', 'TrialScheduler', '.', 'STOP', 'else', ':', 'return', 'TrialScheduler', '.', 'PAUSE', 'else', ':', 'return', 'TrialScheduler', '.', 'CONTINUE']
Callback for early stopping. This stopping rule stops a running trial if the trial's best objective value by step `t` is strictly worse than the median of the running averages of all completed trials' objectives reported up to step `t`.
['Callback', 'for', 'early', 'stopping', '.']
train
https://github.com/ray-project/ray/blob/4eade036a0505e244c976f36aaa2d64386b5129b/python/ray/tune/schedulers/median_stopping_rule.py#L56-L85
3,619
bxlab/bx-python
lib/bx_extras/stats.py
lgammln
def lgammln(xx): """ Returns the gamma function of xx. Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt. (Adapted from: Numerical Recipies in C.) Usage: lgammln(xx) """ coeff = [76.18009173, -86.50532033, 24.01409822, -1.231739516, 0.120858003e-2, -0.536382e-5] x = xx - 1.0 tmp = x + 5.5 tmp = tmp - (x+0.5)*math.log(tmp) ser = 1.0 for j in range(len(coeff)): x = x + 1 ser = ser + coeff[j]/x return -tmp + math.log(2.50662827465*ser)
python
def lgammln(xx): """ Returns the gamma function of xx. Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt. (Adapted from: Numerical Recipies in C.) Usage: lgammln(xx) """ coeff = [76.18009173, -86.50532033, 24.01409822, -1.231739516, 0.120858003e-2, -0.536382e-5] x = xx - 1.0 tmp = x + 5.5 tmp = tmp - (x+0.5)*math.log(tmp) ser = 1.0 for j in range(len(coeff)): x = x + 1 ser = ser + coeff[j]/x return -tmp + math.log(2.50662827465*ser)
['def', 'lgammln', '(', 'xx', ')', ':', 'coeff', '=', '[', '76.18009173', ',', '-', '86.50532033', ',', '24.01409822', ',', '-', '1.231739516', ',', '0.120858003e-2', ',', '-', '0.536382e-5', ']', 'x', '=', 'xx', '-', '1.0', 'tmp', '=', 'x', '+', '5.5', 'tmp', '=', 'tmp', '-', '(', 'x', '+', '0.5', ')', '*', 'math', '.', 'log', '(', 'tmp', ')', 'ser', '=', '1.0', 'for', 'j', 'in', 'range', '(', 'len', '(', 'coeff', ')', ')', ':', 'x', '=', 'x', '+', '1', 'ser', '=', 'ser', '+', 'coeff', '[', 'j', ']', '/', 'x', 'return', '-', 'tmp', '+', 'math', '.', 'log', '(', '2.50662827465', '*', 'ser', ')']
Returns the gamma function of xx. Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt. (Adapted from: Numerical Recipies in C.) Usage: lgammln(xx)
['Returns', 'the', 'gamma', 'function', 'of', 'xx', '.', 'Gamma', '(', 'z', ')', '=', 'Integral', '(', '0', 'infinity', ')', 'of', 't^', '(', 'z', '-', '1', ')', 'exp', '(', '-', 't', ')', 'dt', '.', '(', 'Adapted', 'from', ':', 'Numerical', 'Recipies', 'in', 'C', '.', ')']
train
https://github.com/bxlab/bx-python/blob/09cb725284803df90a468d910f2274628d8647de/lib/bx_extras/stats.py#L1470-L1488
3,620
BerkeleyAutomation/perception
perception/image.py
Image.mask_by_linear_ind
def mask_by_linear_ind(self, linear_inds): """Create a new image by zeroing out data at locations not in the given indices. Parameters ---------- linear_inds : :obj:`numpy.ndarray` of int A list of linear coordinates. Returns ------- :obj:`Image` A new Image of the same type, with data not indexed by inds set to zero. """ inds = self.linear_to_ij(linear_inds) return self.mask_by_ind(inds)
python
def mask_by_linear_ind(self, linear_inds): """Create a new image by zeroing out data at locations not in the given indices. Parameters ---------- linear_inds : :obj:`numpy.ndarray` of int A list of linear coordinates. Returns ------- :obj:`Image` A new Image of the same type, with data not indexed by inds set to zero. """ inds = self.linear_to_ij(linear_inds) return self.mask_by_ind(inds)
['def', 'mask_by_linear_ind', '(', 'self', ',', 'linear_inds', ')', ':', 'inds', '=', 'self', '.', 'linear_to_ij', '(', 'linear_inds', ')', 'return', 'self', '.', 'mask_by_ind', '(', 'inds', ')']
Create a new image by zeroing out data at locations not in the given indices. Parameters ---------- linear_inds : :obj:`numpy.ndarray` of int A list of linear coordinates. Returns ------- :obj:`Image` A new Image of the same type, with data not indexed by inds set to zero.
['Create', 'a', 'new', 'image', 'by', 'zeroing', 'out', 'data', 'at', 'locations', 'not', 'in', 'the', 'given', 'indices', '.']
train
https://github.com/BerkeleyAutomation/perception/blob/03d9b37dd6b66896cdfe173905c9413c8c3c5df6/perception/image.py#L452-L468
3,621
aewallin/allantools
allantools/noise_kasdin.py
Noise.adev_from_qd
def adev_from_qd(self, tau0=1.0, tau=1.0): """ prefactor for Allan deviation for noise type defined by (qd, b, tau0) Colored noise generated with (qd, b, tau0) parameters will show an Allan variance of: AVAR = prefactor * h_a * tau^c where a = b + 2 is the slope of the frequency PSD. and h_a is the frequency PSD prefactor S_y(f) = h_a * f^a The relation between a, b, c is: a b c(AVAR) c(MVAR) ----------------------- -2 -4 1 1 -1 -3 0 0 0 -2 -1 -1 +1 -1 -2 -2 +2 0 -2 -3 Coefficients from: S. T. Dawkins, J. J. McFerran and A. N. Luiten, "Considerations on the measurement of the stability of oscillators with frequency counters," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 5, pp. 918-925, May 2007. doi: 10.1109/TUFFC.2007.337 """ g_b = self.phase_psd_from_qd(tau0) f_h = 0.5/tau0 if self.b == 0: coeff = 3.0*f_h / (4.0*pow(np.pi, 2)) # E, White PM, tau^-1 elif self.b == -1: coeff = (1.038+3*np.log(2.0*np.pi*f_h*tau))/(4.0*pow(np.pi, 2))# D, Flicker PM, tau^-1 elif self.b == -2: coeff = 0.5 # C, white FM, 1/sqrt(tau) elif self.b == -3: coeff = 2*np.log(2) # B, flicker FM, constant ADEV elif self.b == -4: coeff = 2.0*pow(np.pi, 2)/3.0 # A, RW FM, sqrt(tau) return np.sqrt(coeff*g_b*pow(2.0*np.pi, 2))
python
def adev_from_qd(self, tau0=1.0, tau=1.0): """ prefactor for Allan deviation for noise type defined by (qd, b, tau0) Colored noise generated with (qd, b, tau0) parameters will show an Allan variance of: AVAR = prefactor * h_a * tau^c where a = b + 2 is the slope of the frequency PSD. and h_a is the frequency PSD prefactor S_y(f) = h_a * f^a The relation between a, b, c is: a b c(AVAR) c(MVAR) ----------------------- -2 -4 1 1 -1 -3 0 0 0 -2 -1 -1 +1 -1 -2 -2 +2 0 -2 -3 Coefficients from: S. T. Dawkins, J. J. McFerran and A. N. Luiten, "Considerations on the measurement of the stability of oscillators with frequency counters," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 5, pp. 918-925, May 2007. doi: 10.1109/TUFFC.2007.337 """ g_b = self.phase_psd_from_qd(tau0) f_h = 0.5/tau0 if self.b == 0: coeff = 3.0*f_h / (4.0*pow(np.pi, 2)) # E, White PM, tau^-1 elif self.b == -1: coeff = (1.038+3*np.log(2.0*np.pi*f_h*tau))/(4.0*pow(np.pi, 2))# D, Flicker PM, tau^-1 elif self.b == -2: coeff = 0.5 # C, white FM, 1/sqrt(tau) elif self.b == -3: coeff = 2*np.log(2) # B, flicker FM, constant ADEV elif self.b == -4: coeff = 2.0*pow(np.pi, 2)/3.0 # A, RW FM, sqrt(tau) return np.sqrt(coeff*g_b*pow(2.0*np.pi, 2))
['def', 'adev_from_qd', '(', 'self', ',', 'tau0', '=', '1.0', ',', 'tau', '=', '1.0', ')', ':', 'g_b', '=', 'self', '.', 'phase_psd_from_qd', '(', 'tau0', ')', 'f_h', '=', '0.5', '/', 'tau0', 'if', 'self', '.', 'b', '==', '0', ':', 'coeff', '=', '3.0', '*', 'f_h', '/', '(', '4.0', '*', 'pow', '(', 'np', '.', 'pi', ',', '2', ')', ')', '# E, White PM, tau^-1', 'elif', 'self', '.', 'b', '==', '-', '1', ':', 'coeff', '=', '(', '1.038', '+', '3', '*', 'np', '.', 'log', '(', '2.0', '*', 'np', '.', 'pi', '*', 'f_h', '*', 'tau', ')', ')', '/', '(', '4.0', '*', 'pow', '(', 'np', '.', 'pi', ',', '2', ')', ')', '# D, Flicker PM, tau^-1', 'elif', 'self', '.', 'b', '==', '-', '2', ':', 'coeff', '=', '0.5', '# C, white FM, 1/sqrt(tau)', 'elif', 'self', '.', 'b', '==', '-', '3', ':', 'coeff', '=', '2', '*', 'np', '.', 'log', '(', '2', ')', '# B, flicker FM, constant ADEV', 'elif', 'self', '.', 'b', '==', '-', '4', ':', 'coeff', '=', '2.0', '*', 'pow', '(', 'np', '.', 'pi', ',', '2', ')', '/', '3.0', '# A, RW FM, sqrt(tau)', 'return', 'np', '.', 'sqrt', '(', 'coeff', '*', 'g_b', '*', 'pow', '(', '2.0', '*', 'np', '.', 'pi', ',', '2', ')', ')']
prefactor for Allan deviation for noise type defined by (qd, b, tau0) Colored noise generated with (qd, b, tau0) parameters will show an Allan variance of: AVAR = prefactor * h_a * tau^c where a = b + 2 is the slope of the frequency PSD. and h_a is the frequency PSD prefactor S_y(f) = h_a * f^a The relation between a, b, c is: a b c(AVAR) c(MVAR) ----------------------- -2 -4 1 1 -1 -3 0 0 0 -2 -1 -1 +1 -1 -2 -2 +2 0 -2 -3 Coefficients from: S. T. Dawkins, J. J. McFerran and A. N. Luiten, "Considerations on the measurement of the stability of oscillators with frequency counters," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 5, pp. 918-925, May 2007. doi: 10.1109/TUFFC.2007.337
['prefactor', 'for', 'Allan', 'deviation', 'for', 'noise', 'type', 'defined', 'by', '(', 'qd', 'b', 'tau0', ')']
train
https://github.com/aewallin/allantools/blob/b5c695a5af4379fcea4d4ce93a066cb902e7ee0a/allantools/noise_kasdin.py#L209-L251
3,622
ars096/pypci
pypci/pypci.py
write
def write(bar, offset, data): """Write data to PCI board. Parameters ---------- bar : BaseAddressRegister BAR to write. offset : int Address offset in BAR to write. data : bytes Data to write. Returns ------- None Examples -------- >>> b = pypci.lspci(vendor=0x1147, device=3214) >>> pypci.write(b[0].bar[2], 0x04, b'\x01') >>> data = struct.pack('<I', 1234567) >>> pypci.write(b[0].bar[2], 0x00, data) """ if type(data) not in [bytes, bytearray]: msg = 'data should be bytes or bytearray type' raise TypeError(msg) size = len(data) verify_access_range(bar, offset, size) if bar.type == 'io': return io_write(bar, offset, data) if bar.type == 'mem': return mem_write(bar, offset, data) return
python
def write(bar, offset, data): """Write data to PCI board. Parameters ---------- bar : BaseAddressRegister BAR to write. offset : int Address offset in BAR to write. data : bytes Data to write. Returns ------- None Examples -------- >>> b = pypci.lspci(vendor=0x1147, device=3214) >>> pypci.write(b[0].bar[2], 0x04, b'\x01') >>> data = struct.pack('<I', 1234567) >>> pypci.write(b[0].bar[2], 0x00, data) """ if type(data) not in [bytes, bytearray]: msg = 'data should be bytes or bytearray type' raise TypeError(msg) size = len(data) verify_access_range(bar, offset, size) if bar.type == 'io': return io_write(bar, offset, data) if bar.type == 'mem': return mem_write(bar, offset, data) return
['def', 'write', '(', 'bar', ',', 'offset', ',', 'data', ')', ':', 'if', 'type', '(', 'data', ')', 'not', 'in', '[', 'bytes', ',', 'bytearray', ']', ':', 'msg', '=', "'data should be bytes or bytearray type'", 'raise', 'TypeError', '(', 'msg', ')', 'size', '=', 'len', '(', 'data', ')', 'verify_access_range', '(', 'bar', ',', 'offset', ',', 'size', ')', 'if', 'bar', '.', 'type', '==', "'io'", ':', 'return', 'io_write', '(', 'bar', ',', 'offset', ',', 'data', ')', 'if', 'bar', '.', 'type', '==', "'mem'", ':', 'return', 'mem_write', '(', 'bar', ',', 'offset', ',', 'data', ')', 'return']
Write data to PCI board. Parameters ---------- bar : BaseAddressRegister BAR to write. offset : int Address offset in BAR to write. data : bytes Data to write. Returns ------- None Examples -------- >>> b = pypci.lspci(vendor=0x1147, device=3214) >>> pypci.write(b[0].bar[2], 0x04, b'\x01') >>> data = struct.pack('<I', 1234567) >>> pypci.write(b[0].bar[2], 0x00, data)
['Write', 'data', 'to', 'PCI', 'board', '.', 'Parameters', '----------', 'bar', ':', 'BaseAddressRegister', 'BAR', 'to', 'write', '.', 'offset', ':', 'int', 'Address', 'offset', 'in', 'BAR', 'to', 'write', '.', 'data', ':', 'bytes', 'Data', 'to', 'write', '.', 'Returns', '-------', 'None', 'Examples', '--------', '>>>', 'b', '=', 'pypci', '.', 'lspci', '(', 'vendor', '=', '0x1147', 'device', '=', '3214', ')', '>>>', 'pypci', '.', 'write', '(', 'b', '[', '0', ']', '.', 'bar', '[', '2', ']', '0x04', 'b', '\\', 'x01', ')', '>>>', 'data', '=', 'struct', '.', 'pack', '(', '<I', '1234567', ')', '>>>', 'pypci', '.', 'write', '(', 'b', '[', '0', ']', '.', 'bar', '[', '2', ']', '0x00', 'data', ')']
train
https://github.com/ars096/pypci/blob/9469fa012e1f88fc6efc3aa6c17cd9732bbf73f6/pypci/pypci.py#L247-L282
3,623
watson-developer-cloud/python-sdk
ibm_watson/assistant_v1.py
AssistantV1.update_intent
def update_intent(self, workspace_id, intent, new_intent=None, new_description=None, new_examples=None, **kwargs): """ Update intent. Update an existing intent with new or modified data. You must provide component objects defining the content of the updated intent. This operation is limited to 2000 requests per 30 minutes. For more information, see **Rate limiting**. :param str workspace_id: Unique identifier of the workspace. :param str intent: The intent name. :param str new_intent: The name of the intent. This string must conform to the following restrictions: - It can contain only Unicode alphanumeric, underscore, hyphen, and dot characters. - It cannot begin with the reserved prefix `sys-`. - It must be no longer than 128 characters. :param str new_description: The description of the intent. This string cannot contain carriage return, newline, or tab characters, and it must be no longer than 128 characters. :param list[Example] new_examples: An array of user input examples for the intent. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if workspace_id is None: raise ValueError('workspace_id must be provided') if intent is None: raise ValueError('intent must be provided') if new_examples is not None: new_examples = [ self._convert_model(x, Example) for x in new_examples ] headers = {} if 'headers' in kwargs: headers.update(kwargs.get('headers')) sdk_headers = get_sdk_headers('conversation', 'V1', 'update_intent') headers.update(sdk_headers) params = {'version': self.version} data = { 'intent': new_intent, 'description': new_description, 'examples': new_examples } url = '/v1/workspaces/{0}/intents/{1}'.format( *self._encode_path_vars(workspace_id, intent)) response = self.request( method='POST', url=url, headers=headers, params=params, json=data, accept_json=True) return response
python
def update_intent(self, workspace_id, intent, new_intent=None, new_description=None, new_examples=None, **kwargs): """ Update intent. Update an existing intent with new or modified data. You must provide component objects defining the content of the updated intent. This operation is limited to 2000 requests per 30 minutes. For more information, see **Rate limiting**. :param str workspace_id: Unique identifier of the workspace. :param str intent: The intent name. :param str new_intent: The name of the intent. This string must conform to the following restrictions: - It can contain only Unicode alphanumeric, underscore, hyphen, and dot characters. - It cannot begin with the reserved prefix `sys-`. - It must be no longer than 128 characters. :param str new_description: The description of the intent. This string cannot contain carriage return, newline, or tab characters, and it must be no longer than 128 characters. :param list[Example] new_examples: An array of user input examples for the intent. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if workspace_id is None: raise ValueError('workspace_id must be provided') if intent is None: raise ValueError('intent must be provided') if new_examples is not None: new_examples = [ self._convert_model(x, Example) for x in new_examples ] headers = {} if 'headers' in kwargs: headers.update(kwargs.get('headers')) sdk_headers = get_sdk_headers('conversation', 'V1', 'update_intent') headers.update(sdk_headers) params = {'version': self.version} data = { 'intent': new_intent, 'description': new_description, 'examples': new_examples } url = '/v1/workspaces/{0}/intents/{1}'.format( *self._encode_path_vars(workspace_id, intent)) response = self.request( method='POST', url=url, headers=headers, params=params, json=data, accept_json=True) return response
['def', 'update_intent', '(', 'self', ',', 'workspace_id', ',', 'intent', ',', 'new_intent', '=', 'None', ',', 'new_description', '=', 'None', ',', 'new_examples', '=', 'None', ',', '*', '*', 'kwargs', ')', ':', 'if', 'workspace_id', 'is', 'None', ':', 'raise', 'ValueError', '(', "'workspace_id must be provided'", ')', 'if', 'intent', 'is', 'None', ':', 'raise', 'ValueError', '(', "'intent must be provided'", ')', 'if', 'new_examples', 'is', 'not', 'None', ':', 'new_examples', '=', '[', 'self', '.', '_convert_model', '(', 'x', ',', 'Example', ')', 'for', 'x', 'in', 'new_examples', ']', 'headers', '=', '{', '}', 'if', "'headers'", 'in', 'kwargs', ':', 'headers', '.', 'update', '(', 'kwargs', '.', 'get', '(', "'headers'", ')', ')', 'sdk_headers', '=', 'get_sdk_headers', '(', "'conversation'", ',', "'V1'", ',', "'update_intent'", ')', 'headers', '.', 'update', '(', 'sdk_headers', ')', 'params', '=', '{', "'version'", ':', 'self', '.', 'version', '}', 'data', '=', '{', "'intent'", ':', 'new_intent', ',', "'description'", ':', 'new_description', ',', "'examples'", ':', 'new_examples', '}', 'url', '=', "'/v1/workspaces/{0}/intents/{1}'", '.', 'format', '(', '*', 'self', '.', '_encode_path_vars', '(', 'workspace_id', ',', 'intent', ')', ')', 'response', '=', 'self', '.', 'request', '(', 'method', '=', "'POST'", ',', 'url', '=', 'url', ',', 'headers', '=', 'headers', ',', 'params', '=', 'params', ',', 'json', '=', 'data', ',', 'accept_json', '=', 'True', ')', 'return', 'response']
Update intent. Update an existing intent with new or modified data. You must provide component objects defining the content of the updated intent. This operation is limited to 2000 requests per 30 minutes. For more information, see **Rate limiting**. :param str workspace_id: Unique identifier of the workspace. :param str intent: The intent name. :param str new_intent: The name of the intent. This string must conform to the following restrictions: - It can contain only Unicode alphanumeric, underscore, hyphen, and dot characters. - It cannot begin with the reserved prefix `sys-`. - It must be no longer than 128 characters. :param str new_description: The description of the intent. This string cannot contain carriage return, newline, or tab characters, and it must be no longer than 128 characters. :param list[Example] new_examples: An array of user input examples for the intent. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse
['Update', 'intent', '.']
train
https://github.com/watson-developer-cloud/python-sdk/blob/4c2c9df4466fcde88975da9ecd834e6ba95eb353/ibm_watson/assistant_v1.py#L751-L815
3,624
kayak/pypika
pypika/queries.py
QueryBuilder._group_sql
def _group_sql(self, quote_char=None, groupby_alias=True, **kwargs): """ Produces the GROUP BY part of the query. This is a list of fields. The clauses are stored in the query under self._groupbys as a list fields. If an groupby field is used in the select clause, determined by a matching alias, and the groupby_alias is set True then the GROUP BY clause will use the alias, otherwise the entire field will be rendered as SQL. """ clauses = [] selected_aliases = {s.alias for s in self._selects} for field in self._groupbys: if groupby_alias and field.alias and field.alias in selected_aliases: clauses.append("{quote}{alias}{quote}".format( alias=field.alias, quote=quote_char or '', )) else: clauses.append(field.get_sql(quote_char=quote_char, **kwargs)) sql = ' GROUP BY {groupby}'.format(groupby=','.join(clauses)) if self._with_totals: return sql + ' WITH TOTALS' return sql
python
def _group_sql(self, quote_char=None, groupby_alias=True, **kwargs): """ Produces the GROUP BY part of the query. This is a list of fields. The clauses are stored in the query under self._groupbys as a list fields. If an groupby field is used in the select clause, determined by a matching alias, and the groupby_alias is set True then the GROUP BY clause will use the alias, otherwise the entire field will be rendered as SQL. """ clauses = [] selected_aliases = {s.alias for s in self._selects} for field in self._groupbys: if groupby_alias and field.alias and field.alias in selected_aliases: clauses.append("{quote}{alias}{quote}".format( alias=field.alias, quote=quote_char or '', )) else: clauses.append(field.get_sql(quote_char=quote_char, **kwargs)) sql = ' GROUP BY {groupby}'.format(groupby=','.join(clauses)) if self._with_totals: return sql + ' WITH TOTALS' return sql
['def', '_group_sql', '(', 'self', ',', 'quote_char', '=', 'None', ',', 'groupby_alias', '=', 'True', ',', '*', '*', 'kwargs', ')', ':', 'clauses', '=', '[', ']', 'selected_aliases', '=', '{', 's', '.', 'alias', 'for', 's', 'in', 'self', '.', '_selects', '}', 'for', 'field', 'in', 'self', '.', '_groupbys', ':', 'if', 'groupby_alias', 'and', 'field', '.', 'alias', 'and', 'field', '.', 'alias', 'in', 'selected_aliases', ':', 'clauses', '.', 'append', '(', '"{quote}{alias}{quote}"', '.', 'format', '(', 'alias', '=', 'field', '.', 'alias', ',', 'quote', '=', 'quote_char', 'or', "''", ',', ')', ')', 'else', ':', 'clauses', '.', 'append', '(', 'field', '.', 'get_sql', '(', 'quote_char', '=', 'quote_char', ',', '*', '*', 'kwargs', ')', ')', 'sql', '=', "' GROUP BY {groupby}'", '.', 'format', '(', 'groupby', '=', "','", '.', 'join', '(', 'clauses', ')', ')', 'if', 'self', '.', '_with_totals', ':', 'return', 'sql', '+', "' WITH TOTALS'", 'return', 'sql']
Produces the GROUP BY part of the query. This is a list of fields. The clauses are stored in the query under self._groupbys as a list fields. If an groupby field is used in the select clause, determined by a matching alias, and the groupby_alias is set True then the GROUP BY clause will use the alias, otherwise the entire field will be rendered as SQL.
['Produces', 'the', 'GROUP', 'BY', 'part', 'of', 'the', 'query', '.', 'This', 'is', 'a', 'list', 'of', 'fields', '.', 'The', 'clauses', 'are', 'stored', 'in', 'the', 'query', 'under', 'self', '.', '_groupbys', 'as', 'a', 'list', 'fields', '.']
train
https://github.com/kayak/pypika/blob/bfed26e963b982ecdb9697b61b67d76b493f2115/pypika/queries.py#L914-L938
3,625
kmedian/ctmc
ctmc/simulate.py
simulate
def simulate(s0, transmat, steps=1): """Simulate the next state Parameters ---------- s0 : ndarray Vector with state variables at t=0 transmat : ndarray The estimated transition/stochastic matrix. steps : int (Default: 1) The number of steps to simulate model outputs ahead. If steps>1 the a Mult-Step Simulation is triggered. Returns ------- out : ndarray (steps=1) Vector with simulated state variables (). (steps>1) Matrix with out[:,step] columns (Fortran order) from a Multi-Step Simulation. The first column is the initial state vector out[:,0]=s0 for algorithmic reasons. """ # Single-Step simulation if steps == 1: return np.dot(s0, transmat) # Multi-Step simulation out = np.zeros(shape=(steps + 1, len(s0)), order='C') out[0, :] = s0 for i in range(1, steps + 1): out[i, :] = np.dot(out[i - 1, :], transmat) return out
python
def simulate(s0, transmat, steps=1): """Simulate the next state Parameters ---------- s0 : ndarray Vector with state variables at t=0 transmat : ndarray The estimated transition/stochastic matrix. steps : int (Default: 1) The number of steps to simulate model outputs ahead. If steps>1 the a Mult-Step Simulation is triggered. Returns ------- out : ndarray (steps=1) Vector with simulated state variables (). (steps>1) Matrix with out[:,step] columns (Fortran order) from a Multi-Step Simulation. The first column is the initial state vector out[:,0]=s0 for algorithmic reasons. """ # Single-Step simulation if steps == 1: return np.dot(s0, transmat) # Multi-Step simulation out = np.zeros(shape=(steps + 1, len(s0)), order='C') out[0, :] = s0 for i in range(1, steps + 1): out[i, :] = np.dot(out[i - 1, :], transmat) return out
['def', 'simulate', '(', 's0', ',', 'transmat', ',', 'steps', '=', '1', ')', ':', '# Single-Step simulation', 'if', 'steps', '==', '1', ':', 'return', 'np', '.', 'dot', '(', 's0', ',', 'transmat', ')', '# Multi-Step simulation', 'out', '=', 'np', '.', 'zeros', '(', 'shape', '=', '(', 'steps', '+', '1', ',', 'len', '(', 's0', ')', ')', ',', 'order', '=', "'C'", ')', 'out', '[', '0', ',', ':', ']', '=', 's0', 'for', 'i', 'in', 'range', '(', '1', ',', 'steps', '+', '1', ')', ':', 'out', '[', 'i', ',', ':', ']', '=', 'np', '.', 'dot', '(', 'out', '[', 'i', '-', '1', ',', ':', ']', ',', 'transmat', ')', 'return', 'out']
Simulate the next state Parameters ---------- s0 : ndarray Vector with state variables at t=0 transmat : ndarray The estimated transition/stochastic matrix. steps : int (Default: 1) The number of steps to simulate model outputs ahead. If steps>1 the a Mult-Step Simulation is triggered. Returns ------- out : ndarray (steps=1) Vector with simulated state variables (). (steps>1) Matrix with out[:,step] columns (Fortran order) from a Multi-Step Simulation. The first column is the initial state vector out[:,0]=s0 for algorithmic reasons.
['Simulate', 'the', 'next', 'state']
train
https://github.com/kmedian/ctmc/blob/e30747f797ce777fd2aaa1b7ee5a77e91d7db5e4/ctmc/simulate.py#L5-L40
3,626
inspirehep/inspire-dojson
inspire_dojson/hepnames/rules.py
name2marc
def name2marc(self, key, value): """Populates the ``100`` field. Also populates the ``400``, ``880``, and ``667`` fields through side effects. """ result = self.get('100', {}) result['a'] = value.get('value') result['b'] = value.get('numeration') result['c'] = value.get('title') result['q'] = value.get('preferred_name') if 'name_variants' in value: self['400'] = [{'a': el} for el in value['name_variants']] if 'native_names' in value: self['880'] = [{'a': el} for el in value['native_names']] if 'previous_names' in value: prev_names = [ {'a': u'Formerly {}'.format(prev_name)} for prev_name in value['previous_names'] ] self['667'] = prev_names return result
python
def name2marc(self, key, value): """Populates the ``100`` field. Also populates the ``400``, ``880``, and ``667`` fields through side effects. """ result = self.get('100', {}) result['a'] = value.get('value') result['b'] = value.get('numeration') result['c'] = value.get('title') result['q'] = value.get('preferred_name') if 'name_variants' in value: self['400'] = [{'a': el} for el in value['name_variants']] if 'native_names' in value: self['880'] = [{'a': el} for el in value['native_names']] if 'previous_names' in value: prev_names = [ {'a': u'Formerly {}'.format(prev_name)} for prev_name in value['previous_names'] ] self['667'] = prev_names return result
['def', 'name2marc', '(', 'self', ',', 'key', ',', 'value', ')', ':', 'result', '=', 'self', '.', 'get', '(', "'100'", ',', '{', '}', ')', 'result', '[', "'a'", ']', '=', 'value', '.', 'get', '(', "'value'", ')', 'result', '[', "'b'", ']', '=', 'value', '.', 'get', '(', "'numeration'", ')', 'result', '[', "'c'", ']', '=', 'value', '.', 'get', '(', "'title'", ')', 'result', '[', "'q'", ']', '=', 'value', '.', 'get', '(', "'preferred_name'", ')', 'if', "'name_variants'", 'in', 'value', ':', 'self', '[', "'400'", ']', '=', '[', '{', "'a'", ':', 'el', '}', 'for', 'el', 'in', 'value', '[', "'name_variants'", ']', ']', 'if', "'native_names'", 'in', 'value', ':', 'self', '[', "'880'", ']', '=', '[', '{', "'a'", ':', 'el', '}', 'for', 'el', 'in', 'value', '[', "'native_names'", ']', ']', 'if', "'previous_names'", 'in', 'value', ':', 'prev_names', '=', '[', '{', "'a'", ':', "u'Formerly {}'", '.', 'format', '(', 'prev_name', ')', '}', 'for', 'prev_name', 'in', 'value', '[', "'previous_names'", ']', ']', 'self', '[', "'667'", ']', '=', 'prev_names', 'return', 'result']
Populates the ``100`` field. Also populates the ``400``, ``880``, and ``667`` fields through side effects.
['Populates', 'the', '100', 'field', '.']
train
https://github.com/inspirehep/inspire-dojson/blob/17f3789cd3d5ae58efa1190dc0eea9efb9c8ca59/inspire_dojson/hepnames/rules.py#L213-L237
3,627
mitsei/dlkit
dlkit/json_/grading/objects.py
GradebookNode.get_gradebook
def get_gradebook(self): """Gets the ``Gradebook`` at this node. return: (osid.grading.Gradebook) - the gradebook represented by this node *compliance: mandatory -- This method must be implemented.* """ if self._lookup_session is None: mgr = get_provider_manager('GRADING', runtime=self._runtime, proxy=self._proxy) self._lookup_session = mgr.get_gradebook_lookup_session(proxy=getattr(self, "_proxy", None)) return self._lookup_session.get_gradebook(Id(self._my_map['id']))
python
def get_gradebook(self): """Gets the ``Gradebook`` at this node. return: (osid.grading.Gradebook) - the gradebook represented by this node *compliance: mandatory -- This method must be implemented.* """ if self._lookup_session is None: mgr = get_provider_manager('GRADING', runtime=self._runtime, proxy=self._proxy) self._lookup_session = mgr.get_gradebook_lookup_session(proxy=getattr(self, "_proxy", None)) return self._lookup_session.get_gradebook(Id(self._my_map['id']))
['def', 'get_gradebook', '(', 'self', ')', ':', 'if', 'self', '.', '_lookup_session', 'is', 'None', ':', 'mgr', '=', 'get_provider_manager', '(', "'GRADING'", ',', 'runtime', '=', 'self', '.', '_runtime', ',', 'proxy', '=', 'self', '.', '_proxy', ')', 'self', '.', '_lookup_session', '=', 'mgr', '.', 'get_gradebook_lookup_session', '(', 'proxy', '=', 'getattr', '(', 'self', ',', '"_proxy"', ',', 'None', ')', ')', 'return', 'self', '.', '_lookup_session', '.', 'get_gradebook', '(', 'Id', '(', 'self', '.', '_my_map', '[', "'id'", ']', ')', ')']
Gets the ``Gradebook`` at this node. return: (osid.grading.Gradebook) - the gradebook represented by this node *compliance: mandatory -- This method must be implemented.*
['Gets', 'the', 'Gradebook', 'at', 'this', 'node', '.']
train
https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/grading/objects.py#L2041-L2052
3,628
saltstack/salt
salt/modules/solr.py
signal
def signal(signal=None): ''' Signals Apache Solr to start, stop, or restart. Obviously this is only going to work if the minion resides on the solr host. Additionally Solr doesn't ship with an init script so one must be created. signal : str (None) The command to pass to the apache solr init valid values are 'start', 'stop', and 'restart' CLI Example: .. code-block:: bash salt '*' solr.signal restart ''' valid_signals = ('start', 'stop', 'restart') # Give a friendly error message for invalid signals # TODO: Fix this logic to be reusable and used by apache.signal if signal not in valid_signals: msg = valid_signals[:-1] + ('or {0}'.format(valid_signals[-1]),) return '{0} is an invalid signal. Try: one of: {1}'.format( signal, ', '.join(msg)) cmd = "{0} {1}".format(__opts__['solr.init_script'], signal) __salt__['cmd.run'](cmd, python_shell=False)
python
def signal(signal=None): ''' Signals Apache Solr to start, stop, or restart. Obviously this is only going to work if the minion resides on the solr host. Additionally Solr doesn't ship with an init script so one must be created. signal : str (None) The command to pass to the apache solr init valid values are 'start', 'stop', and 'restart' CLI Example: .. code-block:: bash salt '*' solr.signal restart ''' valid_signals = ('start', 'stop', 'restart') # Give a friendly error message for invalid signals # TODO: Fix this logic to be reusable and used by apache.signal if signal not in valid_signals: msg = valid_signals[:-1] + ('or {0}'.format(valid_signals[-1]),) return '{0} is an invalid signal. Try: one of: {1}'.format( signal, ', '.join(msg)) cmd = "{0} {1}".format(__opts__['solr.init_script'], signal) __salt__['cmd.run'](cmd, python_shell=False)
['def', 'signal', '(', 'signal', '=', 'None', ')', ':', 'valid_signals', '=', '(', "'start'", ',', "'stop'", ',', "'restart'", ')', '# Give a friendly error message for invalid signals', '# TODO: Fix this logic to be reusable and used by apache.signal', 'if', 'signal', 'not', 'in', 'valid_signals', ':', 'msg', '=', 'valid_signals', '[', ':', '-', '1', ']', '+', '(', "'or {0}'", '.', 'format', '(', 'valid_signals', '[', '-', '1', ']', ')', ',', ')', 'return', "'{0} is an invalid signal. Try: one of: {1}'", '.', 'format', '(', 'signal', ',', "', '", '.', 'join', '(', 'msg', ')', ')', 'cmd', '=', '"{0} {1}"', '.', 'format', '(', '__opts__', '[', "'solr.init_script'", ']', ',', 'signal', ')', '__salt__', '[', "'cmd.run'", ']', '(', 'cmd', ',', 'python_shell', '=', 'False', ')']
Signals Apache Solr to start, stop, or restart. Obviously this is only going to work if the minion resides on the solr host. Additionally Solr doesn't ship with an init script so one must be created. signal : str (None) The command to pass to the apache solr init valid values are 'start', 'stop', and 'restart' CLI Example: .. code-block:: bash salt '*' solr.signal restart
['Signals', 'Apache', 'Solr', 'to', 'start', 'stop', 'or', 'restart', '.', 'Obviously', 'this', 'is', 'only', 'going', 'to', 'work', 'if', 'the', 'minion', 'resides', 'on', 'the', 'solr', 'host', '.', 'Additionally', 'Solr', 'doesn', 't', 'ship', 'with', 'an', 'init', 'script', 'so', 'one', 'must', 'be', 'created', '.']
train
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/solr.py#L996-L1022
3,629
bcbio/bcbio-nextgen
bcbio/ngsalign/bowtie2.py
align_transcriptome
def align_transcriptome(fastq_file, pair_file, ref_file, data): """ bowtie2 with settings for aligning to the transcriptome for eXpress/RSEM/etc """ work_bam = dd.get_work_bam(data) base, ext = os.path.splitext(work_bam) out_file = base + ".transcriptome" + ext if utils.file_exists(out_file): data = dd.set_transcriptome_bam(data, out_file) return data bowtie2 = config_utils.get_program("bowtie2", data["config"]) gtf_file = dd.get_gtf_file(data) gtf_index = index_transcriptome(gtf_file, ref_file, data) num_cores = data["config"]["algorithm"].get("num_cores", 1) fastq_cmd = "-1 %s" % fastq_file if pair_file else "-U %s" % fastq_file pair_cmd = "-2 %s " % pair_file if pair_file else "" cmd = ("{bowtie2} -p {num_cores} -a -X 600 --rdg 6,5 --rfg 6,5 --score-min L,-.6,-.4 --no-discordant --no-mixed -x {gtf_index} {fastq_cmd} {pair_cmd} ") with file_transaction(data, out_file) as tx_out_file: message = "Aligning %s and %s to the transcriptome." % (fastq_file, pair_file) cmd += "| " + postalign.sam_to_sortbam_cl(data, tx_out_file, name_sort=True) do.run(cmd.format(**locals()), message) data = dd.set_transcriptome_bam(data, out_file) return data
python
def align_transcriptome(fastq_file, pair_file, ref_file, data): """ bowtie2 with settings for aligning to the transcriptome for eXpress/RSEM/etc """ work_bam = dd.get_work_bam(data) base, ext = os.path.splitext(work_bam) out_file = base + ".transcriptome" + ext if utils.file_exists(out_file): data = dd.set_transcriptome_bam(data, out_file) return data bowtie2 = config_utils.get_program("bowtie2", data["config"]) gtf_file = dd.get_gtf_file(data) gtf_index = index_transcriptome(gtf_file, ref_file, data) num_cores = data["config"]["algorithm"].get("num_cores", 1) fastq_cmd = "-1 %s" % fastq_file if pair_file else "-U %s" % fastq_file pair_cmd = "-2 %s " % pair_file if pair_file else "" cmd = ("{bowtie2} -p {num_cores} -a -X 600 --rdg 6,5 --rfg 6,5 --score-min L,-.6,-.4 --no-discordant --no-mixed -x {gtf_index} {fastq_cmd} {pair_cmd} ") with file_transaction(data, out_file) as tx_out_file: message = "Aligning %s and %s to the transcriptome." % (fastq_file, pair_file) cmd += "| " + postalign.sam_to_sortbam_cl(data, tx_out_file, name_sort=True) do.run(cmd.format(**locals()), message) data = dd.set_transcriptome_bam(data, out_file) return data
['def', 'align_transcriptome', '(', 'fastq_file', ',', 'pair_file', ',', 'ref_file', ',', 'data', ')', ':', 'work_bam', '=', 'dd', '.', 'get_work_bam', '(', 'data', ')', 'base', ',', 'ext', '=', 'os', '.', 'path', '.', 'splitext', '(', 'work_bam', ')', 'out_file', '=', 'base', '+', '".transcriptome"', '+', 'ext', 'if', 'utils', '.', 'file_exists', '(', 'out_file', ')', ':', 'data', '=', 'dd', '.', 'set_transcriptome_bam', '(', 'data', ',', 'out_file', ')', 'return', 'data', 'bowtie2', '=', 'config_utils', '.', 'get_program', '(', '"bowtie2"', ',', 'data', '[', '"config"', ']', ')', 'gtf_file', '=', 'dd', '.', 'get_gtf_file', '(', 'data', ')', 'gtf_index', '=', 'index_transcriptome', '(', 'gtf_file', ',', 'ref_file', ',', 'data', ')', 'num_cores', '=', 'data', '[', '"config"', ']', '[', '"algorithm"', ']', '.', 'get', '(', '"num_cores"', ',', '1', ')', 'fastq_cmd', '=', '"-1 %s"', '%', 'fastq_file', 'if', 'pair_file', 'else', '"-U %s"', '%', 'fastq_file', 'pair_cmd', '=', '"-2 %s "', '%', 'pair_file', 'if', 'pair_file', 'else', '""', 'cmd', '=', '(', '"{bowtie2} -p {num_cores} -a -X 600 --rdg 6,5 --rfg 6,5 --score-min L,-.6,-.4 --no-discordant --no-mixed -x {gtf_index} {fastq_cmd} {pair_cmd} "', ')', 'with', 'file_transaction', '(', 'data', ',', 'out_file', ')', 'as', 'tx_out_file', ':', 'message', '=', '"Aligning %s and %s to the transcriptome."', '%', '(', 'fastq_file', ',', 'pair_file', ')', 'cmd', '+=', '"| "', '+', 'postalign', '.', 'sam_to_sortbam_cl', '(', 'data', ',', 'tx_out_file', ',', 'name_sort', '=', 'True', ')', 'do', '.', 'run', '(', 'cmd', '.', 'format', '(', '*', '*', 'locals', '(', ')', ')', ',', 'message', ')', 'data', '=', 'dd', '.', 'set_transcriptome_bam', '(', 'data', ',', 'out_file', ')', 'return', 'data']
bowtie2 with settings for aligning to the transcriptome for eXpress/RSEM/etc
['bowtie2', 'with', 'settings', 'for', 'aligning', 'to', 'the', 'transcriptome', 'for', 'eXpress', '/', 'RSEM', '/', 'etc']
train
https://github.com/bcbio/bcbio-nextgen/blob/6a9348c0054ccd5baffd22f1bb7d0422f6978b20/bcbio/ngsalign/bowtie2.py#L130-L152
3,630
Fuyukai/asyncwebsockets
asyncwebsockets/server.py
open_websocket_server
async def open_websocket_server(sock, filter=None): # pylint: disable=W0622 """ A context manager which serves this websocket. :param filter: an async callback which accepts the connection request and returns a bool, or an explicit Accept/Reject message. """ ws = await create_websocket_server(sock, filter=filter) try: yield ws finally: await ws.close()
python
async def open_websocket_server(sock, filter=None): # pylint: disable=W0622 """ A context manager which serves this websocket. :param filter: an async callback which accepts the connection request and returns a bool, or an explicit Accept/Reject message. """ ws = await create_websocket_server(sock, filter=filter) try: yield ws finally: await ws.close()
['async', 'def', 'open_websocket_server', '(', 'sock', ',', 'filter', '=', 'None', ')', ':', '# pylint: disable=W0622', 'ws', '=', 'await', 'create_websocket_server', '(', 'sock', ',', 'filter', '=', 'filter', ')', 'try', ':', 'yield', 'ws', 'finally', ':', 'await', 'ws', '.', 'close', '(', ')']
A context manager which serves this websocket. :param filter: an async callback which accepts the connection request and returns a bool, or an explicit Accept/Reject message.
['A', 'context', 'manager', 'which', 'serves', 'this', 'websocket', '.']
train
https://github.com/Fuyukai/asyncwebsockets/blob/e33e75fd51ce5ae0feac244e8407d2672c5b4745/asyncwebsockets/server.py#L14-L25
3,631
brainiak/brainiak
brainiak/funcalign/sssrm.py
SSSRM.fit
def fit(self, X, y, Z): """Compute the Semi-Supervised Shared Response Model Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, n_align] Each element in the list contains the fMRI data for alignment of one subject. There are n_align samples for each subject. y : list of arrays of int, element i has shape=[samples_i] Each element in the list contains the labels for the data samples in Z. Z : list of 2D arrays, element i has shape=[voxels_i, samples_i] Each element in the list contains the fMRI data of one subject for training the MLR classifier. """ logger.info('Starting SS-SRM') # Check that the alpha value is in range (0.0,1.0) if 0.0 >= self.alpha or self.alpha >= 1.0: raise ValueError("Alpha parameter should be in range (0.0, 1.0)") # Check that the regularizer value is positive if 0.0 >= self.gamma: raise ValueError("Gamma parameter should be positive.") # Check the number of subjects if len(X) <= 1 or len(y) <= 1 or len(Z) <= 1: raise ValueError("There are not enough subjects in the input " "data to train the model.") if not (len(X) == len(y)) or not (len(X) == len(Z)): raise ValueError("Different number of subjects in data.") # Check for input data sizes if X[0].shape[1] < self.features: raise ValueError( "There are not enough samples to train the model with " "{0:d} features.".format(self.features)) # Check if all subjects have same number of TRs for alignment # and if alignment and classification data have the same number of # voxels per subject. Also check that there labels for all the classif. # sample number_trs = X[0].shape[1] number_subjects = len(X) for subject in range(number_subjects): assert_all_finite(X[subject]) assert_all_finite(Z[subject]) if X[subject].shape[1] != number_trs: raise ValueError("Different number of alignment samples " "between subjects.") if X[subject].shape[0] != Z[subject].shape[0]: raise ValueError("Different number of voxels between alignment" " and classification data (subject {0:d})" ".".format(subject)) if Z[subject].shape[1] != y[subject].size: raise ValueError("Different number of samples and labels in " "subject {0:d}.".format(subject)) # Map the classes to [0..C-1] new_y = self._init_classes(y) # Run SS-SRM self.w_, self.s_, self.theta_, self.bias_ = self._sssrm(X, Z, new_y) return self
python
def fit(self, X, y, Z): """Compute the Semi-Supervised Shared Response Model Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, n_align] Each element in the list contains the fMRI data for alignment of one subject. There are n_align samples for each subject. y : list of arrays of int, element i has shape=[samples_i] Each element in the list contains the labels for the data samples in Z. Z : list of 2D arrays, element i has shape=[voxels_i, samples_i] Each element in the list contains the fMRI data of one subject for training the MLR classifier. """ logger.info('Starting SS-SRM') # Check that the alpha value is in range (0.0,1.0) if 0.0 >= self.alpha or self.alpha >= 1.0: raise ValueError("Alpha parameter should be in range (0.0, 1.0)") # Check that the regularizer value is positive if 0.0 >= self.gamma: raise ValueError("Gamma parameter should be positive.") # Check the number of subjects if len(X) <= 1 or len(y) <= 1 or len(Z) <= 1: raise ValueError("There are not enough subjects in the input " "data to train the model.") if not (len(X) == len(y)) or not (len(X) == len(Z)): raise ValueError("Different number of subjects in data.") # Check for input data sizes if X[0].shape[1] < self.features: raise ValueError( "There are not enough samples to train the model with " "{0:d} features.".format(self.features)) # Check if all subjects have same number of TRs for alignment # and if alignment and classification data have the same number of # voxels per subject. Also check that there labels for all the classif. # sample number_trs = X[0].shape[1] number_subjects = len(X) for subject in range(number_subjects): assert_all_finite(X[subject]) assert_all_finite(Z[subject]) if X[subject].shape[1] != number_trs: raise ValueError("Different number of alignment samples " "between subjects.") if X[subject].shape[0] != Z[subject].shape[0]: raise ValueError("Different number of voxels between alignment" " and classification data (subject {0:d})" ".".format(subject)) if Z[subject].shape[1] != y[subject].size: raise ValueError("Different number of samples and labels in " "subject {0:d}.".format(subject)) # Map the classes to [0..C-1] new_y = self._init_classes(y) # Run SS-SRM self.w_, self.s_, self.theta_, self.bias_ = self._sssrm(X, Z, new_y) return self
['def', 'fit', '(', 'self', ',', 'X', ',', 'y', ',', 'Z', ')', ':', 'logger', '.', 'info', '(', "'Starting SS-SRM'", ')', '# Check that the alpha value is in range (0.0,1.0)', 'if', '0.0', '>=', 'self', '.', 'alpha', 'or', 'self', '.', 'alpha', '>=', '1.0', ':', 'raise', 'ValueError', '(', '"Alpha parameter should be in range (0.0, 1.0)"', ')', '# Check that the regularizer value is positive', 'if', '0.0', '>=', 'self', '.', 'gamma', ':', 'raise', 'ValueError', '(', '"Gamma parameter should be positive."', ')', '# Check the number of subjects', 'if', 'len', '(', 'X', ')', '<=', '1', 'or', 'len', '(', 'y', ')', '<=', '1', 'or', 'len', '(', 'Z', ')', '<=', '1', ':', 'raise', 'ValueError', '(', '"There are not enough subjects in the input "', '"data to train the model."', ')', 'if', 'not', '(', 'len', '(', 'X', ')', '==', 'len', '(', 'y', ')', ')', 'or', 'not', '(', 'len', '(', 'X', ')', '==', 'len', '(', 'Z', ')', ')', ':', 'raise', 'ValueError', '(', '"Different number of subjects in data."', ')', '# Check for input data sizes', 'if', 'X', '[', '0', ']', '.', 'shape', '[', '1', ']', '<', 'self', '.', 'features', ':', 'raise', 'ValueError', '(', '"There are not enough samples to train the model with "', '"{0:d} features."', '.', 'format', '(', 'self', '.', 'features', ')', ')', '# Check if all subjects have same number of TRs for alignment', '# and if alignment and classification data have the same number of', '# voxels per subject. Also check that there labels for all the classif.', '# sample', 'number_trs', '=', 'X', '[', '0', ']', '.', 'shape', '[', '1', ']', 'number_subjects', '=', 'len', '(', 'X', ')', 'for', 'subject', 'in', 'range', '(', 'number_subjects', ')', ':', 'assert_all_finite', '(', 'X', '[', 'subject', ']', ')', 'assert_all_finite', '(', 'Z', '[', 'subject', ']', ')', 'if', 'X', '[', 'subject', ']', '.', 'shape', '[', '1', ']', '!=', 'number_trs', ':', 'raise', 'ValueError', '(', '"Different number of alignment samples "', '"between subjects."', ')', 'if', 'X', '[', 'subject', ']', '.', 'shape', '[', '0', ']', '!=', 'Z', '[', 'subject', ']', '.', 'shape', '[', '0', ']', ':', 'raise', 'ValueError', '(', '"Different number of voxels between alignment"', '" and classification data (subject {0:d})"', '"."', '.', 'format', '(', 'subject', ')', ')', 'if', 'Z', '[', 'subject', ']', '.', 'shape', '[', '1', ']', '!=', 'y', '[', 'subject', ']', '.', 'size', ':', 'raise', 'ValueError', '(', '"Different number of samples and labels in "', '"subject {0:d}."', '.', 'format', '(', 'subject', ')', ')', '# Map the classes to [0..C-1]', 'new_y', '=', 'self', '.', '_init_classes', '(', 'y', ')', '# Run SS-SRM', 'self', '.', 'w_', ',', 'self', '.', 's_', ',', 'self', '.', 'theta_', ',', 'self', '.', 'bias_', '=', 'self', '.', '_sssrm', '(', 'X', ',', 'Z', ',', 'new_y', ')', 'return', 'self']
Compute the Semi-Supervised Shared Response Model Parameters ---------- X : list of 2D arrays, element i has shape=[voxels_i, n_align] Each element in the list contains the fMRI data for alignment of one subject. There are n_align samples for each subject. y : list of arrays of int, element i has shape=[samples_i] Each element in the list contains the labels for the data samples in Z. Z : list of 2D arrays, element i has shape=[voxels_i, samples_i] Each element in the list contains the fMRI data of one subject for training the MLR classifier.
['Compute', 'the', 'Semi', '-', 'Supervised', 'Shared', 'Response', 'Model']
train
https://github.com/brainiak/brainiak/blob/408f12dec2ff56559a26873a848a09e4c8facfeb/brainiak/funcalign/sssrm.py#L133-L202
3,632
horazont/aioxmpp
aioxmpp/statemachine.py
OrderedStateMachine.wait_for
def wait_for(self, new_state): """ Wait for an exact state `new_state` to be reached by the state machine. If the state is skipped, that is, if a state which is greater than `new_state` is written to :attr:`state`, the coroutine raises :class:`OrderedStateSkipped` exception as it is not possible anymore that it can return successfully (see :attr:`state`). """ if self._state == new_state: return if self._state > new_state: raise OrderedStateSkipped(new_state) fut = asyncio.Future(loop=self.loop) self._exact_waiters.append((new_state, fut)) yield from fut
python
def wait_for(self, new_state): """ Wait for an exact state `new_state` to be reached by the state machine. If the state is skipped, that is, if a state which is greater than `new_state` is written to :attr:`state`, the coroutine raises :class:`OrderedStateSkipped` exception as it is not possible anymore that it can return successfully (see :attr:`state`). """ if self._state == new_state: return if self._state > new_state: raise OrderedStateSkipped(new_state) fut = asyncio.Future(loop=self.loop) self._exact_waiters.append((new_state, fut)) yield from fut
['def', 'wait_for', '(', 'self', ',', 'new_state', ')', ':', 'if', 'self', '.', '_state', '==', 'new_state', ':', 'return', 'if', 'self', '.', '_state', '>', 'new_state', ':', 'raise', 'OrderedStateSkipped', '(', 'new_state', ')', 'fut', '=', 'asyncio', '.', 'Future', '(', 'loop', '=', 'self', '.', 'loop', ')', 'self', '.', '_exact_waiters', '.', 'append', '(', '(', 'new_state', ',', 'fut', ')', ')', 'yield', 'from', 'fut']
Wait for an exact state `new_state` to be reached by the state machine. If the state is skipped, that is, if a state which is greater than `new_state` is written to :attr:`state`, the coroutine raises :class:`OrderedStateSkipped` exception as it is not possible anymore that it can return successfully (see :attr:`state`).
['Wait', 'for', 'an', 'exact', 'state', 'new_state', 'to', 'be', 'reached', 'by', 'the', 'state', 'machine', '.']
train
https://github.com/horazont/aioxmpp/blob/22a68e5e1d23f2a4dee470092adbd4672f9ef061/aioxmpp/statemachine.py#L152-L170
3,633
cwoebker/pen
pen/core.py
cmd_touch_note
def cmd_touch_note(args): """Create a note""" major = args.get(0) minor = args.get(1) if major in penStore.data: if minor is None: # show items in list for note in penStore.data[major]: puts(note) elif minor in penStore.data[major]: penStore.openNote(major, minor) else: penStore.createNote(major, minor) penStore.openNote(major, minor) else: puts("No list of that name.")
python
def cmd_touch_note(args): """Create a note""" major = args.get(0) minor = args.get(1) if major in penStore.data: if minor is None: # show items in list for note in penStore.data[major]: puts(note) elif minor in penStore.data[major]: penStore.openNote(major, minor) else: penStore.createNote(major, minor) penStore.openNote(major, minor) else: puts("No list of that name.")
['def', 'cmd_touch_note', '(', 'args', ')', ':', 'major', '=', 'args', '.', 'get', '(', '0', ')', 'minor', '=', 'args', '.', 'get', '(', '1', ')', 'if', 'major', 'in', 'penStore', '.', 'data', ':', 'if', 'minor', 'is', 'None', ':', '# show items in list', 'for', 'note', 'in', 'penStore', '.', 'data', '[', 'major', ']', ':', 'puts', '(', 'note', ')', 'elif', 'minor', 'in', 'penStore', '.', 'data', '[', 'major', ']', ':', 'penStore', '.', 'openNote', '(', 'major', ',', 'minor', ')', 'else', ':', 'penStore', '.', 'createNote', '(', 'major', ',', 'minor', ')', 'penStore', '.', 'openNote', '(', 'major', ',', 'minor', ')', 'else', ':', 'puts', '(', '"No list of that name."', ')']
Create a note
['Create', 'a', 'note']
train
https://github.com/cwoebker/pen/blob/996dfcdc018f2fc14a376835a2622fb4a7230a2f/pen/core.py#L58-L72
3,634
jtwhite79/pyemu
pyemu/utils/geostats.py
gslib_2_dataframe
def gslib_2_dataframe(filename,attr_name=None,x_idx=0,y_idx=1): """ function to read a GSLIB point data file into a pandas.DataFrame Parameters ---------- filename : (str) GSLIB file attr_name : (str) the column name in the dataframe for the attribute. If None, GSLIB file can have only 3 columns. attr_name must be in the GSLIB file header x_idx : (int) the index of the x-coordinate information in the GSLIB file. Default is 0 (first column) y_idx : (int) the index of the y-coordinate information in the GSLIB file. Default is 1 (second column) Returns ------- df : pandas.DataFrame Raises ------ exception if attr_name is None and GSLIB file has more than 3 columns Note ---- assigns generic point names ("pt0, pt1, etc) Example ------- ``>>>import pyemu`` ``>>>df = pyemu.utiils.geostats.gslib_2_dataframe("prop.gslib",attr_name="hk")`` """ with open(filename,'r') as f: title = f.readline().strip() num_attrs = int(f.readline().strip()) attrs = [f.readline().strip() for _ in range(num_attrs)] if attr_name is not None: assert attr_name in attrs,"{0} not in attrs:{1}".format(attr_name,','.join(attrs)) else: assert len(attrs) == 3,"propname is None but more than 3 attrs in gslib file" attr_name = attrs[2] assert len(attrs) > x_idx assert len(attrs) > y_idx a_idx = attrs.index(attr_name) x,y,a = [],[],[] while True: line = f.readline() if line == '': break raw = line.strip().split() try: x.append(float(raw[x_idx])) y.append(float(raw[y_idx])) a.append(float(raw[a_idx])) except Exception as e: raise Exception("error paring line {0}: {1}".format(line,str(e))) df = pd.DataFrame({"x":x,"y":y,"value":a}) df.loc[:,"name"] = ["pt{0}".format(i) for i in range(df.shape[0])] df.index = df.name return df
python
def gslib_2_dataframe(filename,attr_name=None,x_idx=0,y_idx=1): """ function to read a GSLIB point data file into a pandas.DataFrame Parameters ---------- filename : (str) GSLIB file attr_name : (str) the column name in the dataframe for the attribute. If None, GSLIB file can have only 3 columns. attr_name must be in the GSLIB file header x_idx : (int) the index of the x-coordinate information in the GSLIB file. Default is 0 (first column) y_idx : (int) the index of the y-coordinate information in the GSLIB file. Default is 1 (second column) Returns ------- df : pandas.DataFrame Raises ------ exception if attr_name is None and GSLIB file has more than 3 columns Note ---- assigns generic point names ("pt0, pt1, etc) Example ------- ``>>>import pyemu`` ``>>>df = pyemu.utiils.geostats.gslib_2_dataframe("prop.gslib",attr_name="hk")`` """ with open(filename,'r') as f: title = f.readline().strip() num_attrs = int(f.readline().strip()) attrs = [f.readline().strip() for _ in range(num_attrs)] if attr_name is not None: assert attr_name in attrs,"{0} not in attrs:{1}".format(attr_name,','.join(attrs)) else: assert len(attrs) == 3,"propname is None but more than 3 attrs in gslib file" attr_name = attrs[2] assert len(attrs) > x_idx assert len(attrs) > y_idx a_idx = attrs.index(attr_name) x,y,a = [],[],[] while True: line = f.readline() if line == '': break raw = line.strip().split() try: x.append(float(raw[x_idx])) y.append(float(raw[y_idx])) a.append(float(raw[a_idx])) except Exception as e: raise Exception("error paring line {0}: {1}".format(line,str(e))) df = pd.DataFrame({"x":x,"y":y,"value":a}) df.loc[:,"name"] = ["pt{0}".format(i) for i in range(df.shape[0])] df.index = df.name return df
['def', 'gslib_2_dataframe', '(', 'filename', ',', 'attr_name', '=', 'None', ',', 'x_idx', '=', '0', ',', 'y_idx', '=', '1', ')', ':', 'with', 'open', '(', 'filename', ',', "'r'", ')', 'as', 'f', ':', 'title', '=', 'f', '.', 'readline', '(', ')', '.', 'strip', '(', ')', 'num_attrs', '=', 'int', '(', 'f', '.', 'readline', '(', ')', '.', 'strip', '(', ')', ')', 'attrs', '=', '[', 'f', '.', 'readline', '(', ')', '.', 'strip', '(', ')', 'for', '_', 'in', 'range', '(', 'num_attrs', ')', ']', 'if', 'attr_name', 'is', 'not', 'None', ':', 'assert', 'attr_name', 'in', 'attrs', ',', '"{0} not in attrs:{1}"', '.', 'format', '(', 'attr_name', ',', "','", '.', 'join', '(', 'attrs', ')', ')', 'else', ':', 'assert', 'len', '(', 'attrs', ')', '==', '3', ',', '"propname is None but more than 3 attrs in gslib file"', 'attr_name', '=', 'attrs', '[', '2', ']', 'assert', 'len', '(', 'attrs', ')', '>', 'x_idx', 'assert', 'len', '(', 'attrs', ')', '>', 'y_idx', 'a_idx', '=', 'attrs', '.', 'index', '(', 'attr_name', ')', 'x', ',', 'y', ',', 'a', '=', '[', ']', ',', '[', ']', ',', '[', ']', 'while', 'True', ':', 'line', '=', 'f', '.', 'readline', '(', ')', 'if', 'line', '==', "''", ':', 'break', 'raw', '=', 'line', '.', 'strip', '(', ')', '.', 'split', '(', ')', 'try', ':', 'x', '.', 'append', '(', 'float', '(', 'raw', '[', 'x_idx', ']', ')', ')', 'y', '.', 'append', '(', 'float', '(', 'raw', '[', 'y_idx', ']', ')', ')', 'a', '.', 'append', '(', 'float', '(', 'raw', '[', 'a_idx', ']', ')', ')', 'except', 'Exception', 'as', 'e', ':', 'raise', 'Exception', '(', '"error paring line {0}: {1}"', '.', 'format', '(', 'line', ',', 'str', '(', 'e', ')', ')', ')', 'df', '=', 'pd', '.', 'DataFrame', '(', '{', '"x"', ':', 'x', ',', '"y"', ':', 'y', ',', '"value"', ':', 'a', '}', ')', 'df', '.', 'loc', '[', ':', ',', '"name"', ']', '=', '[', '"pt{0}"', '.', 'format', '(', 'i', ')', 'for', 'i', 'in', 'range', '(', 'df', '.', 'shape', '[', '0', ']', ')', ']', 'df', '.', 'index', '=', 'df', '.', 'name', 'return', 'df']
function to read a GSLIB point data file into a pandas.DataFrame Parameters ---------- filename : (str) GSLIB file attr_name : (str) the column name in the dataframe for the attribute. If None, GSLIB file can have only 3 columns. attr_name must be in the GSLIB file header x_idx : (int) the index of the x-coordinate information in the GSLIB file. Default is 0 (first column) y_idx : (int) the index of the y-coordinate information in the GSLIB file. Default is 1 (second column) Returns ------- df : pandas.DataFrame Raises ------ exception if attr_name is None and GSLIB file has more than 3 columns Note ---- assigns generic point names ("pt0, pt1, etc) Example ------- ``>>>import pyemu`` ``>>>df = pyemu.utiils.geostats.gslib_2_dataframe("prop.gslib",attr_name="hk")``
['function', 'to', 'read', 'a', 'GSLIB', 'point', 'data', 'file', 'into', 'a', 'pandas', '.', 'DataFrame']
train
https://github.com/jtwhite79/pyemu/blob/c504d8e7a4097cec07655a6318d275739bd8148a/pyemu/utils/geostats.py#L1792-L1856
3,635
xav/Grapefruit
grapefruit.py
rgb_to_yiq
def rgb_to_yiq(r, g=None, b=None): """Convert the color from RGB to YIQ. Parameters: :r: The Red component value [0...1] :g: The Green component value [0...1] :b: The Blue component value [0...1] Returns: The color as an (y, i, q) tuple in the range: y[0...1], i[0...1], q[0...1] >>> '(%g, %g, %g)' % rgb_to_yiq(1, 0.5, 0) '(0.592263, 0.458874, -0.0499818)' """ if type(r) in [list,tuple]: r, g, b = r y = (r * 0.29895808) + (g * 0.58660979) + (b *0.11443213) i = (r * 0.59590296) - (g * 0.27405705) - (b *0.32184591) q = (r * 0.21133576) - (g * 0.52263517) + (b *0.31129940) return (y, i, q)
python
def rgb_to_yiq(r, g=None, b=None): """Convert the color from RGB to YIQ. Parameters: :r: The Red component value [0...1] :g: The Green component value [0...1] :b: The Blue component value [0...1] Returns: The color as an (y, i, q) tuple in the range: y[0...1], i[0...1], q[0...1] >>> '(%g, %g, %g)' % rgb_to_yiq(1, 0.5, 0) '(0.592263, 0.458874, -0.0499818)' """ if type(r) in [list,tuple]: r, g, b = r y = (r * 0.29895808) + (g * 0.58660979) + (b *0.11443213) i = (r * 0.59590296) - (g * 0.27405705) - (b *0.32184591) q = (r * 0.21133576) - (g * 0.52263517) + (b *0.31129940) return (y, i, q)
['def', 'rgb_to_yiq', '(', 'r', ',', 'g', '=', 'None', ',', 'b', '=', 'None', ')', ':', 'if', 'type', '(', 'r', ')', 'in', '[', 'list', ',', 'tuple', ']', ':', 'r', ',', 'g', ',', 'b', '=', 'r', 'y', '=', '(', 'r', '*', '0.29895808', ')', '+', '(', 'g', '*', '0.58660979', ')', '+', '(', 'b', '*', '0.11443213', ')', 'i', '=', '(', 'r', '*', '0.59590296', ')', '-', '(', 'g', '*', '0.27405705', ')', '-', '(', 'b', '*', '0.32184591', ')', 'q', '=', '(', 'r', '*', '0.21133576', ')', '-', '(', 'g', '*', '0.52263517', ')', '+', '(', 'b', '*', '0.31129940', ')', 'return', '(', 'y', ',', 'i', ',', 'q', ')']
Convert the color from RGB to YIQ. Parameters: :r: The Red component value [0...1] :g: The Green component value [0...1] :b: The Blue component value [0...1] Returns: The color as an (y, i, q) tuple in the range: y[0...1], i[0...1], q[0...1] >>> '(%g, %g, %g)' % rgb_to_yiq(1, 0.5, 0) '(0.592263, 0.458874, -0.0499818)'
['Convert', 'the', 'color', 'from', 'RGB', 'to', 'YIQ', '.']
train
https://github.com/xav/Grapefruit/blob/b3d88375be727a3a1ec5839fbc462e0e8e0836e4/grapefruit.py#L430-L457
3,636
brean/python-pathfinding
pathfinding/core/util.py
expand_path
def expand_path(path): ''' Given a compressed path, return a new path that has all the segments in it interpolated. ''' expanded = [] if len(path) < 2: return expanded for i in range(len(path)-1): expanded += bresenham(path[i], path[i + 1]) expanded += [path[:-1]] return expanded
python
def expand_path(path): ''' Given a compressed path, return a new path that has all the segments in it interpolated. ''' expanded = [] if len(path) < 2: return expanded for i in range(len(path)-1): expanded += bresenham(path[i], path[i + 1]) expanded += [path[:-1]] return expanded
['def', 'expand_path', '(', 'path', ')', ':', 'expanded', '=', '[', ']', 'if', 'len', '(', 'path', ')', '<', '2', ':', 'return', 'expanded', 'for', 'i', 'in', 'range', '(', 'len', '(', 'path', ')', '-', '1', ')', ':', 'expanded', '+=', 'bresenham', '(', 'path', '[', 'i', ']', ',', 'path', '[', 'i', '+', '1', ']', ')', 'expanded', '+=', '[', 'path', '[', ':', '-', '1', ']', ']', 'return', 'expanded']
Given a compressed path, return a new path that has all the segments in it interpolated.
['Given', 'a', 'compressed', 'path', 'return', 'a', 'new', 'path', 'that', 'has', 'all', 'the', 'segments', 'in', 'it', 'interpolated', '.']
train
https://github.com/brean/python-pathfinding/blob/b857bf85e514a1712b40e29ccb5a473cd7fd5c80/pathfinding/core/util.py#L97-L108
3,637
MartinThoma/hwrt
hwrt/serve.py
work
def work(): """Implement a worker for write-math.com.""" global n cmd = utils.get_project_configuration() if 'worker_api_key' not in cmd: return ("You need to define a 'worker_api_key' in your ~/") chunk_size = 1000 logging.info("Start working with n=%i", n) for _ in range(chunk_size): # contact the write-math server and get something to classify url = "http://www.martin-thoma.de/write-math/api/get_unclassified.php" response = urlopen(url) page_source = response.read() parsed_json = json.loads(page_source) if parsed_json is False: return "Nothing left to classify" raw_data_json = parsed_json['recording'] # Classify # Check recording try: json.loads(raw_data_json) except ValueError: return ("Raw Data ID %s; Invalid JSON string: %s" % (parsed_json['id'], raw_data_json)) # Classify if use_segmenter_flag: strokelist = json.loads(raw_data_json) beam = se.Beam() for stroke in strokelist: beam.add_stroke(stroke) results = beam.get_writemath_results() else: results_sym = classify.classify_segmented_recording(raw_data_json) results = [] strokelist = json.loads(raw_data_json) segmentation = [list(range(len(strokelist)))] translate = _get_translate() for symbol in results_sym: s = {'id': get_writemath_id(symbol, translate), 'probability': symbol['probability']} results.append({'probability': symbol['probability'], 'segmentation': segmentation, 'symbols': [s]}) print("\thttp://write-math.com/view/?raw_data_id=%s" % str(parsed_json['id'])) # Submit classification to write-math.com server results_json = get_json_result(results, n=n) headers = {'User-Agent': 'Mozilla/5.0', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'recording_id': parsed_json['id'], 'results': results_json, 'api_key': cmd['worker_api_key']} s = requests.Session() req = requests.Request('POST', url, headers=headers, data=payload) prepared = req.prepare() response = s.send(prepared) try: response = json.loads(response.text) except ValueError: return "Invalid JSON response: %s" % response.text if 'error' in response: logging.info(response) return str(response) return "Done - Classified %i recordings" % chunk_size
python
def work(): """Implement a worker for write-math.com.""" global n cmd = utils.get_project_configuration() if 'worker_api_key' not in cmd: return ("You need to define a 'worker_api_key' in your ~/") chunk_size = 1000 logging.info("Start working with n=%i", n) for _ in range(chunk_size): # contact the write-math server and get something to classify url = "http://www.martin-thoma.de/write-math/api/get_unclassified.php" response = urlopen(url) page_source = response.read() parsed_json = json.loads(page_source) if parsed_json is False: return "Nothing left to classify" raw_data_json = parsed_json['recording'] # Classify # Check recording try: json.loads(raw_data_json) except ValueError: return ("Raw Data ID %s; Invalid JSON string: %s" % (parsed_json['id'], raw_data_json)) # Classify if use_segmenter_flag: strokelist = json.loads(raw_data_json) beam = se.Beam() for stroke in strokelist: beam.add_stroke(stroke) results = beam.get_writemath_results() else: results_sym = classify.classify_segmented_recording(raw_data_json) results = [] strokelist = json.loads(raw_data_json) segmentation = [list(range(len(strokelist)))] translate = _get_translate() for symbol in results_sym: s = {'id': get_writemath_id(symbol, translate), 'probability': symbol['probability']} results.append({'probability': symbol['probability'], 'segmentation': segmentation, 'symbols': [s]}) print("\thttp://write-math.com/view/?raw_data_id=%s" % str(parsed_json['id'])) # Submit classification to write-math.com server results_json = get_json_result(results, n=n) headers = {'User-Agent': 'Mozilla/5.0', 'Content-Type': 'application/x-www-form-urlencoded'} payload = {'recording_id': parsed_json['id'], 'results': results_json, 'api_key': cmd['worker_api_key']} s = requests.Session() req = requests.Request('POST', url, headers=headers, data=payload) prepared = req.prepare() response = s.send(prepared) try: response = json.loads(response.text) except ValueError: return "Invalid JSON response: %s" % response.text if 'error' in response: logging.info(response) return str(response) return "Done - Classified %i recordings" % chunk_size
['def', 'work', '(', ')', ':', 'global', 'n', 'cmd', '=', 'utils', '.', 'get_project_configuration', '(', ')', 'if', "'worker_api_key'", 'not', 'in', 'cmd', ':', 'return', '(', '"You need to define a \'worker_api_key\' in your ~/"', ')', 'chunk_size', '=', '1000', 'logging', '.', 'info', '(', '"Start working with n=%i"', ',', 'n', ')', 'for', '_', 'in', 'range', '(', 'chunk_size', ')', ':', '# contact the write-math server and get something to classify', 'url', '=', '"http://www.martin-thoma.de/write-math/api/get_unclassified.php"', 'response', '=', 'urlopen', '(', 'url', ')', 'page_source', '=', 'response', '.', 'read', '(', ')', 'parsed_json', '=', 'json', '.', 'loads', '(', 'page_source', ')', 'if', 'parsed_json', 'is', 'False', ':', 'return', '"Nothing left to classify"', 'raw_data_json', '=', 'parsed_json', '[', "'recording'", ']', '# Classify', '# Check recording', 'try', ':', 'json', '.', 'loads', '(', 'raw_data_json', ')', 'except', 'ValueError', ':', 'return', '(', '"Raw Data ID %s; Invalid JSON string: %s"', '%', '(', 'parsed_json', '[', "'id'", ']', ',', 'raw_data_json', ')', ')', '# Classify', 'if', 'use_segmenter_flag', ':', 'strokelist', '=', 'json', '.', 'loads', '(', 'raw_data_json', ')', 'beam', '=', 'se', '.', 'Beam', '(', ')', 'for', 'stroke', 'in', 'strokelist', ':', 'beam', '.', 'add_stroke', '(', 'stroke', ')', 'results', '=', 'beam', '.', 'get_writemath_results', '(', ')', 'else', ':', 'results_sym', '=', 'classify', '.', 'classify_segmented_recording', '(', 'raw_data_json', ')', 'results', '=', '[', ']', 'strokelist', '=', 'json', '.', 'loads', '(', 'raw_data_json', ')', 'segmentation', '=', '[', 'list', '(', 'range', '(', 'len', '(', 'strokelist', ')', ')', ')', ']', 'translate', '=', '_get_translate', '(', ')', 'for', 'symbol', 'in', 'results_sym', ':', 's', '=', '{', "'id'", ':', 'get_writemath_id', '(', 'symbol', ',', 'translate', ')', ',', "'probability'", ':', 'symbol', '[', "'probability'", ']', '}', 'results', '.', 'append', '(', '{', "'probability'", ':', 'symbol', '[', "'probability'", ']', ',', "'segmentation'", ':', 'segmentation', ',', "'symbols'", ':', '[', 's', ']', '}', ')', 'print', '(', '"\\thttp://write-math.com/view/?raw_data_id=%s"', '%', 'str', '(', 'parsed_json', '[', "'id'", ']', ')', ')', '# Submit classification to write-math.com server', 'results_json', '=', 'get_json_result', '(', 'results', ',', 'n', '=', 'n', ')', 'headers', '=', '{', "'User-Agent'", ':', "'Mozilla/5.0'", ',', "'Content-Type'", ':', "'application/x-www-form-urlencoded'", '}', 'payload', '=', '{', "'recording_id'", ':', 'parsed_json', '[', "'id'", ']', ',', "'results'", ':', 'results_json', ',', "'api_key'", ':', 'cmd', '[', "'worker_api_key'", ']', '}', 's', '=', 'requests', '.', 'Session', '(', ')', 'req', '=', 'requests', '.', 'Request', '(', "'POST'", ',', 'url', ',', 'headers', '=', 'headers', ',', 'data', '=', 'payload', ')', 'prepared', '=', 'req', '.', 'prepare', '(', ')', 'response', '=', 's', '.', 'send', '(', 'prepared', ')', 'try', ':', 'response', '=', 'json', '.', 'loads', '(', 'response', '.', 'text', ')', 'except', 'ValueError', ':', 'return', '"Invalid JSON response: %s"', '%', 'response', '.', 'text', 'if', "'error'", 'in', 'response', ':', 'logging', '.', 'info', '(', 'response', ')', 'return', 'str', '(', 'response', ')', 'return', '"Done - Classified %i recordings"', '%', 'chunk_size']
Implement a worker for write-math.com.
['Implement', 'a', 'worker', 'for', 'write', '-', 'math', '.', 'com', '.']
train
https://github.com/MartinThoma/hwrt/blob/725c21a3d0f5a30b8492cbc184b3688ceb364e1c/hwrt/serve.py#L260-L332
3,638
MoseleyBioinformaticsLab/mwtab
mwtab/fileio.py
_generate_filenames
def _generate_filenames(sources): """Generate filenames. :param tuple sources: Sequence of strings representing path to file(s). :return: Path to file(s). :rtype: :py:class:`str` """ for source in sources: if os.path.isdir(source): for path, dirlist, filelist in os.walk(source): for fname in filelist: if GenericFilePath.is_compressed(fname): if VERBOSE: print("Skipping compressed file: {}".format(os.path.abspath(fname))) continue else: yield os.path.join(path, fname) elif os.path.isfile(source): yield source elif source.isdigit(): analysis_id = "AN{}".format(source.zfill(6)) url = MWREST.format(analysis_id) yield url elif GenericFilePath.is_url(source): yield source else: raise TypeError("Unknown file source.")
python
def _generate_filenames(sources): """Generate filenames. :param tuple sources: Sequence of strings representing path to file(s). :return: Path to file(s). :rtype: :py:class:`str` """ for source in sources: if os.path.isdir(source): for path, dirlist, filelist in os.walk(source): for fname in filelist: if GenericFilePath.is_compressed(fname): if VERBOSE: print("Skipping compressed file: {}".format(os.path.abspath(fname))) continue else: yield os.path.join(path, fname) elif os.path.isfile(source): yield source elif source.isdigit(): analysis_id = "AN{}".format(source.zfill(6)) url = MWREST.format(analysis_id) yield url elif GenericFilePath.is_url(source): yield source else: raise TypeError("Unknown file source.")
['def', '_generate_filenames', '(', 'sources', ')', ':', 'for', 'source', 'in', 'sources', ':', 'if', 'os', '.', 'path', '.', 'isdir', '(', 'source', ')', ':', 'for', 'path', ',', 'dirlist', ',', 'filelist', 'in', 'os', '.', 'walk', '(', 'source', ')', ':', 'for', 'fname', 'in', 'filelist', ':', 'if', 'GenericFilePath', '.', 'is_compressed', '(', 'fname', ')', ':', 'if', 'VERBOSE', ':', 'print', '(', '"Skipping compressed file: {}"', '.', 'format', '(', 'os', '.', 'path', '.', 'abspath', '(', 'fname', ')', ')', ')', 'continue', 'else', ':', 'yield', 'os', '.', 'path', '.', 'join', '(', 'path', ',', 'fname', ')', 'elif', 'os', '.', 'path', '.', 'isfile', '(', 'source', ')', ':', 'yield', 'source', 'elif', 'source', '.', 'isdigit', '(', ')', ':', 'analysis_id', '=', '"AN{}"', '.', 'format', '(', 'source', '.', 'zfill', '(', '6', ')', ')', 'url', '=', 'MWREST', '.', 'format', '(', 'analysis_id', ')', 'yield', 'url', 'elif', 'GenericFilePath', '.', 'is_url', '(', 'source', ')', ':', 'yield', 'source', 'else', ':', 'raise', 'TypeError', '(', '"Unknown file source."', ')']
Generate filenames. :param tuple sources: Sequence of strings representing path to file(s). :return: Path to file(s). :rtype: :py:class:`str`
['Generate', 'filenames', '.']
train
https://github.com/MoseleyBioinformaticsLab/mwtab/blob/8c0ae8ab2aa621662f99589ed41e481cf8b7152b/mwtab/fileio.py#L43-L73
3,639
srsudar/eg
eg/config.py
get_expanded_path
def get_expanded_path(path): """Expand ~ and variables in a path. If path is not truthy, return None.""" if path: result = path result = os.path.expanduser(result) result = os.path.expandvars(result) return result else: return None
python
def get_expanded_path(path): """Expand ~ and variables in a path. If path is not truthy, return None.""" if path: result = path result = os.path.expanduser(result) result = os.path.expandvars(result) return result else: return None
['def', 'get_expanded_path', '(', 'path', ')', ':', 'if', 'path', ':', 'result', '=', 'path', 'result', '=', 'os', '.', 'path', '.', 'expanduser', '(', 'result', ')', 'result', '=', 'os', '.', 'path', '.', 'expandvars', '(', 'result', ')', 'return', 'result', 'else', ':', 'return', 'None']
Expand ~ and variables in a path. If path is not truthy, return None.
['Expand', '~', 'and', 'variables', 'in', 'a', 'path', '.', 'If', 'path', 'is', 'not', 'truthy', 'return', 'None', '.']
train
https://github.com/srsudar/eg/blob/96142a74f4416b4a7000c85032c070df713b849e/eg/config.py#L345-L353
3,640
spotify/snakebite
snakebite/minicluster.py
MiniCluster.mkdir
def mkdir(self, src, extra_args=[]): '''Create a directory''' return self._getStdOutCmd([self._hadoop_cmd, 'fs', '-mkdir'] + extra_args + [self._full_hdfs_path(src)], True)
python
def mkdir(self, src, extra_args=[]): '''Create a directory''' return self._getStdOutCmd([self._hadoop_cmd, 'fs', '-mkdir'] + extra_args + [self._full_hdfs_path(src)], True)
['def', 'mkdir', '(', 'self', ',', 'src', ',', 'extra_args', '=', '[', ']', ')', ':', 'return', 'self', '.', '_getStdOutCmd', '(', '[', 'self', '.', '_hadoop_cmd', ',', "'fs'", ',', "'-mkdir'", ']', '+', 'extra_args', '+', '[', 'self', '.', '_full_hdfs_path', '(', 'src', ')', ']', ',', 'True', ')']
Create a directory
['Create', 'a', 'directory']
train
https://github.com/spotify/snakebite/blob/6a456e6100b0c1be66cc1f7f9d7f50494f369da3/snakebite/minicluster.py#L126-L128
3,641
junzis/pyModeS
pyModeS/decoder/adsb.py
nic_v1
def nic_v1(msg, NICs): """Calculate NIC, navigation integrity category, for ADS-B version 1 Args: msg (string): 28 bytes hexadecimal message string NICs (int or string): NIC supplement Returns: int or string: Horizontal Radius of Containment int or string: Vertical Protection Limit """ if typecode(msg) < 5 or typecode(msg) > 22: raise RuntimeError( "%s: Not a surface position message (5<TC<8), \ airborne position message (8<TC<19), \ or airborne position with GNSS height (20<TC<22)" % msg ) tc = typecode(msg) NIC = uncertainty.TC_NICv1_lookup[tc] if isinstance(NIC, dict): NIC = NIC[NICs] try: Rc = uncertainty.NICv1[NIC][NICs]['Rc'] VPL = uncertainty.NICv1[NIC][NICs]['VPL'] except KeyError: Rc, VPL = uncertainty.NA, uncertainty.NA return Rc, VPL
python
def nic_v1(msg, NICs): """Calculate NIC, navigation integrity category, for ADS-B version 1 Args: msg (string): 28 bytes hexadecimal message string NICs (int or string): NIC supplement Returns: int or string: Horizontal Radius of Containment int or string: Vertical Protection Limit """ if typecode(msg) < 5 or typecode(msg) > 22: raise RuntimeError( "%s: Not a surface position message (5<TC<8), \ airborne position message (8<TC<19), \ or airborne position with GNSS height (20<TC<22)" % msg ) tc = typecode(msg) NIC = uncertainty.TC_NICv1_lookup[tc] if isinstance(NIC, dict): NIC = NIC[NICs] try: Rc = uncertainty.NICv1[NIC][NICs]['Rc'] VPL = uncertainty.NICv1[NIC][NICs]['VPL'] except KeyError: Rc, VPL = uncertainty.NA, uncertainty.NA return Rc, VPL
['def', 'nic_v1', '(', 'msg', ',', 'NICs', ')', ':', 'if', 'typecode', '(', 'msg', ')', '<', '5', 'or', 'typecode', '(', 'msg', ')', '>', '22', ':', 'raise', 'RuntimeError', '(', '"%s: Not a surface position message (5<TC<8), \\\n airborne position message (8<TC<19), \\\n or airborne position with GNSS height (20<TC<22)"', '%', 'msg', ')', 'tc', '=', 'typecode', '(', 'msg', ')', 'NIC', '=', 'uncertainty', '.', 'TC_NICv1_lookup', '[', 'tc', ']', 'if', 'isinstance', '(', 'NIC', ',', 'dict', ')', ':', 'NIC', '=', 'NIC', '[', 'NICs', ']', 'try', ':', 'Rc', '=', 'uncertainty', '.', 'NICv1', '[', 'NIC', ']', '[', 'NICs', ']', '[', "'Rc'", ']', 'VPL', '=', 'uncertainty', '.', 'NICv1', '[', 'NIC', ']', '[', 'NICs', ']', '[', "'VPL'", ']', 'except', 'KeyError', ':', 'Rc', ',', 'VPL', '=', 'uncertainty', '.', 'NA', ',', 'uncertainty', '.', 'NA', 'return', 'Rc', ',', 'VPL']
Calculate NIC, navigation integrity category, for ADS-B version 1 Args: msg (string): 28 bytes hexadecimal message string NICs (int or string): NIC supplement Returns: int or string: Horizontal Radius of Containment int or string: Vertical Protection Limit
['Calculate', 'NIC', 'navigation', 'integrity', 'category', 'for', 'ADS', '-', 'B', 'version', '1']
train
https://github.com/junzis/pyModeS/blob/8cd5655a04b08171a9ad5f1ffd232b7e0178ea53/pyModeS/decoder/adsb.py#L278-L308
3,642
OiNutter/lean
lean/__init__.py
Lean.get_template
def get_template(file): ''' Lookup a template class for the given filename or file extension. Return nil when no implementation is found. ''' pattern = str(file).lower() while len(pattern) and not Lean.is_registered(pattern): pattern = os.path.basename(pattern) pattern = re.sub(r'^[^.]*\.?','',pattern) # Try to find a preferred engine. preferred_klass = Lean.preferred_mappings[pattern] if Lean.preferred_mappings.has_key(pattern) else None if preferred_klass: return preferred_klass # Fall back to the general list of mappings klasses = Lean.template_mappings[pattern] # Try to find an engine which is already loaded template = None for klass in klasses: if hasattr(klass,'is_engine_initialized') and callable(klass.is_engine_initialized): if klass.is_engine_initialized(): template = klass break if template: return template # Try each of the classes until one succeeds. If all of them fails, # we'll raise the error of the first class. first_failure = None for klass in klasses: try: return klass except Exception, e: if not first_failure: first_failure = e if first_failure: raise Exception(first_failure)
python
def get_template(file): ''' Lookup a template class for the given filename or file extension. Return nil when no implementation is found. ''' pattern = str(file).lower() while len(pattern) and not Lean.is_registered(pattern): pattern = os.path.basename(pattern) pattern = re.sub(r'^[^.]*\.?','',pattern) # Try to find a preferred engine. preferred_klass = Lean.preferred_mappings[pattern] if Lean.preferred_mappings.has_key(pattern) else None if preferred_klass: return preferred_klass # Fall back to the general list of mappings klasses = Lean.template_mappings[pattern] # Try to find an engine which is already loaded template = None for klass in klasses: if hasattr(klass,'is_engine_initialized') and callable(klass.is_engine_initialized): if klass.is_engine_initialized(): template = klass break if template: return template # Try each of the classes until one succeeds. If all of them fails, # we'll raise the error of the first class. first_failure = None for klass in klasses: try: return klass except Exception, e: if not first_failure: first_failure = e if first_failure: raise Exception(first_failure)
['def', 'get_template', '(', 'file', ')', ':', 'pattern', '=', 'str', '(', 'file', ')', '.', 'lower', '(', ')', 'while', 'len', '(', 'pattern', ')', 'and', 'not', 'Lean', '.', 'is_registered', '(', 'pattern', ')', ':', 'pattern', '=', 'os', '.', 'path', '.', 'basename', '(', 'pattern', ')', 'pattern', '=', 're', '.', 'sub', '(', "r'^[^.]*\\.?'", ',', "''", ',', 'pattern', ')', '# Try to find a preferred engine.', 'preferred_klass', '=', 'Lean', '.', 'preferred_mappings', '[', 'pattern', ']', 'if', 'Lean', '.', 'preferred_mappings', '.', 'has_key', '(', 'pattern', ')', 'else', 'None', 'if', 'preferred_klass', ':', 'return', 'preferred_klass', '# Fall back to the general list of mappings', 'klasses', '=', 'Lean', '.', 'template_mappings', '[', 'pattern', ']', '# Try to find an engine which is already loaded', 'template', '=', 'None', 'for', 'klass', 'in', 'klasses', ':', 'if', 'hasattr', '(', 'klass', ',', "'is_engine_initialized'", ')', 'and', 'callable', '(', 'klass', '.', 'is_engine_initialized', ')', ':', 'if', 'klass', '.', 'is_engine_initialized', '(', ')', ':', 'template', '=', 'klass', 'break', 'if', 'template', ':', 'return', 'template', '# Try each of the classes until one succeeds. If all of them fails,', "# we'll raise the error of the first class.", 'first_failure', '=', 'None', 'for', 'klass', 'in', 'klasses', ':', 'try', ':', 'return', 'klass', 'except', 'Exception', ',', 'e', ':', 'if', 'not', 'first_failure', ':', 'first_failure', '=', 'e', 'if', 'first_failure', ':', 'raise', 'Exception', '(', 'first_failure', ')']
Lookup a template class for the given filename or file extension. Return nil when no implementation is found.
['Lookup', 'a', 'template', 'class', 'for', 'the', 'given', 'filename', 'or', 'file', 'extension', '.', 'Return', 'nil', 'when', 'no', 'implementation', 'is', 'found', '.']
train
https://github.com/OiNutter/lean/blob/5d251f923acd44265ed401de14a9ead6752c543f/lean/__init__.py#L61-L103
3,643
user-cont/colin
colin/core/target.py
DockerfileTarget.labels
def labels(self): """ Get list of labels from the target instance. :return: [str] """ if self._labels is None: self._labels = self.instance.labels return self._labels
python
def labels(self): """ Get list of labels from the target instance. :return: [str] """ if self._labels is None: self._labels = self.instance.labels return self._labels
['def', 'labels', '(', 'self', ')', ':', 'if', 'self', '.', '_labels', 'is', 'None', ':', 'self', '.', '_labels', '=', 'self', '.', 'instance', '.', 'labels', 'return', 'self', '.', '_labels']
Get list of labels from the target instance. :return: [str]
['Get', 'list', 'of', 'labels', 'from', 'the', 'target', 'instance', '.']
train
https://github.com/user-cont/colin/blob/00bb80e6e91522e15361935f813e8cf13d7e76dc/colin/core/target.py#L131-L139
3,644
maxalbert/tohu
tohu/v6/set_special_methods.py
check_that_operator_can_be_applied_to_produces_items
def check_that_operator_can_be_applied_to_produces_items(op, g1, g2): """ Helper function to check that the operator `op` can be applied to items produced by g1 and g2. """ g1_tmp_copy = g1.spawn() g2_tmp_copy = g2.spawn() sample_item_1 = next(g1_tmp_copy) sample_item_2 = next(g2_tmp_copy) try: op(sample_item_1, sample_item_2) except TypeError: raise TypeError(f"Operator '{op.__name__}' cannot be applied to items produced by {g1} and {g2} " f"(which have type {type(sample_item_1)} and {type(sample_item_2)}, respectively)")
python
def check_that_operator_can_be_applied_to_produces_items(op, g1, g2): """ Helper function to check that the operator `op` can be applied to items produced by g1 and g2. """ g1_tmp_copy = g1.spawn() g2_tmp_copy = g2.spawn() sample_item_1 = next(g1_tmp_copy) sample_item_2 = next(g2_tmp_copy) try: op(sample_item_1, sample_item_2) except TypeError: raise TypeError(f"Operator '{op.__name__}' cannot be applied to items produced by {g1} and {g2} " f"(which have type {type(sample_item_1)} and {type(sample_item_2)}, respectively)")
['def', 'check_that_operator_can_be_applied_to_produces_items', '(', 'op', ',', 'g1', ',', 'g2', ')', ':', 'g1_tmp_copy', '=', 'g1', '.', 'spawn', '(', ')', 'g2_tmp_copy', '=', 'g2', '.', 'spawn', '(', ')', 'sample_item_1', '=', 'next', '(', 'g1_tmp_copy', ')', 'sample_item_2', '=', 'next', '(', 'g2_tmp_copy', ')', 'try', ':', 'op', '(', 'sample_item_1', ',', 'sample_item_2', ')', 'except', 'TypeError', ':', 'raise', 'TypeError', '(', 'f"Operator \'{op.__name__}\' cannot be applied to items produced by {g1} and {g2} "', 'f"(which have type {type(sample_item_1)} and {type(sample_item_2)}, respectively)"', ')']
Helper function to check that the operator `op` can be applied to items produced by g1 and g2.
['Helper', 'function', 'to', 'check', 'that', 'the', 'operator', 'op', 'can', 'be', 'applied', 'to', 'items', 'produced', 'by', 'g1', 'and', 'g2', '.']
train
https://github.com/maxalbert/tohu/blob/43380162fadec99cdd5c5c3152dd6b7d3a9d39a8/tohu/v6/set_special_methods.py#L16-L28
3,645
hackthefed/govtrack2csv
govtrack2csv/__init__.py
extract_subjects
def extract_subjects(bill): """ Return a list subject for legislation. """ logger.debug("Extracting Subjects") subject_map = [] subjects = bill.get('subjects', []) bill_id = bill.get('bill_id', None) bill_type = bill.get('bill_type', None) for sub in subjects: subject_map.append((bill_id, bill_type, sub)) logger.debug("End Extractioning Subjects") return subject_map
python
def extract_subjects(bill): """ Return a list subject for legislation. """ logger.debug("Extracting Subjects") subject_map = [] subjects = bill.get('subjects', []) bill_id = bill.get('bill_id', None) bill_type = bill.get('bill_type', None) for sub in subjects: subject_map.append((bill_id, bill_type, sub)) logger.debug("End Extractioning Subjects") return subject_map
['def', 'extract_subjects', '(', 'bill', ')', ':', 'logger', '.', 'debug', '(', '"Extracting Subjects"', ')', 'subject_map', '=', '[', ']', 'subjects', '=', 'bill', '.', 'get', '(', "'subjects'", ',', '[', ']', ')', 'bill_id', '=', 'bill', '.', 'get', '(', "'bill_id'", ',', 'None', ')', 'bill_type', '=', 'bill', '.', 'get', '(', "'bill_type'", ',', 'None', ')', 'for', 'sub', 'in', 'subjects', ':', 'subject_map', '.', 'append', '(', '(', 'bill_id', ',', 'bill_type', ',', 'sub', ')', ')', 'logger', '.', 'debug', '(', '"End Extractioning Subjects"', ')', 'return', 'subject_map']
Return a list subject for legislation.
['Return', 'a', 'list', 'subject', 'for', 'legislation', '.']
train
https://github.com/hackthefed/govtrack2csv/blob/db991f5fcd3dfda6e6d51fadd286cba983f493e5/govtrack2csv/__init__.py#L285-L300
3,646
qacafe/cdrouter.py
cdrouter/configs.py
ConfigsService.bulk_delete
def bulk_delete(self, ids=None, filter=None, type=None, all=False): # pylint: disable=redefined-builtin """Bulk delete a set of configs. :param ids: (optional) Int list of config IDs. :param filter: (optional) String list of filters. :param type: (optional) `union` or `inter` as string. :param all: (optional) Apply to all if bool `True`. """ return self.service.bulk_delete(self.base, self.RESOURCE, ids=ids, filter=filter, type=type, all=all)
python
def bulk_delete(self, ids=None, filter=None, type=None, all=False): # pylint: disable=redefined-builtin """Bulk delete a set of configs. :param ids: (optional) Int list of config IDs. :param filter: (optional) String list of filters. :param type: (optional) `union` or `inter` as string. :param all: (optional) Apply to all if bool `True`. """ return self.service.bulk_delete(self.base, self.RESOURCE, ids=ids, filter=filter, type=type, all=all)
['def', 'bulk_delete', '(', 'self', ',', 'ids', '=', 'None', ',', 'filter', '=', 'None', ',', 'type', '=', 'None', ',', 'all', '=', 'False', ')', ':', '# pylint: disable=redefined-builtin', 'return', 'self', '.', 'service', '.', 'bulk_delete', '(', 'self', '.', 'base', ',', 'self', '.', 'RESOURCE', ',', 'ids', '=', 'ids', ',', 'filter', '=', 'filter', ',', 'type', '=', 'type', ',', 'all', '=', 'all', ')']
Bulk delete a set of configs. :param ids: (optional) Int list of config IDs. :param filter: (optional) String list of filters. :param type: (optional) `union` or `inter` as string. :param all: (optional) Apply to all if bool `True`.
['Bulk', 'delete', 'a', 'set', 'of', 'configs', '.']
train
https://github.com/qacafe/cdrouter.py/blob/aacf2c6ab0b987250f7b1892f4bba14bb2b7dbe5/cdrouter/configs.py#L381-L390
3,647
ZELLMECHANIK-DRESDEN/dclab
dclab/isoelastics/__init__.py
Isoelastics.get
def get(self, col1, col2, method, channel_width, flow_rate=None, viscosity=None, add_px_err=False, px_um=None): """Get isoelastics Parameters ---------- col1: str Name of the first feature of all isoelastics (e.g. isoel[0][:,0]) col2: str Name of the second feature of all isoelastics (e.g. isoel[0][:,1]) method: str The method used to compute the isoelastics (must be one of `VALID_METHODS`). channel_width: float Channel width in µm flow_rate: float or `None` Flow rate through the channel in µl/s. If set to `None`, the flow rate of the imported data will be used (only do this if you do not need the correct values for elastic moduli). viscosity: float or `None` Viscosity of the medium in mPa*s. If set to `None`, the flow rate of the imported data will be used (only do this if you do not need the correct values for elastic moduli). add_px_err: bool If True, add pixelation errors according to C. Herold (2017), https://arxiv.org/abs/1704.00572 px_um: float Pixel size [µm], used for pixelation error computation See Also -------- dclab.features.emodulus.convert: conversion in-between channel sizes and viscosities dclab.features.emodulus.corrpix_deform_delta: pixelation error that is applied to the deformation data """ if method not in VALID_METHODS: validstr = ",".join(VALID_METHODS) raise ValueError("`method` must be one of {}!".format(validstr)) for col in [col1, col2]: if col not in dfn.scalar_feature_names: raise ValueError("Not a valid feature name: {}".format(col)) if "isoelastics" not in self._data[method][col2][col1]: msg = "No isoelastics matching {}, {}, {}".format(col1, col2, method) raise KeyError(msg) isoel = self._data[method][col1][col2]["isoelastics"] meta = self._data[method][col1][col2]["meta"] if flow_rate is None: flow_rate = meta[1] if viscosity is None: viscosity = meta[2] isoel_ret = self.convert(isoel, col1, col2, channel_width_in=meta[0], channel_width_out=channel_width, flow_rate_in=meta[1], flow_rate_out=flow_rate, viscosity_in=meta[2], viscosity_out=viscosity, inplace=False) if add_px_err: self.add_px_err(isoel=isoel_ret, col1=col1, col2=col2, px_um=px_um, inplace=True) return isoel_ret
python
def get(self, col1, col2, method, channel_width, flow_rate=None, viscosity=None, add_px_err=False, px_um=None): """Get isoelastics Parameters ---------- col1: str Name of the first feature of all isoelastics (e.g. isoel[0][:,0]) col2: str Name of the second feature of all isoelastics (e.g. isoel[0][:,1]) method: str The method used to compute the isoelastics (must be one of `VALID_METHODS`). channel_width: float Channel width in µm flow_rate: float or `None` Flow rate through the channel in µl/s. If set to `None`, the flow rate of the imported data will be used (only do this if you do not need the correct values for elastic moduli). viscosity: float or `None` Viscosity of the medium in mPa*s. If set to `None`, the flow rate of the imported data will be used (only do this if you do not need the correct values for elastic moduli). add_px_err: bool If True, add pixelation errors according to C. Herold (2017), https://arxiv.org/abs/1704.00572 px_um: float Pixel size [µm], used for pixelation error computation See Also -------- dclab.features.emodulus.convert: conversion in-between channel sizes and viscosities dclab.features.emodulus.corrpix_deform_delta: pixelation error that is applied to the deformation data """ if method not in VALID_METHODS: validstr = ",".join(VALID_METHODS) raise ValueError("`method` must be one of {}!".format(validstr)) for col in [col1, col2]: if col not in dfn.scalar_feature_names: raise ValueError("Not a valid feature name: {}".format(col)) if "isoelastics" not in self._data[method][col2][col1]: msg = "No isoelastics matching {}, {}, {}".format(col1, col2, method) raise KeyError(msg) isoel = self._data[method][col1][col2]["isoelastics"] meta = self._data[method][col1][col2]["meta"] if flow_rate is None: flow_rate = meta[1] if viscosity is None: viscosity = meta[2] isoel_ret = self.convert(isoel, col1, col2, channel_width_in=meta[0], channel_width_out=channel_width, flow_rate_in=meta[1], flow_rate_out=flow_rate, viscosity_in=meta[2], viscosity_out=viscosity, inplace=False) if add_px_err: self.add_px_err(isoel=isoel_ret, col1=col1, col2=col2, px_um=px_um, inplace=True) return isoel_ret
['def', 'get', '(', 'self', ',', 'col1', ',', 'col2', ',', 'method', ',', 'channel_width', ',', 'flow_rate', '=', 'None', ',', 'viscosity', '=', 'None', ',', 'add_px_err', '=', 'False', ',', 'px_um', '=', 'None', ')', ':', 'if', 'method', 'not', 'in', 'VALID_METHODS', ':', 'validstr', '=', '","', '.', 'join', '(', 'VALID_METHODS', ')', 'raise', 'ValueError', '(', '"`method` must be one of {}!"', '.', 'format', '(', 'validstr', ')', ')', 'for', 'col', 'in', '[', 'col1', ',', 'col2', ']', ':', 'if', 'col', 'not', 'in', 'dfn', '.', 'scalar_feature_names', ':', 'raise', 'ValueError', '(', '"Not a valid feature name: {}"', '.', 'format', '(', 'col', ')', ')', 'if', '"isoelastics"', 'not', 'in', 'self', '.', '_data', '[', 'method', ']', '[', 'col2', ']', '[', 'col1', ']', ':', 'msg', '=', '"No isoelastics matching {}, {}, {}"', '.', 'format', '(', 'col1', ',', 'col2', ',', 'method', ')', 'raise', 'KeyError', '(', 'msg', ')', 'isoel', '=', 'self', '.', '_data', '[', 'method', ']', '[', 'col1', ']', '[', 'col2', ']', '[', '"isoelastics"', ']', 'meta', '=', 'self', '.', '_data', '[', 'method', ']', '[', 'col1', ']', '[', 'col2', ']', '[', '"meta"', ']', 'if', 'flow_rate', 'is', 'None', ':', 'flow_rate', '=', 'meta', '[', '1', ']', 'if', 'viscosity', 'is', 'None', ':', 'viscosity', '=', 'meta', '[', '2', ']', 'isoel_ret', '=', 'self', '.', 'convert', '(', 'isoel', ',', 'col1', ',', 'col2', ',', 'channel_width_in', '=', 'meta', '[', '0', ']', ',', 'channel_width_out', '=', 'channel_width', ',', 'flow_rate_in', '=', 'meta', '[', '1', ']', ',', 'flow_rate_out', '=', 'flow_rate', ',', 'viscosity_in', '=', 'meta', '[', '2', ']', ',', 'viscosity_out', '=', 'viscosity', ',', 'inplace', '=', 'False', ')', 'if', 'add_px_err', ':', 'self', '.', 'add_px_err', '(', 'isoel', '=', 'isoel_ret', ',', 'col1', '=', 'col1', ',', 'col2', '=', 'col2', ',', 'px_um', '=', 'px_um', ',', 'inplace', '=', 'True', ')', 'return', 'isoel_ret']
Get isoelastics Parameters ---------- col1: str Name of the first feature of all isoelastics (e.g. isoel[0][:,0]) col2: str Name of the second feature of all isoelastics (e.g. isoel[0][:,1]) method: str The method used to compute the isoelastics (must be one of `VALID_METHODS`). channel_width: float Channel width in µm flow_rate: float or `None` Flow rate through the channel in µl/s. If set to `None`, the flow rate of the imported data will be used (only do this if you do not need the correct values for elastic moduli). viscosity: float or `None` Viscosity of the medium in mPa*s. If set to `None`, the flow rate of the imported data will be used (only do this if you do not need the correct values for elastic moduli). add_px_err: bool If True, add pixelation errors according to C. Herold (2017), https://arxiv.org/abs/1704.00572 px_um: float Pixel size [µm], used for pixelation error computation See Also -------- dclab.features.emodulus.convert: conversion in-between channel sizes and viscosities dclab.features.emodulus.corrpix_deform_delta: pixelation error that is applied to the deformation data
['Get', 'isoelastics']
train
https://github.com/ZELLMECHANIK-DRESDEN/dclab/blob/79002c4356e7020c2ba73ab0a3819c9abd4affec/dclab/isoelastics/__init__.py#L233-L310
3,648
gbiggs/rtctree
rtctree/tree.py
RTCTree.is_zombie
def is_zombie(self, path): '''Is the node pointed to by @ref path a zombie object?''' node = self.get_node(path) if not node: return False return node.is_zombie
python
def is_zombie(self, path): '''Is the node pointed to by @ref path a zombie object?''' node = self.get_node(path) if not node: return False return node.is_zombie
['def', 'is_zombie', '(', 'self', ',', 'path', ')', ':', 'node', '=', 'self', '.', 'get_node', '(', 'path', ')', 'if', 'not', 'node', ':', 'return', 'False', 'return', 'node', '.', 'is_zombie']
Is the node pointed to by @ref path a zombie object?
['Is', 'the', 'node', 'pointed', 'to', 'by']
train
https://github.com/gbiggs/rtctree/blob/bd725a47ac87c259c8bce06156ccc9ab71111c26/rtctree/tree.py#L240-L245
3,649
rigetti/quantumflow
quantumflow/gates.py
join_gates
def join_gates(*gates: Gate) -> Gate: """Direct product of two gates. Qubit count is the sum of each gate's bit count.""" vectors = [gate.vec for gate in gates] vec = reduce(outer_product, vectors) return Gate(vec.tensor, vec.qubits)
python
def join_gates(*gates: Gate) -> Gate: """Direct product of two gates. Qubit count is the sum of each gate's bit count.""" vectors = [gate.vec for gate in gates] vec = reduce(outer_product, vectors) return Gate(vec.tensor, vec.qubits)
['def', 'join_gates', '(', '*', 'gates', ':', 'Gate', ')', '->', 'Gate', ':', 'vectors', '=', '[', 'gate', '.', 'vec', 'for', 'gate', 'in', 'gates', ']', 'vec', '=', 'reduce', '(', 'outer_product', ',', 'vectors', ')', 'return', 'Gate', '(', 'vec', '.', 'tensor', ',', 'vec', '.', 'qubits', ')']
Direct product of two gates. Qubit count is the sum of each gate's bit count.
['Direct', 'product', 'of', 'two', 'gates', '.', 'Qubit', 'count', 'is', 'the', 'sum', 'of', 'each', 'gate', 's', 'bit', 'count', '.']
train
https://github.com/rigetti/quantumflow/blob/13a66cabbe8aabf6e023cc675f4a4ebe6ccda8fb/quantumflow/gates.py#L63-L68
3,650
softlayer/softlayer-python
SoftLayer/CLI/firewall/edit.py
get_formatted_rule
def get_formatted_rule(rule=None): """Helper to format the rule into a user friendly format. :param dict rule: A dict containing one rule of the firewall :returns: a formatted string that get be pushed into the editor """ rule = rule or {} return ('action: %s\n' 'protocol: %s\n' 'source_ip_address: %s\n' 'source_ip_subnet_mask: %s\n' 'destination_ip_address: %s\n' 'destination_ip_subnet_mask: %s\n' 'destination_port_range_start: %s\n' 'destination_port_range_end: %s\n' 'version: %s\n' % (rule.get('action', 'permit'), rule.get('protocol', 'tcp'), rule.get('sourceIpAddress', 'any'), rule.get('sourceIpSubnetMask', '255.255.255.255'), rule.get('destinationIpAddress', 'any'), rule.get('destinationIpSubnetMask', '255.255.255.255'), rule.get('destinationPortRangeStart', 1), rule.get('destinationPortRangeEnd', 1), rule.get('version', 4)))
python
def get_formatted_rule(rule=None): """Helper to format the rule into a user friendly format. :param dict rule: A dict containing one rule of the firewall :returns: a formatted string that get be pushed into the editor """ rule = rule or {} return ('action: %s\n' 'protocol: %s\n' 'source_ip_address: %s\n' 'source_ip_subnet_mask: %s\n' 'destination_ip_address: %s\n' 'destination_ip_subnet_mask: %s\n' 'destination_port_range_start: %s\n' 'destination_port_range_end: %s\n' 'version: %s\n' % (rule.get('action', 'permit'), rule.get('protocol', 'tcp'), rule.get('sourceIpAddress', 'any'), rule.get('sourceIpSubnetMask', '255.255.255.255'), rule.get('destinationIpAddress', 'any'), rule.get('destinationIpSubnetMask', '255.255.255.255'), rule.get('destinationPortRangeStart', 1), rule.get('destinationPortRangeEnd', 1), rule.get('version', 4)))
['def', 'get_formatted_rule', '(', 'rule', '=', 'None', ')', ':', 'rule', '=', 'rule', 'or', '{', '}', 'return', '(', "'action: %s\\n'", "'protocol: %s\\n'", "'source_ip_address: %s\\n'", "'source_ip_subnet_mask: %s\\n'", "'destination_ip_address: %s\\n'", "'destination_ip_subnet_mask: %s\\n'", "'destination_port_range_start: %s\\n'", "'destination_port_range_end: %s\\n'", "'version: %s\\n'", '%', '(', 'rule', '.', 'get', '(', "'action'", ',', "'permit'", ')', ',', 'rule', '.', 'get', '(', "'protocol'", ',', "'tcp'", ')', ',', 'rule', '.', 'get', '(', "'sourceIpAddress'", ',', "'any'", ')', ',', 'rule', '.', 'get', '(', "'sourceIpSubnetMask'", ',', "'255.255.255.255'", ')', ',', 'rule', '.', 'get', '(', "'destinationIpAddress'", ',', "'any'", ')', ',', 'rule', '.', 'get', '(', "'destinationIpSubnetMask'", ',', "'255.255.255.255'", ')', ',', 'rule', '.', 'get', '(', "'destinationPortRangeStart'", ',', '1', ')', ',', 'rule', '.', 'get', '(', "'destinationPortRangeEnd'", ',', '1', ')', ',', 'rule', '.', 'get', '(', "'version'", ',', '4', ')', ')', ')']
Helper to format the rule into a user friendly format. :param dict rule: A dict containing one rule of the firewall :returns: a formatted string that get be pushed into the editor
['Helper', 'to', 'format', 'the', 'rule', 'into', 'a', 'user', 'friendly', 'format', '.']
train
https://github.com/softlayer/softlayer-python/blob/9f181be08cc3668353b05a6de0cb324f52cff6fa/SoftLayer/CLI/firewall/edit.py#L108-L132
3,651
watson-developer-cloud/python-sdk
ibm_watson/language_translator_v3.py
LanguageTranslatorV3.translate
def translate(self, text, model_id=None, source=None, target=None, **kwargs): """ Translate. Translates the input text from the source language to the target language. :param list[str] text: Input text in UTF-8 encoding. Multiple entries will result in multiple translations in the response. :param str model_id: A globally unique string that identifies the underlying model that is used for translation. :param str source: Translation source language code. :param str target: Translation target language code. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if text is None: raise ValueError('text must be provided') headers = {} if 'headers' in kwargs: headers.update(kwargs.get('headers')) sdk_headers = get_sdk_headers('language_translator', 'V3', 'translate') headers.update(sdk_headers) params = {'version': self.version} data = { 'text': text, 'model_id': model_id, 'source': source, 'target': target } url = '/v3/translate' response = self.request( method='POST', url=url, headers=headers, params=params, json=data, accept_json=True) return response
python
def translate(self, text, model_id=None, source=None, target=None, **kwargs): """ Translate. Translates the input text from the source language to the target language. :param list[str] text: Input text in UTF-8 encoding. Multiple entries will result in multiple translations in the response. :param str model_id: A globally unique string that identifies the underlying model that is used for translation. :param str source: Translation source language code. :param str target: Translation target language code. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse """ if text is None: raise ValueError('text must be provided') headers = {} if 'headers' in kwargs: headers.update(kwargs.get('headers')) sdk_headers = get_sdk_headers('language_translator', 'V3', 'translate') headers.update(sdk_headers) params = {'version': self.version} data = { 'text': text, 'model_id': model_id, 'source': source, 'target': target } url = '/v3/translate' response = self.request( method='POST', url=url, headers=headers, params=params, json=data, accept_json=True) return response
['def', 'translate', '(', 'self', ',', 'text', ',', 'model_id', '=', 'None', ',', 'source', '=', 'None', ',', 'target', '=', 'None', ',', '*', '*', 'kwargs', ')', ':', 'if', 'text', 'is', 'None', ':', 'raise', 'ValueError', '(', "'text must be provided'", ')', 'headers', '=', '{', '}', 'if', "'headers'", 'in', 'kwargs', ':', 'headers', '.', 'update', '(', 'kwargs', '.', 'get', '(', "'headers'", ')', ')', 'sdk_headers', '=', 'get_sdk_headers', '(', "'language_translator'", ',', "'V3'", ',', "'translate'", ')', 'headers', '.', 'update', '(', 'sdk_headers', ')', 'params', '=', '{', "'version'", ':', 'self', '.', 'version', '}', 'data', '=', '{', "'text'", ':', 'text', ',', "'model_id'", ':', 'model_id', ',', "'source'", ':', 'source', ',', "'target'", ':', 'target', '}', 'url', '=', "'/v3/translate'", 'response', '=', 'self', '.', 'request', '(', 'method', '=', "'POST'", ',', 'url', '=', 'url', ',', 'headers', '=', 'headers', ',', 'params', '=', 'params', ',', 'json', '=', 'data', ',', 'accept_json', '=', 'True', ')', 'return', 'response']
Translate. Translates the input text from the source language to the target language. :param list[str] text: Input text in UTF-8 encoding. Multiple entries will result in multiple translations in the response. :param str model_id: A globally unique string that identifies the underlying model that is used for translation. :param str source: Translation source language code. :param str target: Translation target language code. :param dict headers: A `dict` containing the request headers :return: A `DetailedResponse` containing the result, headers and HTTP status code. :rtype: DetailedResponse
['Translate', '.']
train
https://github.com/watson-developer-cloud/python-sdk/blob/4c2c9df4466fcde88975da9ecd834e6ba95eb353/ibm_watson/language_translator_v3.py#L110-L154
3,652
minhhoit/yacms
yacms/twitter/managers.py
TweetManager.get_for
def get_for(self, query_type, value): """ Create a query and run it for the given arg if it doesn't exist, and return the tweets for the query. """ from yacms.twitter.models import Query lookup = {"type": query_type, "value": value} query, created = Query.objects.get_or_create(**lookup) if created: query.run() elif not query.interested: query.interested = True query.save() return query.tweets.all()
python
def get_for(self, query_type, value): """ Create a query and run it for the given arg if it doesn't exist, and return the tweets for the query. """ from yacms.twitter.models import Query lookup = {"type": query_type, "value": value} query, created = Query.objects.get_or_create(**lookup) if created: query.run() elif not query.interested: query.interested = True query.save() return query.tweets.all()
['def', 'get_for', '(', 'self', ',', 'query_type', ',', 'value', ')', ':', 'from', 'yacms', '.', 'twitter', '.', 'models', 'import', 'Query', 'lookup', '=', '{', '"type"', ':', 'query_type', ',', '"value"', ':', 'value', '}', 'query', ',', 'created', '=', 'Query', '.', 'objects', '.', 'get_or_create', '(', '*', '*', 'lookup', ')', 'if', 'created', ':', 'query', '.', 'run', '(', ')', 'elif', 'not', 'query', '.', 'interested', ':', 'query', '.', 'interested', '=', 'True', 'query', '.', 'save', '(', ')', 'return', 'query', '.', 'tweets', '.', 'all', '(', ')']
Create a query and run it for the given arg if it doesn't exist, and return the tweets for the query.
['Create', 'a', 'query', 'and', 'run', 'it', 'for', 'the', 'given', 'arg', 'if', 'it', 'doesn', 't', 'exist', 'and', 'return', 'the', 'tweets', 'for', 'the', 'query', '.']
train
https://github.com/minhhoit/yacms/blob/2921b706b7107c6e8c5f2bbf790ff11f85a2167f/yacms/twitter/managers.py#L12-L25
3,653
zarr-developers/zarr
zarr/convenience.py
open
def open(store=None, mode='a', **kwargs): """Convenience function to open a group or array using file-mode-like semantics. Parameters ---------- store : MutableMapping or string, optional Store or path to directory in file system or name of zip file. mode : {'r', 'r+', 'a', 'w', 'w-'}, optional Persistence mode: 'r' means read only (must exist); 'r+' means read/write (must exist); 'a' means read/write (create if doesn't exist); 'w' means create (overwrite if exists); 'w-' means create (fail if exists). **kwargs Additional parameters are passed through to :func:`zarr.creation.open_array` or :func:`zarr.hierarchy.open_group`. Returns ------- z : :class:`zarr.core.Array` or :class:`zarr.hierarchy.Group` Array or group, depending on what exists in the given store. See Also -------- zarr.creation.open_array, zarr.hierarchy.open_group Examples -------- Storing data in a directory 'data/example.zarr' on the local file system:: >>> import zarr >>> store = 'data/example.zarr' >>> zw = zarr.open(store, mode='w', shape=100, dtype='i4') # open new array >>> zw <zarr.core.Array (100,) int32> >>> za = zarr.open(store, mode='a') # open existing array for reading and writing >>> za <zarr.core.Array (100,) int32> >>> zr = zarr.open(store, mode='r') # open existing array read-only >>> zr <zarr.core.Array (100,) int32 read-only> >>> gw = zarr.open(store, mode='w') # open new group, overwriting previous data >>> gw <zarr.hierarchy.Group '/'> >>> ga = zarr.open(store, mode='a') # open existing group for reading and writing >>> ga <zarr.hierarchy.Group '/'> >>> gr = zarr.open(store, mode='r') # open existing group read-only >>> gr <zarr.hierarchy.Group '/' read-only> """ path = kwargs.get('path', None) # handle polymorphic store arg clobber = mode == 'w' store = normalize_store_arg(store, clobber=clobber) path = normalize_storage_path(path) if mode in {'w', 'w-', 'x'}: if 'shape' in kwargs: return open_array(store, mode=mode, **kwargs) else: return open_group(store, mode=mode, **kwargs) elif mode == 'a': if contains_array(store, path): return open_array(store, mode=mode, **kwargs) elif contains_group(store, path): return open_group(store, mode=mode, **kwargs) elif 'shape' in kwargs: return open_array(store, mode=mode, **kwargs) else: return open_group(store, mode=mode, **kwargs) else: if contains_array(store, path): return open_array(store, mode=mode, **kwargs) elif contains_group(store, path): return open_group(store, mode=mode, **kwargs) else: err_path_not_found(path)
python
def open(store=None, mode='a', **kwargs): """Convenience function to open a group or array using file-mode-like semantics. Parameters ---------- store : MutableMapping or string, optional Store or path to directory in file system or name of zip file. mode : {'r', 'r+', 'a', 'w', 'w-'}, optional Persistence mode: 'r' means read only (must exist); 'r+' means read/write (must exist); 'a' means read/write (create if doesn't exist); 'w' means create (overwrite if exists); 'w-' means create (fail if exists). **kwargs Additional parameters are passed through to :func:`zarr.creation.open_array` or :func:`zarr.hierarchy.open_group`. Returns ------- z : :class:`zarr.core.Array` or :class:`zarr.hierarchy.Group` Array or group, depending on what exists in the given store. See Also -------- zarr.creation.open_array, zarr.hierarchy.open_group Examples -------- Storing data in a directory 'data/example.zarr' on the local file system:: >>> import zarr >>> store = 'data/example.zarr' >>> zw = zarr.open(store, mode='w', shape=100, dtype='i4') # open new array >>> zw <zarr.core.Array (100,) int32> >>> za = zarr.open(store, mode='a') # open existing array for reading and writing >>> za <zarr.core.Array (100,) int32> >>> zr = zarr.open(store, mode='r') # open existing array read-only >>> zr <zarr.core.Array (100,) int32 read-only> >>> gw = zarr.open(store, mode='w') # open new group, overwriting previous data >>> gw <zarr.hierarchy.Group '/'> >>> ga = zarr.open(store, mode='a') # open existing group for reading and writing >>> ga <zarr.hierarchy.Group '/'> >>> gr = zarr.open(store, mode='r') # open existing group read-only >>> gr <zarr.hierarchy.Group '/' read-only> """ path = kwargs.get('path', None) # handle polymorphic store arg clobber = mode == 'w' store = normalize_store_arg(store, clobber=clobber) path = normalize_storage_path(path) if mode in {'w', 'w-', 'x'}: if 'shape' in kwargs: return open_array(store, mode=mode, **kwargs) else: return open_group(store, mode=mode, **kwargs) elif mode == 'a': if contains_array(store, path): return open_array(store, mode=mode, **kwargs) elif contains_group(store, path): return open_group(store, mode=mode, **kwargs) elif 'shape' in kwargs: return open_array(store, mode=mode, **kwargs) else: return open_group(store, mode=mode, **kwargs) else: if contains_array(store, path): return open_array(store, mode=mode, **kwargs) elif contains_group(store, path): return open_group(store, mode=mode, **kwargs) else: err_path_not_found(path)
['def', 'open', '(', 'store', '=', 'None', ',', 'mode', '=', "'a'", ',', '*', '*', 'kwargs', ')', ':', 'path', '=', 'kwargs', '.', 'get', '(', "'path'", ',', 'None', ')', '# handle polymorphic store arg', 'clobber', '=', 'mode', '==', "'w'", 'store', '=', 'normalize_store_arg', '(', 'store', ',', 'clobber', '=', 'clobber', ')', 'path', '=', 'normalize_storage_path', '(', 'path', ')', 'if', 'mode', 'in', '{', "'w'", ',', "'w-'", ',', "'x'", '}', ':', 'if', "'shape'", 'in', 'kwargs', ':', 'return', 'open_array', '(', 'store', ',', 'mode', '=', 'mode', ',', '*', '*', 'kwargs', ')', 'else', ':', 'return', 'open_group', '(', 'store', ',', 'mode', '=', 'mode', ',', '*', '*', 'kwargs', ')', 'elif', 'mode', '==', "'a'", ':', 'if', 'contains_array', '(', 'store', ',', 'path', ')', ':', 'return', 'open_array', '(', 'store', ',', 'mode', '=', 'mode', ',', '*', '*', 'kwargs', ')', 'elif', 'contains_group', '(', 'store', ',', 'path', ')', ':', 'return', 'open_group', '(', 'store', ',', 'mode', '=', 'mode', ',', '*', '*', 'kwargs', ')', 'elif', "'shape'", 'in', 'kwargs', ':', 'return', 'open_array', '(', 'store', ',', 'mode', '=', 'mode', ',', '*', '*', 'kwargs', ')', 'else', ':', 'return', 'open_group', '(', 'store', ',', 'mode', '=', 'mode', ',', '*', '*', 'kwargs', ')', 'else', ':', 'if', 'contains_array', '(', 'store', ',', 'path', ')', ':', 'return', 'open_array', '(', 'store', ',', 'mode', '=', 'mode', ',', '*', '*', 'kwargs', ')', 'elif', 'contains_group', '(', 'store', ',', 'path', ')', ':', 'return', 'open_group', '(', 'store', ',', 'mode', '=', 'mode', ',', '*', '*', 'kwargs', ')', 'else', ':', 'err_path_not_found', '(', 'path', ')']
Convenience function to open a group or array using file-mode-like semantics. Parameters ---------- store : MutableMapping or string, optional Store or path to directory in file system or name of zip file. mode : {'r', 'r+', 'a', 'w', 'w-'}, optional Persistence mode: 'r' means read only (must exist); 'r+' means read/write (must exist); 'a' means read/write (create if doesn't exist); 'w' means create (overwrite if exists); 'w-' means create (fail if exists). **kwargs Additional parameters are passed through to :func:`zarr.creation.open_array` or :func:`zarr.hierarchy.open_group`. Returns ------- z : :class:`zarr.core.Array` or :class:`zarr.hierarchy.Group` Array or group, depending on what exists in the given store. See Also -------- zarr.creation.open_array, zarr.hierarchy.open_group Examples -------- Storing data in a directory 'data/example.zarr' on the local file system:: >>> import zarr >>> store = 'data/example.zarr' >>> zw = zarr.open(store, mode='w', shape=100, dtype='i4') # open new array >>> zw <zarr.core.Array (100,) int32> >>> za = zarr.open(store, mode='a') # open existing array for reading and writing >>> za <zarr.core.Array (100,) int32> >>> zr = zarr.open(store, mode='r') # open existing array read-only >>> zr <zarr.core.Array (100,) int32 read-only> >>> gw = zarr.open(store, mode='w') # open new group, overwriting previous data >>> gw <zarr.hierarchy.Group '/'> >>> ga = zarr.open(store, mode='a') # open existing group for reading and writing >>> ga <zarr.hierarchy.Group '/'> >>> gr = zarr.open(store, mode='r') # open existing group read-only >>> gr <zarr.hierarchy.Group '/' read-only>
['Convenience', 'function', 'to', 'open', 'a', 'group', 'or', 'array', 'using', 'file', '-', 'mode', '-', 'like', 'semantics', '.']
train
https://github.com/zarr-developers/zarr/blob/fb8e6d5ea6bc26e451e5cf0eaaee36977556d5b5/zarr/convenience.py#L21-L102
3,654
GPflow/GPflow
gpflow/multioutput/conditionals.py
independent_interdomain_conditional
def independent_interdomain_conditional(Kmn, Kmm, Knn, f, *, full_cov=False, full_output_cov=False, q_sqrt=None, white=False): """ The inducing outputs live in the g-space (R^L). Interdomain conditional calculation. :param Kmn: M x L x N x P :param Kmm: L x M x M :param Knn: N x P or N x N or P x N x N or N x P x N x P :param f: data matrix, M x L :param q_sqrt: L x M x M or M x L :param full_cov: calculate covariance between inputs :param full_output_cov: calculate covariance between outputs :param white: use whitened representation :return: - mean: N x P - variance: N x P, N x P x P, P x N x N, N x P x N x P """ logger.debug("independent_interdomain_conditional") M, L, N, P = [tf.shape(Kmn)[i] for i in range(Kmn.shape.ndims)] Lm = tf.cholesky(Kmm) # L x M x M # Compute the projection matrix A Kmn = tf.reshape(tf.transpose(Kmn, (1, 0, 2, 3)), (L, M, N * P)) A = tf.matrix_triangular_solve(Lm, Kmn, lower=True) # L x M x M * L x M x NP -> L x M x NP Ar = tf.reshape(A, (L, M, N, P)) # compute the covariance due to the conditioning if full_cov and full_output_cov: fvar = Knn - tf.tensordot(Ar, Ar, [[0, 1], [0, 1]]) # N x P x N x P elif full_cov and not full_output_cov: At = tf.reshape(tf.transpose(Ar), (P, N, M * L)) # P x N x ML fvar = Knn - tf.matmul(At, At, transpose_b=True) # P x N x N elif not full_cov and full_output_cov: At = tf.reshape(tf.transpose(Ar, [2, 3, 1, 0]), (N, P, M * L)) # N x P x ML fvar = Knn - tf.matmul(At, At, transpose_b=True) # N x P x P elif not full_cov and not full_output_cov: fvar = Knn - tf.reshape(tf.reduce_sum(tf.square(A), [0, 1]), (N, P)) # Knn: N x P # another backsubstitution in the unwhitened case if not white: A = tf.matrix_triangular_solve(Lm, Ar) # L x M x M * L x M x NP -> L x M x NP Ar = tf.reshape(A, (L, M, N, P)) fmean = tf.tensordot(Ar, f, [[1, 0], [0, 1]]) # N x P if q_sqrt is not None: if q_sqrt.shape.ndims == 3: Lf = tf.matrix_band_part(q_sqrt, -1, 0) # L x M x M LTA = tf.matmul(Lf, A, transpose_a=True) # L x M x M * L x M x NP -> L x M x NP else: # q_sqrt M x L LTA = (A * tf.transpose(q_sqrt)[..., None]) # L x M x NP if full_cov and full_output_cov: LTAr = tf.reshape(LTA, (L * M, N * P)) fvar = fvar + tf.reshape(tf.matmul(LTAr, LTAr, transpose_a=True), (N, P, N, P)) elif full_cov and not full_output_cov: LTAr = tf.transpose(tf.reshape(LTA, (L * M, N, P)), [2, 0, 1]) # P x LM x N fvar = fvar + tf.matmul(LTAr, LTAr, transpose_a=True) # P x N x N elif not full_cov and full_output_cov: LTAr = tf.transpose(tf.reshape(LTA, (L * M, N, P)), [1, 0, 2]) # N x LM x P fvar = fvar + tf.matmul(LTAr, LTAr, transpose_a=True) # N x P x P elif not full_cov and not full_output_cov: fvar = fvar + tf.reshape(tf.reduce_sum(tf.square(LTA), (0, 1)), (N, P)) return fmean, fvar
python
def independent_interdomain_conditional(Kmn, Kmm, Knn, f, *, full_cov=False, full_output_cov=False, q_sqrt=None, white=False): """ The inducing outputs live in the g-space (R^L). Interdomain conditional calculation. :param Kmn: M x L x N x P :param Kmm: L x M x M :param Knn: N x P or N x N or P x N x N or N x P x N x P :param f: data matrix, M x L :param q_sqrt: L x M x M or M x L :param full_cov: calculate covariance between inputs :param full_output_cov: calculate covariance between outputs :param white: use whitened representation :return: - mean: N x P - variance: N x P, N x P x P, P x N x N, N x P x N x P """ logger.debug("independent_interdomain_conditional") M, L, N, P = [tf.shape(Kmn)[i] for i in range(Kmn.shape.ndims)] Lm = tf.cholesky(Kmm) # L x M x M # Compute the projection matrix A Kmn = tf.reshape(tf.transpose(Kmn, (1, 0, 2, 3)), (L, M, N * P)) A = tf.matrix_triangular_solve(Lm, Kmn, lower=True) # L x M x M * L x M x NP -> L x M x NP Ar = tf.reshape(A, (L, M, N, P)) # compute the covariance due to the conditioning if full_cov and full_output_cov: fvar = Knn - tf.tensordot(Ar, Ar, [[0, 1], [0, 1]]) # N x P x N x P elif full_cov and not full_output_cov: At = tf.reshape(tf.transpose(Ar), (P, N, M * L)) # P x N x ML fvar = Knn - tf.matmul(At, At, transpose_b=True) # P x N x N elif not full_cov and full_output_cov: At = tf.reshape(tf.transpose(Ar, [2, 3, 1, 0]), (N, P, M * L)) # N x P x ML fvar = Knn - tf.matmul(At, At, transpose_b=True) # N x P x P elif not full_cov and not full_output_cov: fvar = Knn - tf.reshape(tf.reduce_sum(tf.square(A), [0, 1]), (N, P)) # Knn: N x P # another backsubstitution in the unwhitened case if not white: A = tf.matrix_triangular_solve(Lm, Ar) # L x M x M * L x M x NP -> L x M x NP Ar = tf.reshape(A, (L, M, N, P)) fmean = tf.tensordot(Ar, f, [[1, 0], [0, 1]]) # N x P if q_sqrt is not None: if q_sqrt.shape.ndims == 3: Lf = tf.matrix_band_part(q_sqrt, -1, 0) # L x M x M LTA = tf.matmul(Lf, A, transpose_a=True) # L x M x M * L x M x NP -> L x M x NP else: # q_sqrt M x L LTA = (A * tf.transpose(q_sqrt)[..., None]) # L x M x NP if full_cov and full_output_cov: LTAr = tf.reshape(LTA, (L * M, N * P)) fvar = fvar + tf.reshape(tf.matmul(LTAr, LTAr, transpose_a=True), (N, P, N, P)) elif full_cov and not full_output_cov: LTAr = tf.transpose(tf.reshape(LTA, (L * M, N, P)), [2, 0, 1]) # P x LM x N fvar = fvar + tf.matmul(LTAr, LTAr, transpose_a=True) # P x N x N elif not full_cov and full_output_cov: LTAr = tf.transpose(tf.reshape(LTA, (L * M, N, P)), [1, 0, 2]) # N x LM x P fvar = fvar + tf.matmul(LTAr, LTAr, transpose_a=True) # N x P x P elif not full_cov and not full_output_cov: fvar = fvar + tf.reshape(tf.reduce_sum(tf.square(LTA), (0, 1)), (N, P)) return fmean, fvar
['def', 'independent_interdomain_conditional', '(', 'Kmn', ',', 'Kmm', ',', 'Knn', ',', 'f', ',', '*', ',', 'full_cov', '=', 'False', ',', 'full_output_cov', '=', 'False', ',', 'q_sqrt', '=', 'None', ',', 'white', '=', 'False', ')', ':', 'logger', '.', 'debug', '(', '"independent_interdomain_conditional"', ')', 'M', ',', 'L', ',', 'N', ',', 'P', '=', '[', 'tf', '.', 'shape', '(', 'Kmn', ')', '[', 'i', ']', 'for', 'i', 'in', 'range', '(', 'Kmn', '.', 'shape', '.', 'ndims', ')', ']', 'Lm', '=', 'tf', '.', 'cholesky', '(', 'Kmm', ')', '# L x M x M', '# Compute the projection matrix A', 'Kmn', '=', 'tf', '.', 'reshape', '(', 'tf', '.', 'transpose', '(', 'Kmn', ',', '(', '1', ',', '0', ',', '2', ',', '3', ')', ')', ',', '(', 'L', ',', 'M', ',', 'N', '*', 'P', ')', ')', 'A', '=', 'tf', '.', 'matrix_triangular_solve', '(', 'Lm', ',', 'Kmn', ',', 'lower', '=', 'True', ')', '# L x M x M * L x M x NP -> L x M x NP', 'Ar', '=', 'tf', '.', 'reshape', '(', 'A', ',', '(', 'L', ',', 'M', ',', 'N', ',', 'P', ')', ')', '# compute the covariance due to the conditioning', 'if', 'full_cov', 'and', 'full_output_cov', ':', 'fvar', '=', 'Knn', '-', 'tf', '.', 'tensordot', '(', 'Ar', ',', 'Ar', ',', '[', '[', '0', ',', '1', ']', ',', '[', '0', ',', '1', ']', ']', ')', '# N x P x N x P', 'elif', 'full_cov', 'and', 'not', 'full_output_cov', ':', 'At', '=', 'tf', '.', 'reshape', '(', 'tf', '.', 'transpose', '(', 'Ar', ')', ',', '(', 'P', ',', 'N', ',', 'M', '*', 'L', ')', ')', '# P x N x ML', 'fvar', '=', 'Knn', '-', 'tf', '.', 'matmul', '(', 'At', ',', 'At', ',', 'transpose_b', '=', 'True', ')', '# P x N x N', 'elif', 'not', 'full_cov', 'and', 'full_output_cov', ':', 'At', '=', 'tf', '.', 'reshape', '(', 'tf', '.', 'transpose', '(', 'Ar', ',', '[', '2', ',', '3', ',', '1', ',', '0', ']', ')', ',', '(', 'N', ',', 'P', ',', 'M', '*', 'L', ')', ')', '# N x P x ML', 'fvar', '=', 'Knn', '-', 'tf', '.', 'matmul', '(', 'At', ',', 'At', ',', 'transpose_b', '=', 'True', ')', '# N x P x P', 'elif', 'not', 'full_cov', 'and', 'not', 'full_output_cov', ':', 'fvar', '=', 'Knn', '-', 'tf', '.', 'reshape', '(', 'tf', '.', 'reduce_sum', '(', 'tf', '.', 'square', '(', 'A', ')', ',', '[', '0', ',', '1', ']', ')', ',', '(', 'N', ',', 'P', ')', ')', '# Knn: N x P', '# another backsubstitution in the unwhitened case', 'if', 'not', 'white', ':', 'A', '=', 'tf', '.', 'matrix_triangular_solve', '(', 'Lm', ',', 'Ar', ')', '# L x M x M * L x M x NP -> L x M x NP', 'Ar', '=', 'tf', '.', 'reshape', '(', 'A', ',', '(', 'L', ',', 'M', ',', 'N', ',', 'P', ')', ')', 'fmean', '=', 'tf', '.', 'tensordot', '(', 'Ar', ',', 'f', ',', '[', '[', '1', ',', '0', ']', ',', '[', '0', ',', '1', ']', ']', ')', '# N x P', 'if', 'q_sqrt', 'is', 'not', 'None', ':', 'if', 'q_sqrt', '.', 'shape', '.', 'ndims', '==', '3', ':', 'Lf', '=', 'tf', '.', 'matrix_band_part', '(', 'q_sqrt', ',', '-', '1', ',', '0', ')', '# L x M x M', 'LTA', '=', 'tf', '.', 'matmul', '(', 'Lf', ',', 'A', ',', 'transpose_a', '=', 'True', ')', '# L x M x M * L x M x NP -> L x M x NP', 'else', ':', '# q_sqrt M x L', 'LTA', '=', '(', 'A', '*', 'tf', '.', 'transpose', '(', 'q_sqrt', ')', '[', '...', ',', 'None', ']', ')', '# L x M x NP', 'if', 'full_cov', 'and', 'full_output_cov', ':', 'LTAr', '=', 'tf', '.', 'reshape', '(', 'LTA', ',', '(', 'L', '*', 'M', ',', 'N', '*', 'P', ')', ')', 'fvar', '=', 'fvar', '+', 'tf', '.', 'reshape', '(', 'tf', '.', 'matmul', '(', 'LTAr', ',', 'LTAr', ',', 'transpose_a', '=', 'True', ')', ',', '(', 'N', ',', 'P', ',', 'N', ',', 'P', ')', ')', 'elif', 'full_cov', 'and', 'not', 'full_output_cov', ':', 'LTAr', '=', 'tf', '.', 'transpose', '(', 'tf', '.', 'reshape', '(', 'LTA', ',', '(', 'L', '*', 'M', ',', 'N', ',', 'P', ')', ')', ',', '[', '2', ',', '0', ',', '1', ']', ')', '# P x LM x N', 'fvar', '=', 'fvar', '+', 'tf', '.', 'matmul', '(', 'LTAr', ',', 'LTAr', ',', 'transpose_a', '=', 'True', ')', '# P x N x N', 'elif', 'not', 'full_cov', 'and', 'full_output_cov', ':', 'LTAr', '=', 'tf', '.', 'transpose', '(', 'tf', '.', 'reshape', '(', 'LTA', ',', '(', 'L', '*', 'M', ',', 'N', ',', 'P', ')', ')', ',', '[', '1', ',', '0', ',', '2', ']', ')', '# N x LM x P', 'fvar', '=', 'fvar', '+', 'tf', '.', 'matmul', '(', 'LTAr', ',', 'LTAr', ',', 'transpose_a', '=', 'True', ')', '# N x P x P', 'elif', 'not', 'full_cov', 'and', 'not', 'full_output_cov', ':', 'fvar', '=', 'fvar', '+', 'tf', '.', 'reshape', '(', 'tf', '.', 'reduce_sum', '(', 'tf', '.', 'square', '(', 'LTA', ')', ',', '(', '0', ',', '1', ')', ')', ',', '(', 'N', ',', 'P', ')', ')', 'return', 'fmean', ',', 'fvar']
The inducing outputs live in the g-space (R^L). Interdomain conditional calculation. :param Kmn: M x L x N x P :param Kmm: L x M x M :param Knn: N x P or N x N or P x N x N or N x P x N x P :param f: data matrix, M x L :param q_sqrt: L x M x M or M x L :param full_cov: calculate covariance between inputs :param full_output_cov: calculate covariance between outputs :param white: use whitened representation :return: - mean: N x P - variance: N x P, N x P x P, P x N x N, N x P x N x P
['The', 'inducing', 'outputs', 'live', 'in', 'the', 'g', '-', 'space', '(', 'R^L', ')', '.', 'Interdomain', 'conditional', 'calculation', '.']
train
https://github.com/GPflow/GPflow/blob/549394f0b1b0696c7b521a065e49bdae6e7acf27/gpflow/multioutput/conditionals.py#L274-L339
3,655
msmbuilder/msmbuilder
msmbuilder/tpt/hub.py
fraction_visited
def fraction_visited(source, sink, waypoint, msm): """ Calculate the fraction of times a walker on `tprob` going from `sources` to `sinks` will travel through the set of states `waypoints` en route. Computes the conditional committors q^{ABC^+} and uses them to find the fraction of paths mentioned above. Note that in the notation of Dickson et. al. this computes h_c(A,B), with sources = A sinks = B waypoint = C Parameters ---------- source : int The index of the source state sink : int The index of the sink state waypoint : int The index of the intermediate state msm : msmbuilder.MarkovStateModel MSM to analyze. Returns ------- fraction_visited : float The fraction of times a walker going from `sources` -> `sinks` stops by `waypoints` on its way. See Also -------- msmbuilder.tpt.conditional_committors Calculate the probability of visiting a waypoint while on a path between a source and sink. msmbuilder.tpt.hub_scores : function Compute the 'hub score', the weighted fraction of visits for an entire network. References ---------- .. [1] Dickson & Brooks (2012), J. Chem. Theory Comput., 8, 3044-3052. """ for_committors = committors([source], [sink], msm) cond_committors = conditional_committors(source, sink, waypoint, msm) if hasattr(msm, 'all_transmats_'): frac_visited = np.zeros((msm.n_states,)) for i, tprob in enumerate(msm.all_transmats_): frac_visited[i] = _fraction_visited(source, sink, waypoint, msm.transmat_, for_committors, cond_committors) return np.median(frac_visited, axis=0) return _fraction_visited(source, sink, waypoint, msm.transmat_, for_committors, cond_committors)
python
def fraction_visited(source, sink, waypoint, msm): """ Calculate the fraction of times a walker on `tprob` going from `sources` to `sinks` will travel through the set of states `waypoints` en route. Computes the conditional committors q^{ABC^+} and uses them to find the fraction of paths mentioned above. Note that in the notation of Dickson et. al. this computes h_c(A,B), with sources = A sinks = B waypoint = C Parameters ---------- source : int The index of the source state sink : int The index of the sink state waypoint : int The index of the intermediate state msm : msmbuilder.MarkovStateModel MSM to analyze. Returns ------- fraction_visited : float The fraction of times a walker going from `sources` -> `sinks` stops by `waypoints` on its way. See Also -------- msmbuilder.tpt.conditional_committors Calculate the probability of visiting a waypoint while on a path between a source and sink. msmbuilder.tpt.hub_scores : function Compute the 'hub score', the weighted fraction of visits for an entire network. References ---------- .. [1] Dickson & Brooks (2012), J. Chem. Theory Comput., 8, 3044-3052. """ for_committors = committors([source], [sink], msm) cond_committors = conditional_committors(source, sink, waypoint, msm) if hasattr(msm, 'all_transmats_'): frac_visited = np.zeros((msm.n_states,)) for i, tprob in enumerate(msm.all_transmats_): frac_visited[i] = _fraction_visited(source, sink, waypoint, msm.transmat_, for_committors, cond_committors) return np.median(frac_visited, axis=0) return _fraction_visited(source, sink, waypoint, msm.transmat_, for_committors, cond_committors)
['def', 'fraction_visited', '(', 'source', ',', 'sink', ',', 'waypoint', ',', 'msm', ')', ':', 'for_committors', '=', 'committors', '(', '[', 'source', ']', ',', '[', 'sink', ']', ',', 'msm', ')', 'cond_committors', '=', 'conditional_committors', '(', 'source', ',', 'sink', ',', 'waypoint', ',', 'msm', ')', 'if', 'hasattr', '(', 'msm', ',', "'all_transmats_'", ')', ':', 'frac_visited', '=', 'np', '.', 'zeros', '(', '(', 'msm', '.', 'n_states', ',', ')', ')', 'for', 'i', ',', 'tprob', 'in', 'enumerate', '(', 'msm', '.', 'all_transmats_', ')', ':', 'frac_visited', '[', 'i', ']', '=', '_fraction_visited', '(', 'source', ',', 'sink', ',', 'waypoint', ',', 'msm', '.', 'transmat_', ',', 'for_committors', ',', 'cond_committors', ')', 'return', 'np', '.', 'median', '(', 'frac_visited', ',', 'axis', '=', '0', ')', 'return', '_fraction_visited', '(', 'source', ',', 'sink', ',', 'waypoint', ',', 'msm', '.', 'transmat_', ',', 'for_committors', ',', 'cond_committors', ')']
Calculate the fraction of times a walker on `tprob` going from `sources` to `sinks` will travel through the set of states `waypoints` en route. Computes the conditional committors q^{ABC^+} and uses them to find the fraction of paths mentioned above. Note that in the notation of Dickson et. al. this computes h_c(A,B), with sources = A sinks = B waypoint = C Parameters ---------- source : int The index of the source state sink : int The index of the sink state waypoint : int The index of the intermediate state msm : msmbuilder.MarkovStateModel MSM to analyze. Returns ------- fraction_visited : float The fraction of times a walker going from `sources` -> `sinks` stops by `waypoints` on its way. See Also -------- msmbuilder.tpt.conditional_committors Calculate the probability of visiting a waypoint while on a path between a source and sink. msmbuilder.tpt.hub_scores : function Compute the 'hub score', the weighted fraction of visits for an entire network. References ---------- .. [1] Dickson & Brooks (2012), J. Chem. Theory Comput., 8, 3044-3052.
['Calculate', 'the', 'fraction', 'of', 'times', 'a', 'walker', 'on', 'tprob', 'going', 'from', 'sources', 'to', 'sinks', 'will', 'travel', 'through', 'the', 'set', 'of', 'states', 'waypoints', 'en', 'route', '.']
train
https://github.com/msmbuilder/msmbuilder/blob/556a93a170782f47be53f4a1e9d740fb1c8272b3/msmbuilder/tpt/hub.py#L27-L83
3,656
striglia/stockfighter
stockfighter/stockfighter.py
Stockfighter.status_for_order
def status_for_order(self, order_id, stock): """Status For An Existing Order https://starfighter.readme.io/docs/status-for-an-existing-order """ url_fragment = 'venues/{venue}/stocks/{stock}/orders/{order_id}'.format( venue=self.venue, stock=stock, order_id=order_id, ) url = urljoin(self.base_url, url_fragment) return self.session.get(url).json()
python
def status_for_order(self, order_id, stock): """Status For An Existing Order https://starfighter.readme.io/docs/status-for-an-existing-order """ url_fragment = 'venues/{venue}/stocks/{stock}/orders/{order_id}'.format( venue=self.venue, stock=stock, order_id=order_id, ) url = urljoin(self.base_url, url_fragment) return self.session.get(url).json()
['def', 'status_for_order', '(', 'self', ',', 'order_id', ',', 'stock', ')', ':', 'url_fragment', '=', "'venues/{venue}/stocks/{stock}/orders/{order_id}'", '.', 'format', '(', 'venue', '=', 'self', '.', 'venue', ',', 'stock', '=', 'stock', ',', 'order_id', '=', 'order_id', ',', ')', 'url', '=', 'urljoin', '(', 'self', '.', 'base_url', ',', 'url_fragment', ')', 'return', 'self', '.', 'session', '.', 'get', '(', 'url', ')', '.', 'json', '(', ')']
Status For An Existing Order https://starfighter.readme.io/docs/status-for-an-existing-order
['Status', 'For', 'An', 'Existing', 'Order']
train
https://github.com/striglia/stockfighter/blob/df908f5919d6f861601cd00c906a049d04253d47/stockfighter/stockfighter.py#L94-L105
3,657
bigchaindb/bigchaindb
bigchaindb/backend/connection.py
Connection.connect
def connect(self): """Try to connect to the database. Raises: :exc:`~ConnectionError`: If the connection to the database fails. """ attempt = 0 for i in self.max_tries_counter: attempt += 1 try: self._conn = self._connect() except ConnectionError as exc: logger.warning('Attempt %s/%s. Connection to %s:%s failed after %sms.', attempt, self.max_tries if self.max_tries != 0 else '∞', self.host, self.port, self.connection_timeout) if attempt == self.max_tries: logger.critical('Cannot connect to the Database. Giving up.') raise ConnectionError() from exc else: break
python
def connect(self): """Try to connect to the database. Raises: :exc:`~ConnectionError`: If the connection to the database fails. """ attempt = 0 for i in self.max_tries_counter: attempt += 1 try: self._conn = self._connect() except ConnectionError as exc: logger.warning('Attempt %s/%s. Connection to %s:%s failed after %sms.', attempt, self.max_tries if self.max_tries != 0 else '∞', self.host, self.port, self.connection_timeout) if attempt == self.max_tries: logger.critical('Cannot connect to the Database. Giving up.') raise ConnectionError() from exc else: break
['def', 'connect', '(', 'self', ')', ':', 'attempt', '=', '0', 'for', 'i', 'in', 'self', '.', 'max_tries_counter', ':', 'attempt', '+=', '1', 'try', ':', 'self', '.', '_conn', '=', 'self', '.', '_connect', '(', ')', 'except', 'ConnectionError', 'as', 'exc', ':', 'logger', '.', 'warning', '(', "'Attempt %s/%s. Connection to %s:%s failed after %sms.'", ',', 'attempt', ',', 'self', '.', 'max_tries', 'if', 'self', '.', 'max_tries', '!=', '0', 'else', "'∞',", '', 'self', '.', 'host', ',', 'self', '.', 'port', ',', 'self', '.', 'connection_timeout', ')', 'if', 'attempt', '==', 'self', '.', 'max_tries', ':', 'logger', '.', 'critical', '(', "'Cannot connect to the Database. Giving up.'", ')', 'raise', 'ConnectionError', '(', ')', 'from', 'exc', 'else', ':', 'break']
Try to connect to the database. Raises: :exc:`~ConnectionError`: If the connection to the database fails.
['Try', 'to', 'connect', 'to', 'the', 'database', '.']
train
https://github.com/bigchaindb/bigchaindb/blob/835fdfcf598918f76139e3b88ee33dd157acaaa7/bigchaindb/backend/connection.py#L148-L169
3,658
youversion/crony
crony/crony.py
CommandCenter.log
def log(self, output, exit_status): """Log given CompletedProcess and return exit status code.""" if exit_status != 0: self.logger.error(f'Error running command! Exit status: {exit_status}, {output}') return exit_status
python
def log(self, output, exit_status): """Log given CompletedProcess and return exit status code.""" if exit_status != 0: self.logger.error(f'Error running command! Exit status: {exit_status}, {output}') return exit_status
['def', 'log', '(', 'self', ',', 'output', ',', 'exit_status', ')', ':', 'if', 'exit_status', '!=', '0', ':', 'self', '.', 'logger', '.', 'error', '(', "f'Error running command! Exit status: {exit_status}, {output}'", ')', 'return', 'exit_status']
Log given CompletedProcess and return exit status code.
['Log', 'given', 'CompletedProcess', 'and', 'return', 'exit', 'status', 'code', '.']
train
https://github.com/youversion/crony/blob/c93d14b809a2e878f1b9d6d53d5a04947896583b/crony/crony.py#L129-L134
3,659
iterative/dvc
dvc/repo/__init__.py
Repo.graph
def graph(self, stages=None, from_directory=None): """Generate a graph by using the given stages on the given directory The nodes of the graph are the stage's path relative to the root. Edges are created when the output of one stage is used as a dependency in other stage. The direction of the edges goes from the stage to its dependency: For example, running the following: $ dvc run -o A "echo A > A" $ dvc run -d A -o B "echo B > B" $ dvc run -d B -o C "echo C > C" Will create the following graph: ancestors <-- | C.dvc -> B.dvc -> A.dvc | | | --> descendants | ------- pipeline ------> | v (weakly connected components) Args: stages (list): used to build a graph, if None given, use the ones on the `from_directory`. from_directory (str): directory where to look at for stages, if None is given, use the current working directory Raises: OutputDuplicationError: two outputs with the same path StagePathAsOutputError: stage inside an output directory OverlappingOutputPathsError: output inside output directory CyclicGraphError: resulting graph has cycles """ import networkx as nx from dvc.exceptions import ( OutputDuplicationError, StagePathAsOutputError, OverlappingOutputPathsError, ) G = nx.DiGraph() G_active = nx.DiGraph() stages = stages or self.stages(from_directory, check_dag=False) stages = [stage for stage in stages if stage] outs = [] for stage in stages: for out in stage.outs: existing = [] for o in outs: if o.path == out.path: existing.append(o.stage) in_o_dir = out.path.startswith(o.path + o.sep) in_out_dir = o.path.startswith(out.path + out.sep) if in_o_dir or in_out_dir: raise OverlappingOutputPathsError(o, out) if existing: stages = [stage.relpath, existing[0].relpath] raise OutputDuplicationError(out.path, stages) outs.append(out) for stage in stages: path_dir = os.path.dirname(stage.path) + os.sep for out in outs: if path_dir.startswith(out.path + os.sep): raise StagePathAsOutputError(stage.wdir, stage.relpath) for stage in stages: node = os.path.relpath(stage.path, self.root_dir) G.add_node(node, stage=stage) G_active.add_node(node, stage=stage) for dep in stage.deps: for out in outs: if ( out.path != dep.path and not dep.path.startswith(out.path + out.sep) and not out.path.startswith(dep.path + dep.sep) ): continue dep_stage = out.stage dep_node = os.path.relpath(dep_stage.path, self.root_dir) G.add_node(dep_node, stage=dep_stage) G.add_edge(node, dep_node) if not stage.locked: G_active.add_node(dep_node, stage=dep_stage) G_active.add_edge(node, dep_node) self._check_cyclic_graph(G) return G, G_active
python
def graph(self, stages=None, from_directory=None): """Generate a graph by using the given stages on the given directory The nodes of the graph are the stage's path relative to the root. Edges are created when the output of one stage is used as a dependency in other stage. The direction of the edges goes from the stage to its dependency: For example, running the following: $ dvc run -o A "echo A > A" $ dvc run -d A -o B "echo B > B" $ dvc run -d B -o C "echo C > C" Will create the following graph: ancestors <-- | C.dvc -> B.dvc -> A.dvc | | | --> descendants | ------- pipeline ------> | v (weakly connected components) Args: stages (list): used to build a graph, if None given, use the ones on the `from_directory`. from_directory (str): directory where to look at for stages, if None is given, use the current working directory Raises: OutputDuplicationError: two outputs with the same path StagePathAsOutputError: stage inside an output directory OverlappingOutputPathsError: output inside output directory CyclicGraphError: resulting graph has cycles """ import networkx as nx from dvc.exceptions import ( OutputDuplicationError, StagePathAsOutputError, OverlappingOutputPathsError, ) G = nx.DiGraph() G_active = nx.DiGraph() stages = stages or self.stages(from_directory, check_dag=False) stages = [stage for stage in stages if stage] outs = [] for stage in stages: for out in stage.outs: existing = [] for o in outs: if o.path == out.path: existing.append(o.stage) in_o_dir = out.path.startswith(o.path + o.sep) in_out_dir = o.path.startswith(out.path + out.sep) if in_o_dir or in_out_dir: raise OverlappingOutputPathsError(o, out) if existing: stages = [stage.relpath, existing[0].relpath] raise OutputDuplicationError(out.path, stages) outs.append(out) for stage in stages: path_dir = os.path.dirname(stage.path) + os.sep for out in outs: if path_dir.startswith(out.path + os.sep): raise StagePathAsOutputError(stage.wdir, stage.relpath) for stage in stages: node = os.path.relpath(stage.path, self.root_dir) G.add_node(node, stage=stage) G_active.add_node(node, stage=stage) for dep in stage.deps: for out in outs: if ( out.path != dep.path and not dep.path.startswith(out.path + out.sep) and not out.path.startswith(dep.path + dep.sep) ): continue dep_stage = out.stage dep_node = os.path.relpath(dep_stage.path, self.root_dir) G.add_node(dep_node, stage=dep_stage) G.add_edge(node, dep_node) if not stage.locked: G_active.add_node(dep_node, stage=dep_stage) G_active.add_edge(node, dep_node) self._check_cyclic_graph(G) return G, G_active
['def', 'graph', '(', 'self', ',', 'stages', '=', 'None', ',', 'from_directory', '=', 'None', ')', ':', 'import', 'networkx', 'as', 'nx', 'from', 'dvc', '.', 'exceptions', 'import', '(', 'OutputDuplicationError', ',', 'StagePathAsOutputError', ',', 'OverlappingOutputPathsError', ',', ')', 'G', '=', 'nx', '.', 'DiGraph', '(', ')', 'G_active', '=', 'nx', '.', 'DiGraph', '(', ')', 'stages', '=', 'stages', 'or', 'self', '.', 'stages', '(', 'from_directory', ',', 'check_dag', '=', 'False', ')', 'stages', '=', '[', 'stage', 'for', 'stage', 'in', 'stages', 'if', 'stage', ']', 'outs', '=', '[', ']', 'for', 'stage', 'in', 'stages', ':', 'for', 'out', 'in', 'stage', '.', 'outs', ':', 'existing', '=', '[', ']', 'for', 'o', 'in', 'outs', ':', 'if', 'o', '.', 'path', '==', 'out', '.', 'path', ':', 'existing', '.', 'append', '(', 'o', '.', 'stage', ')', 'in_o_dir', '=', 'out', '.', 'path', '.', 'startswith', '(', 'o', '.', 'path', '+', 'o', '.', 'sep', ')', 'in_out_dir', '=', 'o', '.', 'path', '.', 'startswith', '(', 'out', '.', 'path', '+', 'out', '.', 'sep', ')', 'if', 'in_o_dir', 'or', 'in_out_dir', ':', 'raise', 'OverlappingOutputPathsError', '(', 'o', ',', 'out', ')', 'if', 'existing', ':', 'stages', '=', '[', 'stage', '.', 'relpath', ',', 'existing', '[', '0', ']', '.', 'relpath', ']', 'raise', 'OutputDuplicationError', '(', 'out', '.', 'path', ',', 'stages', ')', 'outs', '.', 'append', '(', 'out', ')', 'for', 'stage', 'in', 'stages', ':', 'path_dir', '=', 'os', '.', 'path', '.', 'dirname', '(', 'stage', '.', 'path', ')', '+', 'os', '.', 'sep', 'for', 'out', 'in', 'outs', ':', 'if', 'path_dir', '.', 'startswith', '(', 'out', '.', 'path', '+', 'os', '.', 'sep', ')', ':', 'raise', 'StagePathAsOutputError', '(', 'stage', '.', 'wdir', ',', 'stage', '.', 'relpath', ')', 'for', 'stage', 'in', 'stages', ':', 'node', '=', 'os', '.', 'path', '.', 'relpath', '(', 'stage', '.', 'path', ',', 'self', '.', 'root_dir', ')', 'G', '.', 'add_node', '(', 'node', ',', 'stage', '=', 'stage', ')', 'G_active', '.', 'add_node', '(', 'node', ',', 'stage', '=', 'stage', ')', 'for', 'dep', 'in', 'stage', '.', 'deps', ':', 'for', 'out', 'in', 'outs', ':', 'if', '(', 'out', '.', 'path', '!=', 'dep', '.', 'path', 'and', 'not', 'dep', '.', 'path', '.', 'startswith', '(', 'out', '.', 'path', '+', 'out', '.', 'sep', ')', 'and', 'not', 'out', '.', 'path', '.', 'startswith', '(', 'dep', '.', 'path', '+', 'dep', '.', 'sep', ')', ')', ':', 'continue', 'dep_stage', '=', 'out', '.', 'stage', 'dep_node', '=', 'os', '.', 'path', '.', 'relpath', '(', 'dep_stage', '.', 'path', ',', 'self', '.', 'root_dir', ')', 'G', '.', 'add_node', '(', 'dep_node', ',', 'stage', '=', 'dep_stage', ')', 'G', '.', 'add_edge', '(', 'node', ',', 'dep_node', ')', 'if', 'not', 'stage', '.', 'locked', ':', 'G_active', '.', 'add_node', '(', 'dep_node', ',', 'stage', '=', 'dep_stage', ')', 'G_active', '.', 'add_edge', '(', 'node', ',', 'dep_node', ')', 'self', '.', '_check_cyclic_graph', '(', 'G', ')', 'return', 'G', ',', 'G_active']
Generate a graph by using the given stages on the given directory The nodes of the graph are the stage's path relative to the root. Edges are created when the output of one stage is used as a dependency in other stage. The direction of the edges goes from the stage to its dependency: For example, running the following: $ dvc run -o A "echo A > A" $ dvc run -d A -o B "echo B > B" $ dvc run -d B -o C "echo C > C" Will create the following graph: ancestors <-- | C.dvc -> B.dvc -> A.dvc | | | --> descendants | ------- pipeline ------> | v (weakly connected components) Args: stages (list): used to build a graph, if None given, use the ones on the `from_directory`. from_directory (str): directory where to look at for stages, if None is given, use the current working directory Raises: OutputDuplicationError: two outputs with the same path StagePathAsOutputError: stage inside an output directory OverlappingOutputPathsError: output inside output directory CyclicGraphError: resulting graph has cycles
['Generate', 'a', 'graph', 'by', 'using', 'the', 'given', 'stages', 'on', 'the', 'given', 'directory']
train
https://github.com/iterative/dvc/blob/8bb21261e34c9632453e09090de7ebe50e38d341/dvc/repo/__init__.py#L300-L404
3,660
zagaran/mongolia
mongolia/mongo_connection.py
authenticate_connection
def authenticate_connection(username, password, db=None): """ Authenticates the current database connection with the passed username and password. If the database connection uses all default parameters, this can be called without connect_to_database. Otherwise, it should be preceded by a connect_to_database call. @param username: the username with which you authenticate; must match a user registered in the database @param password: the password of that user @param db: the database the user is authenticated to access. Passing None (the default) means authenticating against the admin database, which gives the connection access to all databases Example; connecting to all databases locally: connect_to_database() authenticate_connection("username", "password") Example; connecting to a particular database of a remote server: connect_to_database(host="example.com", port="12345") authenticate_connection("username", "password", db="somedb") """ return CONNECTION.authenticate(username, password, db=db)
python
def authenticate_connection(username, password, db=None): """ Authenticates the current database connection with the passed username and password. If the database connection uses all default parameters, this can be called without connect_to_database. Otherwise, it should be preceded by a connect_to_database call. @param username: the username with which you authenticate; must match a user registered in the database @param password: the password of that user @param db: the database the user is authenticated to access. Passing None (the default) means authenticating against the admin database, which gives the connection access to all databases Example; connecting to all databases locally: connect_to_database() authenticate_connection("username", "password") Example; connecting to a particular database of a remote server: connect_to_database(host="example.com", port="12345") authenticate_connection("username", "password", db="somedb") """ return CONNECTION.authenticate(username, password, db=db)
['def', 'authenticate_connection', '(', 'username', ',', 'password', ',', 'db', '=', 'None', ')', ':', 'return', 'CONNECTION', '.', 'authenticate', '(', 'username', ',', 'password', ',', 'db', '=', 'db', ')']
Authenticates the current database connection with the passed username and password. If the database connection uses all default parameters, this can be called without connect_to_database. Otherwise, it should be preceded by a connect_to_database call. @param username: the username with which you authenticate; must match a user registered in the database @param password: the password of that user @param db: the database the user is authenticated to access. Passing None (the default) means authenticating against the admin database, which gives the connection access to all databases Example; connecting to all databases locally: connect_to_database() authenticate_connection("username", "password") Example; connecting to a particular database of a remote server: connect_to_database(host="example.com", port="12345") authenticate_connection("username", "password", db="somedb")
['Authenticates', 'the', 'current', 'database', 'connection', 'with', 'the', 'passed', 'username', 'and', 'password', '.', 'If', 'the', 'database', 'connection', 'uses', 'all', 'default', 'parameters', 'this', 'can', 'be', 'called', 'without', 'connect_to_database', '.', 'Otherwise', 'it', 'should', 'be', 'preceded', 'by', 'a', 'connect_to_database', 'call', '.']
train
https://github.com/zagaran/mongolia/blob/82c499345f0a8610c7289545e19f5f633e8a81c0/mongolia/mongo_connection.py#L109-L132
3,661
halfak/python-jsonable
jsonable/functions.py
to_json
def to_json(value): """ Converts a value to a jsonable type. """ if type(value) in JSON_TYPES: return value elif hasattr(value, "to_json"): return value.to_json() elif isinstance(value, list) or isinstance(value, set) or \ isinstance(value, deque) or isinstance(value, tuple): return [to_json(v) for v in value] elif isinstance(value, dict): return {str(k): to_json(v) for k, v in value.items()} else: raise TypeError("{0} is not json serializable.".format(type(value)))
python
def to_json(value): """ Converts a value to a jsonable type. """ if type(value) in JSON_TYPES: return value elif hasattr(value, "to_json"): return value.to_json() elif isinstance(value, list) or isinstance(value, set) or \ isinstance(value, deque) or isinstance(value, tuple): return [to_json(v) for v in value] elif isinstance(value, dict): return {str(k): to_json(v) for k, v in value.items()} else: raise TypeError("{0} is not json serializable.".format(type(value)))
['def', 'to_json', '(', 'value', ')', ':', 'if', 'type', '(', 'value', ')', 'in', 'JSON_TYPES', ':', 'return', 'value', 'elif', 'hasattr', '(', 'value', ',', '"to_json"', ')', ':', 'return', 'value', '.', 'to_json', '(', ')', 'elif', 'isinstance', '(', 'value', ',', 'list', ')', 'or', 'isinstance', '(', 'value', ',', 'set', ')', 'or', 'isinstance', '(', 'value', ',', 'deque', ')', 'or', 'isinstance', '(', 'value', ',', 'tuple', ')', ':', 'return', '[', 'to_json', '(', 'v', ')', 'for', 'v', 'in', 'value', ']', 'elif', 'isinstance', '(', 'value', ',', 'dict', ')', ':', 'return', '{', 'str', '(', 'k', ')', ':', 'to_json', '(', 'v', ')', 'for', 'k', ',', 'v', 'in', 'value', '.', 'items', '(', ')', '}', 'else', ':', 'raise', 'TypeError', '(', '"{0} is not json serializable."', '.', 'format', '(', 'type', '(', 'value', ')', ')', ')']
Converts a value to a jsonable type.
['Converts', 'a', 'value', 'to', 'a', 'jsonable', 'type', '.']
train
https://github.com/halfak/python-jsonable/blob/70a53aedaca84d078228b3564fdd8f60a586d43f/jsonable/functions.py#L6-L20
3,662
manahl/arctic
arctic/chunkstore/chunkstore.py
ChunkStore.rename
def rename(self, from_symbol, to_symbol, audit=None): """ Rename a symbol Parameters ---------- from_symbol: str the existing symbol that will be renamed to_symbol: str the new symbol name audit: dict audit information """ sym = self._get_symbol_info(from_symbol) if not sym: raise NoDataFoundException('No data found for %s' % (from_symbol)) if self._get_symbol_info(to_symbol) is not None: raise Exception('Symbol %s already exists' % (to_symbol)) mongo_retry(self._collection.update_many)({SYMBOL: from_symbol}, {'$set': {SYMBOL: to_symbol}}) mongo_retry(self._symbols.update_one)({SYMBOL: from_symbol}, {'$set': {SYMBOL: to_symbol}}) mongo_retry(self._mdata.update_many)({SYMBOL: from_symbol}, {'$set': {SYMBOL: to_symbol}}) mongo_retry(self._audit.update_many)({'symbol': from_symbol}, {'$set': {'symbol': to_symbol}}) if audit is not None: audit['symbol'] = to_symbol audit['action'] = 'symbol rename' audit['old_symbol'] = from_symbol self._audit.insert_one(audit)
python
def rename(self, from_symbol, to_symbol, audit=None): """ Rename a symbol Parameters ---------- from_symbol: str the existing symbol that will be renamed to_symbol: str the new symbol name audit: dict audit information """ sym = self._get_symbol_info(from_symbol) if not sym: raise NoDataFoundException('No data found for %s' % (from_symbol)) if self._get_symbol_info(to_symbol) is not None: raise Exception('Symbol %s already exists' % (to_symbol)) mongo_retry(self._collection.update_many)({SYMBOL: from_symbol}, {'$set': {SYMBOL: to_symbol}}) mongo_retry(self._symbols.update_one)({SYMBOL: from_symbol}, {'$set': {SYMBOL: to_symbol}}) mongo_retry(self._mdata.update_many)({SYMBOL: from_symbol}, {'$set': {SYMBOL: to_symbol}}) mongo_retry(self._audit.update_many)({'symbol': from_symbol}, {'$set': {'symbol': to_symbol}}) if audit is not None: audit['symbol'] = to_symbol audit['action'] = 'symbol rename' audit['old_symbol'] = from_symbol self._audit.insert_one(audit)
['def', 'rename', '(', 'self', ',', 'from_symbol', ',', 'to_symbol', ',', 'audit', '=', 'None', ')', ':', 'sym', '=', 'self', '.', '_get_symbol_info', '(', 'from_symbol', ')', 'if', 'not', 'sym', ':', 'raise', 'NoDataFoundException', '(', "'No data found for %s'", '%', '(', 'from_symbol', ')', ')', 'if', 'self', '.', '_get_symbol_info', '(', 'to_symbol', ')', 'is', 'not', 'None', ':', 'raise', 'Exception', '(', "'Symbol %s already exists'", '%', '(', 'to_symbol', ')', ')', 'mongo_retry', '(', 'self', '.', '_collection', '.', 'update_many', ')', '(', '{', 'SYMBOL', ':', 'from_symbol', '}', ',', '{', "'$set'", ':', '{', 'SYMBOL', ':', 'to_symbol', '}', '}', ')', 'mongo_retry', '(', 'self', '.', '_symbols', '.', 'update_one', ')', '(', '{', 'SYMBOL', ':', 'from_symbol', '}', ',', '{', "'$set'", ':', '{', 'SYMBOL', ':', 'to_symbol', '}', '}', ')', 'mongo_retry', '(', 'self', '.', '_mdata', '.', 'update_many', ')', '(', '{', 'SYMBOL', ':', 'from_symbol', '}', ',', '{', "'$set'", ':', '{', 'SYMBOL', ':', 'to_symbol', '}', '}', ')', 'mongo_retry', '(', 'self', '.', '_audit', '.', 'update_many', ')', '(', '{', "'symbol'", ':', 'from_symbol', '}', ',', '{', "'$set'", ':', '{', "'symbol'", ':', 'to_symbol', '}', '}', ')', 'if', 'audit', 'is', 'not', 'None', ':', 'audit', '[', "'symbol'", ']', '=', 'to_symbol', 'audit', '[', "'action'", ']', '=', "'symbol rename'", 'audit', '[', "'old_symbol'", ']', '=', 'from_symbol', 'self', '.', '_audit', '.', 'insert_one', '(', 'audit', ')']
Rename a symbol Parameters ---------- from_symbol: str the existing symbol that will be renamed to_symbol: str the new symbol name audit: dict audit information
['Rename', 'a', 'symbol']
train
https://github.com/manahl/arctic/blob/57e110b6e182dbab00e7e214dc26f7d9ec47c120/arctic/chunkstore/chunkstore.py#L193-L226
3,663
blueset/ehForwarderBot
ehforwarderbot/coordinator.py
add_middleware
def add_middleware(middleware: EFBMiddleware): """ Register a middleware with the coordinator. Args: middleware (EFBMiddleware): Middleware to register """ global middlewares if isinstance(middleware, EFBMiddleware): middlewares.append(middleware) else: raise TypeError("Middleware instance is expected")
python
def add_middleware(middleware: EFBMiddleware): """ Register a middleware with the coordinator. Args: middleware (EFBMiddleware): Middleware to register """ global middlewares if isinstance(middleware, EFBMiddleware): middlewares.append(middleware) else: raise TypeError("Middleware instance is expected")
['def', 'add_middleware', '(', 'middleware', ':', 'EFBMiddleware', ')', ':', 'global', 'middlewares', 'if', 'isinstance', '(', 'middleware', ',', 'EFBMiddleware', ')', ':', 'middlewares', '.', 'append', '(', 'middleware', ')', 'else', ':', 'raise', 'TypeError', '(', '"Middleware instance is expected"', ')']
Register a middleware with the coordinator. Args: middleware (EFBMiddleware): Middleware to register
['Register', 'a', 'middleware', 'with', 'the', 'coordinator', '.']
train
https://github.com/blueset/ehForwarderBot/blob/62e8fcfe77b2993aba91623f538f404a90f59f1d/ehforwarderbot/coordinator.py#L70-L81
3,664
google/prettytensor
prettytensor/pretty_tensor_methods.py
split
def split(input_layer, split_dim=0, num_splits=2): """Splits this Tensor along the split_dim into num_splits Equal chunks. Examples: * `[1, 2, 3, 4] -> [1, 2], [3, 4]` * `[[1, 1], [2, 2], [3, 3], [4, 4]] -> [[1, 1], [2, 2]], [[3, 3], [4, 4]]` Args: input_layer: The chainable object, supplied. split_dim: The dimension to split along. Defaults to batch. num_splits: The number of splits. Returns: A list of PrettyTensors. Raises: ValueError: If split_dim is out of range or isn't divided evenly by num_splits. """ shape = input_layer.shape _check_split_dims(num_splits, split_dim, shape) splits = tf.split( value=input_layer, num_or_size_splits=num_splits, axis=split_dim) return input_layer.with_sequence(splits)
python
def split(input_layer, split_dim=0, num_splits=2): """Splits this Tensor along the split_dim into num_splits Equal chunks. Examples: * `[1, 2, 3, 4] -> [1, 2], [3, 4]` * `[[1, 1], [2, 2], [3, 3], [4, 4]] -> [[1, 1], [2, 2]], [[3, 3], [4, 4]]` Args: input_layer: The chainable object, supplied. split_dim: The dimension to split along. Defaults to batch. num_splits: The number of splits. Returns: A list of PrettyTensors. Raises: ValueError: If split_dim is out of range or isn't divided evenly by num_splits. """ shape = input_layer.shape _check_split_dims(num_splits, split_dim, shape) splits = tf.split( value=input_layer, num_or_size_splits=num_splits, axis=split_dim) return input_layer.with_sequence(splits)
['def', 'split', '(', 'input_layer', ',', 'split_dim', '=', '0', ',', 'num_splits', '=', '2', ')', ':', 'shape', '=', 'input_layer', '.', 'shape', '_check_split_dims', '(', 'num_splits', ',', 'split_dim', ',', 'shape', ')', 'splits', '=', 'tf', '.', 'split', '(', 'value', '=', 'input_layer', ',', 'num_or_size_splits', '=', 'num_splits', ',', 'axis', '=', 'split_dim', ')', 'return', 'input_layer', '.', 'with_sequence', '(', 'splits', ')']
Splits this Tensor along the split_dim into num_splits Equal chunks. Examples: * `[1, 2, 3, 4] -> [1, 2], [3, 4]` * `[[1, 1], [2, 2], [3, 3], [4, 4]] -> [[1, 1], [2, 2]], [[3, 3], [4, 4]]` Args: input_layer: The chainable object, supplied. split_dim: The dimension to split along. Defaults to batch. num_splits: The number of splits. Returns: A list of PrettyTensors. Raises: ValueError: If split_dim is out of range or isn't divided evenly by num_splits.
['Splits', 'this', 'Tensor', 'along', 'the', 'split_dim', 'into', 'num_splits', 'Equal', 'chunks', '.']
train
https://github.com/google/prettytensor/blob/75daa0b11252590f548da5647addc0ea610c4c45/prettytensor/pretty_tensor_methods.py#L569-L591
3,665
chrisbouchard/braillegraph
braillegraph/__main__.py
run
def run(): """Display the arguments as a braille graph on standard output.""" # We override the program name to reflect that this script must be run with # the python executable. parser = argparse.ArgumentParser( prog='python -m braillegraph', description='Print a braille bar graph of the given integers.' ) # This flag sets the end string that we'll print. If we pass end=None to # print(), it will use its default. If we pass end='', it will suppress the # newline character. parser.add_argument('-n', '--no-newline', action='store_const', dest='end', const='', default=None, help='do not print the trailing newline character') # Add subparsers for the directions subparsers = parser.add_subparsers(title='directions') horizontal_parser = subparsers.add_parser('horizontal', help='a horizontal graph') horizontal_parser.set_defaults( func=lambda args: horizontal_graph(args.integers) ) horizontal_parser.add_argument('integers', metavar='N', type=int, nargs='+', help='an integer') vertical_parser = subparsers.add_parser('vertical', help='a vertical graph') vertical_parser.set_defaults( func=lambda args: vertical_graph(args.integers, sep=args.sep) ) vertical_parser.add_argument('integers', metavar='N', type=int, nargs='+', help='an integer') # The separator for groups of bars (i.e., "lines"). If we pass None, # vertical_parser will use its default. vertical_parser.add_argument('-s', '--sep', action='store', default=None, help='separator for groups of bars') args = parser.parse_args() print(args.func(args), end=args.end)
python
def run(): """Display the arguments as a braille graph on standard output.""" # We override the program name to reflect that this script must be run with # the python executable. parser = argparse.ArgumentParser( prog='python -m braillegraph', description='Print a braille bar graph of the given integers.' ) # This flag sets the end string that we'll print. If we pass end=None to # print(), it will use its default. If we pass end='', it will suppress the # newline character. parser.add_argument('-n', '--no-newline', action='store_const', dest='end', const='', default=None, help='do not print the trailing newline character') # Add subparsers for the directions subparsers = parser.add_subparsers(title='directions') horizontal_parser = subparsers.add_parser('horizontal', help='a horizontal graph') horizontal_parser.set_defaults( func=lambda args: horizontal_graph(args.integers) ) horizontal_parser.add_argument('integers', metavar='N', type=int, nargs='+', help='an integer') vertical_parser = subparsers.add_parser('vertical', help='a vertical graph') vertical_parser.set_defaults( func=lambda args: vertical_graph(args.integers, sep=args.sep) ) vertical_parser.add_argument('integers', metavar='N', type=int, nargs='+', help='an integer') # The separator for groups of bars (i.e., "lines"). If we pass None, # vertical_parser will use its default. vertical_parser.add_argument('-s', '--sep', action='store', default=None, help='separator for groups of bars') args = parser.parse_args() print(args.func(args), end=args.end)
['def', 'run', '(', ')', ':', '# We override the program name to reflect that this script must be run with', '# the python executable.', 'parser', '=', 'argparse', '.', 'ArgumentParser', '(', 'prog', '=', "'python -m braillegraph'", ',', 'description', '=', "'Print a braille bar graph of the given integers.'", ')', "# This flag sets the end string that we'll print. If we pass end=None to", "# print(), it will use its default. If we pass end='', it will suppress the", '# newline character.', 'parser', '.', 'add_argument', '(', "'-n'", ',', "'--no-newline'", ',', 'action', '=', "'store_const'", ',', 'dest', '=', "'end'", ',', 'const', '=', "''", ',', 'default', '=', 'None', ',', 'help', '=', "'do not print the trailing newline character'", ')', '# Add subparsers for the directions', 'subparsers', '=', 'parser', '.', 'add_subparsers', '(', 'title', '=', "'directions'", ')', 'horizontal_parser', '=', 'subparsers', '.', 'add_parser', '(', "'horizontal'", ',', 'help', '=', "'a horizontal graph'", ')', 'horizontal_parser', '.', 'set_defaults', '(', 'func', '=', 'lambda', 'args', ':', 'horizontal_graph', '(', 'args', '.', 'integers', ')', ')', 'horizontal_parser', '.', 'add_argument', '(', "'integers'", ',', 'metavar', '=', "'N'", ',', 'type', '=', 'int', ',', 'nargs', '=', "'+'", ',', 'help', '=', "'an integer'", ')', 'vertical_parser', '=', 'subparsers', '.', 'add_parser', '(', "'vertical'", ',', 'help', '=', "'a vertical graph'", ')', 'vertical_parser', '.', 'set_defaults', '(', 'func', '=', 'lambda', 'args', ':', 'vertical_graph', '(', 'args', '.', 'integers', ',', 'sep', '=', 'args', '.', 'sep', ')', ')', 'vertical_parser', '.', 'add_argument', '(', "'integers'", ',', 'metavar', '=', "'N'", ',', 'type', '=', 'int', ',', 'nargs', '=', "'+'", ',', 'help', '=', "'an integer'", ')', '# The separator for groups of bars (i.e., "lines"). If we pass None,', '# vertical_parser will use its default.', 'vertical_parser', '.', 'add_argument', '(', "'-s'", ',', "'--sep'", ',', 'action', '=', "'store'", ',', 'default', '=', 'None', ',', 'help', '=', "'separator for groups of bars'", ')', 'args', '=', 'parser', '.', 'parse_args', '(', ')', 'print', '(', 'args', '.', 'func', '(', 'args', ')', ',', 'end', '=', 'args', '.', 'end', ')']
Display the arguments as a braille graph on standard output.
['Display', 'the', 'arguments', 'as', 'a', 'braille', 'graph', 'on', 'standard', 'output', '.']
train
https://github.com/chrisbouchard/braillegraph/blob/744ca8394676579cfb11e5c297c9bd794ab5bd78/braillegraph/__main__.py#L45-L88
3,666
adafruit/Adafruit_Python_CharLCD
Adafruit_CharLCD/Adafruit_CharLCD.py
Adafruit_CharLCD.set_right_to_left
def set_right_to_left(self): """Set text direction right to left.""" self.displaymode &= ~LCD_ENTRYLEFT self.write8(LCD_ENTRYMODESET | self.displaymode)
python
def set_right_to_left(self): """Set text direction right to left.""" self.displaymode &= ~LCD_ENTRYLEFT self.write8(LCD_ENTRYMODESET | self.displaymode)
['def', 'set_right_to_left', '(', 'self', ')', ':', 'self', '.', 'displaymode', '&=', '~', 'LCD_ENTRYLEFT', 'self', '.', 'write8', '(', 'LCD_ENTRYMODESET', '|', 'self', '.', 'displaymode', ')']
Set text direction right to left.
['Set', 'text', 'direction', 'right', 'to', 'left', '.']
train
https://github.com/adafruit/Adafruit_Python_CharLCD/blob/c126e6b673074c12a03f4bd36afb2fe40272341e/Adafruit_CharLCD/Adafruit_CharLCD.py#L228-L231
3,667
google/openhtf
openhtf/output/servers/dashboard_server.py
DashboardPubSub.publish_if_new
def publish_if_new(cls): """If the station map has changed, publish the new information.""" message = cls.make_message() if message != cls.last_message: super(DashboardPubSub, cls).publish(message) cls.last_message = message
python
def publish_if_new(cls): """If the station map has changed, publish the new information.""" message = cls.make_message() if message != cls.last_message: super(DashboardPubSub, cls).publish(message) cls.last_message = message
['def', 'publish_if_new', '(', 'cls', ')', ':', 'message', '=', 'cls', '.', 'make_message', '(', ')', 'if', 'message', '!=', 'cls', '.', 'last_message', ':', 'super', '(', 'DashboardPubSub', ',', 'cls', ')', '.', 'publish', '(', 'message', ')', 'cls', '.', 'last_message', '=', 'message']
If the station map has changed, publish the new information.
['If', 'the', 'station', 'map', 'has', 'changed', 'publish', 'the', 'new', 'information', '.']
train
https://github.com/google/openhtf/blob/655e85df7134db7bdf8f8fdd6ff9a6bf932e7b09/openhtf/output/servers/dashboard_server.py#L92-L97
3,668
daviddrysdale/python-phonenumbers
python/phonenumbers/shortnumberinfo.py
_example_short_number_for_cost
def _example_short_number_for_cost(region_code, cost): """Gets a valid short number for the specified cost category. Arguments: region_code -- the region for which an example short number is needed. cost -- the cost category of number that is needed. Returns a valid short number for the specified region and cost category. Returns an empty string when the metadata does not contain such information, or the cost is UNKNOWN_COST. """ metadata = PhoneMetadata.short_metadata_for_region(region_code) if metadata is None: return U_EMPTY_STRING desc = None if cost == ShortNumberCost.TOLL_FREE: desc = metadata.toll_free elif cost == ShortNumberCost.STANDARD_RATE: desc = metadata.standard_rate elif cost == ShortNumberCost.PREMIUM_RATE: desc = metadata.premium_rate else: # ShortNumberCost.UNKNOWN_COST numbers are computed by the process of # elimination from the other cost categoried. pass if desc is not None and desc.example_number is not None: return desc.example_number return U_EMPTY_STRING
python
def _example_short_number_for_cost(region_code, cost): """Gets a valid short number for the specified cost category. Arguments: region_code -- the region for which an example short number is needed. cost -- the cost category of number that is needed. Returns a valid short number for the specified region and cost category. Returns an empty string when the metadata does not contain such information, or the cost is UNKNOWN_COST. """ metadata = PhoneMetadata.short_metadata_for_region(region_code) if metadata is None: return U_EMPTY_STRING desc = None if cost == ShortNumberCost.TOLL_FREE: desc = metadata.toll_free elif cost == ShortNumberCost.STANDARD_RATE: desc = metadata.standard_rate elif cost == ShortNumberCost.PREMIUM_RATE: desc = metadata.premium_rate else: # ShortNumberCost.UNKNOWN_COST numbers are computed by the process of # elimination from the other cost categoried. pass if desc is not None and desc.example_number is not None: return desc.example_number return U_EMPTY_STRING
['def', '_example_short_number_for_cost', '(', 'region_code', ',', 'cost', ')', ':', 'metadata', '=', 'PhoneMetadata', '.', 'short_metadata_for_region', '(', 'region_code', ')', 'if', 'metadata', 'is', 'None', ':', 'return', 'U_EMPTY_STRING', 'desc', '=', 'None', 'if', 'cost', '==', 'ShortNumberCost', '.', 'TOLL_FREE', ':', 'desc', '=', 'metadata', '.', 'toll_free', 'elif', 'cost', '==', 'ShortNumberCost', '.', 'STANDARD_RATE', ':', 'desc', '=', 'metadata', '.', 'standard_rate', 'elif', 'cost', '==', 'ShortNumberCost', '.', 'PREMIUM_RATE', ':', 'desc', '=', 'metadata', '.', 'premium_rate', 'else', ':', '# ShortNumberCost.UNKNOWN_COST numbers are computed by the process of', '# elimination from the other cost categoried.', 'pass', 'if', 'desc', 'is', 'not', 'None', 'and', 'desc', '.', 'example_number', 'is', 'not', 'None', ':', 'return', 'desc', '.', 'example_number', 'return', 'U_EMPTY_STRING']
Gets a valid short number for the specified cost category. Arguments: region_code -- the region for which an example short number is needed. cost -- the cost category of number that is needed. Returns a valid short number for the specified region and cost category. Returns an empty string when the metadata does not contain such information, or the cost is UNKNOWN_COST.
['Gets', 'a', 'valid', 'short', 'number', 'for', 'the', 'specified', 'cost', 'category', '.']
train
https://github.com/daviddrysdale/python-phonenumbers/blob/9cc5bb4ab5e661e70789b4c64bf7a9383c7bdc20/python/phonenumbers/shortnumberinfo.py#L295-L322
3,669
msfrank/cifparser
cifparser/valuetree.py
ValueTree.append_field
def append_field(self, path, name, value): """ Appends the field to the container at the specified path. :param path: str or Path instance :param name: :type name: str :param value: :type value: str """ path = make_path(path) container = self.get_container(path) current = container._values.get(name, None) if current is None: container._values[name] = value elif isinstance(current, ValueTree): raise TypeError() elif isinstance(current, list): container._values[name] = current + [value] else: container._values[name] = [current, value]
python
def append_field(self, path, name, value): """ Appends the field to the container at the specified path. :param path: str or Path instance :param name: :type name: str :param value: :type value: str """ path = make_path(path) container = self.get_container(path) current = container._values.get(name, None) if current is None: container._values[name] = value elif isinstance(current, ValueTree): raise TypeError() elif isinstance(current, list): container._values[name] = current + [value] else: container._values[name] = [current, value]
['def', 'append_field', '(', 'self', ',', 'path', ',', 'name', ',', 'value', ')', ':', 'path', '=', 'make_path', '(', 'path', ')', 'container', '=', 'self', '.', 'get_container', '(', 'path', ')', 'current', '=', 'container', '.', '_values', '.', 'get', '(', 'name', ',', 'None', ')', 'if', 'current', 'is', 'None', ':', 'container', '.', '_values', '[', 'name', ']', '=', 'value', 'elif', 'isinstance', '(', 'current', ',', 'ValueTree', ')', ':', 'raise', 'TypeError', '(', ')', 'elif', 'isinstance', '(', 'current', ',', 'list', ')', ':', 'container', '.', '_values', '[', 'name', ']', '=', 'current', '+', '[', 'value', ']', 'else', ':', 'container', '.', '_values', '[', 'name', ']', '=', '[', 'current', ',', 'value', ']']
Appends the field to the container at the specified path. :param path: str or Path instance :param name: :type name: str :param value: :type value: str
['Appends', 'the', 'field', 'to', 'the', 'container', 'at', 'the', 'specified', 'path', '.']
train
https://github.com/msfrank/cifparser/blob/ecd899ba2e7b990e2cec62b115742d830e7e4384/cifparser/valuetree.py#L177-L197
3,670
gem/oq-engine
openquake/commonlib/logictree.py
BranchSet.filter_source
def filter_source(self, source): # pylint: disable=R0911,R0912 """ Apply filters to ``source`` and return ``True`` if uncertainty should be applied to it. """ for key, value in self.filters.items(): if key == 'applyToTectonicRegionType': if value != source.tectonic_region_type: return False elif key == 'applyToSourceType': if value == 'area': if not isinstance(source, ohs.AreaSource): return False elif value == 'point': # area source extends point source if (not isinstance(source, ohs.PointSource) or isinstance(source, ohs.AreaSource)): return False elif value == 'simpleFault': if not isinstance(source, ohs.SimpleFaultSource): return False elif value == 'complexFault': if not isinstance(source, ohs.ComplexFaultSource): return False elif value == 'characteristicFault': if not isinstance(source, ohs.CharacteristicFaultSource): return False else: raise AssertionError("unknown source type '%s'" % value) elif key == 'applyToSources': if source and source.source_id not in value: return False else: raise AssertionError("unknown filter '%s'" % key) # All filters pass, return True. return True
python
def filter_source(self, source): # pylint: disable=R0911,R0912 """ Apply filters to ``source`` and return ``True`` if uncertainty should be applied to it. """ for key, value in self.filters.items(): if key == 'applyToTectonicRegionType': if value != source.tectonic_region_type: return False elif key == 'applyToSourceType': if value == 'area': if not isinstance(source, ohs.AreaSource): return False elif value == 'point': # area source extends point source if (not isinstance(source, ohs.PointSource) or isinstance(source, ohs.AreaSource)): return False elif value == 'simpleFault': if not isinstance(source, ohs.SimpleFaultSource): return False elif value == 'complexFault': if not isinstance(source, ohs.ComplexFaultSource): return False elif value == 'characteristicFault': if not isinstance(source, ohs.CharacteristicFaultSource): return False else: raise AssertionError("unknown source type '%s'" % value) elif key == 'applyToSources': if source and source.source_id not in value: return False else: raise AssertionError("unknown filter '%s'" % key) # All filters pass, return True. return True
['def', 'filter_source', '(', 'self', ',', 'source', ')', ':', '# pylint: disable=R0911,R0912', 'for', 'key', ',', 'value', 'in', 'self', '.', 'filters', '.', 'items', '(', ')', ':', 'if', 'key', '==', "'applyToTectonicRegionType'", ':', 'if', 'value', '!=', 'source', '.', 'tectonic_region_type', ':', 'return', 'False', 'elif', 'key', '==', "'applyToSourceType'", ':', 'if', 'value', '==', "'area'", ':', 'if', 'not', 'isinstance', '(', 'source', ',', 'ohs', '.', 'AreaSource', ')', ':', 'return', 'False', 'elif', 'value', '==', "'point'", ':', '# area source extends point source', 'if', '(', 'not', 'isinstance', '(', 'source', ',', 'ohs', '.', 'PointSource', ')', 'or', 'isinstance', '(', 'source', ',', 'ohs', '.', 'AreaSource', ')', ')', ':', 'return', 'False', 'elif', 'value', '==', "'simpleFault'", ':', 'if', 'not', 'isinstance', '(', 'source', ',', 'ohs', '.', 'SimpleFaultSource', ')', ':', 'return', 'False', 'elif', 'value', '==', "'complexFault'", ':', 'if', 'not', 'isinstance', '(', 'source', ',', 'ohs', '.', 'ComplexFaultSource', ')', ':', 'return', 'False', 'elif', 'value', '==', "'characteristicFault'", ':', 'if', 'not', 'isinstance', '(', 'source', ',', 'ohs', '.', 'CharacteristicFaultSource', ')', ':', 'return', 'False', 'else', ':', 'raise', 'AssertionError', '(', '"unknown source type \'%s\'"', '%', 'value', ')', 'elif', 'key', '==', "'applyToSources'", ':', 'if', 'source', 'and', 'source', '.', 'source_id', 'not', 'in', 'value', ':', 'return', 'False', 'else', ':', 'raise', 'AssertionError', '(', '"unknown filter \'%s\'"', '%', 'key', ')', '# All filters pass, return True.', 'return', 'True']
Apply filters to ``source`` and return ``True`` if uncertainty should be applied to it.
['Apply', 'filters', 'to', 'source', 'and', 'return', 'True', 'if', 'uncertainty', 'should', 'be', 'applied', 'to', 'it', '.']
train
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/commonlib/logictree.py#L343-L379
3,671
django-salesforce/django-salesforce
salesforce/utils.py
get_soap_client
def get_soap_client(db_alias, client_class=None): """ Create the SOAP client for the current user logged in the db_alias The default created client is "beatbox.PythonClient", but an alternative client is possible. (i.e. other subtype of beatbox.XMLClient) """ if not beatbox: raise InterfaceError("To use SOAP API, you'll need to install the Beatbox package.") if client_class is None: client_class = beatbox.PythonClient soap_client = client_class() # authenticate connection = connections[db_alias] # verify the authenticated connection, because Beatbox can not refresh the token cursor = connection.cursor() cursor.urls_request() auth_info = connections[db_alias].sf_session.auth access_token = auth_info.get_auth()['access_token'] assert access_token[15] == '!' org_id = access_token[:15] url = '/services/Soap/u/{version}/{org_id}'.format(version=salesforce.API_VERSION, org_id=org_id) soap_client.useSession(access_token, auth_info.instance_url + url) return soap_client
python
def get_soap_client(db_alias, client_class=None): """ Create the SOAP client for the current user logged in the db_alias The default created client is "beatbox.PythonClient", but an alternative client is possible. (i.e. other subtype of beatbox.XMLClient) """ if not beatbox: raise InterfaceError("To use SOAP API, you'll need to install the Beatbox package.") if client_class is None: client_class = beatbox.PythonClient soap_client = client_class() # authenticate connection = connections[db_alias] # verify the authenticated connection, because Beatbox can not refresh the token cursor = connection.cursor() cursor.urls_request() auth_info = connections[db_alias].sf_session.auth access_token = auth_info.get_auth()['access_token'] assert access_token[15] == '!' org_id = access_token[:15] url = '/services/Soap/u/{version}/{org_id}'.format(version=salesforce.API_VERSION, org_id=org_id) soap_client.useSession(access_token, auth_info.instance_url + url) return soap_client
['def', 'get_soap_client', '(', 'db_alias', ',', 'client_class', '=', 'None', ')', ':', 'if', 'not', 'beatbox', ':', 'raise', 'InterfaceError', '(', '"To use SOAP API, you\'ll need to install the Beatbox package."', ')', 'if', 'client_class', 'is', 'None', ':', 'client_class', '=', 'beatbox', '.', 'PythonClient', 'soap_client', '=', 'client_class', '(', ')', '# authenticate', 'connection', '=', 'connections', '[', 'db_alias', ']', '# verify the authenticated connection, because Beatbox can not refresh the token', 'cursor', '=', 'connection', '.', 'cursor', '(', ')', 'cursor', '.', 'urls_request', '(', ')', 'auth_info', '=', 'connections', '[', 'db_alias', ']', '.', 'sf_session', '.', 'auth', 'access_token', '=', 'auth_info', '.', 'get_auth', '(', ')', '[', "'access_token'", ']', 'assert', 'access_token', '[', '15', ']', '==', "'!'", 'org_id', '=', 'access_token', '[', ':', '15', ']', 'url', '=', "'/services/Soap/u/{version}/{org_id}'", '.', 'format', '(', 'version', '=', 'salesforce', '.', 'API_VERSION', ',', 'org_id', '=', 'org_id', ')', 'soap_client', '.', 'useSession', '(', 'access_token', ',', 'auth_info', '.', 'instance_url', '+', 'url', ')', 'return', 'soap_client']
Create the SOAP client for the current user logged in the db_alias The default created client is "beatbox.PythonClient", but an alternative client is possible. (i.e. other subtype of beatbox.XMLClient)
['Create', 'the', 'SOAP', 'client', 'for', 'the', 'current', 'user', 'logged', 'in', 'the', 'db_alias']
train
https://github.com/django-salesforce/django-salesforce/blob/6fd5643dba69d49c5881de50875cf90204a8f808/salesforce/utils.py#L20-L46
3,672
rosenbrockc/acorn
acorn/ipython.py
record_markdown
def record_markdown(text, cellid): """Records the specified markdown text to the acorn database. Args: text (str): the *raw* markdown text entered into the cell in the ipython notebook. """ from acorn.logging.database import record from time import time ekey = "nb-{}".format(cellid) global _cellid_map if cellid not in _cellid_map: from acorn.logging.database import active_db from difflib import SequenceMatcher from acorn.logging.diff import cascade taskdb = active_db() if ekey not in taskdb.entities: #Compute a new ekey if possible with the most similar markdown cell #in the database. possible = [k for k in taskdb.entities if k[0:3] == "nb-"] maxkey, maxvalue = None, 0. for pkey in possible: sequence = [e["c"] for e in taskdb.entities[pkey]] state = ''.join(cascade(sequence)) matcher = SequenceMatcher(a=state, b=text) ratio = matcher.quick_ratio() if ratio > maxvalue and ratio > 0.5: maxkey, maxvalue = pkey, ratio #We expect the similarity to be at least 0.5; otherwise we decide #that it is a new cell. if maxkey is not None: ekey = pkey _cellid_map[cellid] = ekey ekey = _cellid_map[cellid] entry = { "m": "md", "a": None, "s": time(), "r": None, "c": text, } record(ekey, entry, diff=True)
python
def record_markdown(text, cellid): """Records the specified markdown text to the acorn database. Args: text (str): the *raw* markdown text entered into the cell in the ipython notebook. """ from acorn.logging.database import record from time import time ekey = "nb-{}".format(cellid) global _cellid_map if cellid not in _cellid_map: from acorn.logging.database import active_db from difflib import SequenceMatcher from acorn.logging.diff import cascade taskdb = active_db() if ekey not in taskdb.entities: #Compute a new ekey if possible with the most similar markdown cell #in the database. possible = [k for k in taskdb.entities if k[0:3] == "nb-"] maxkey, maxvalue = None, 0. for pkey in possible: sequence = [e["c"] for e in taskdb.entities[pkey]] state = ''.join(cascade(sequence)) matcher = SequenceMatcher(a=state, b=text) ratio = matcher.quick_ratio() if ratio > maxvalue and ratio > 0.5: maxkey, maxvalue = pkey, ratio #We expect the similarity to be at least 0.5; otherwise we decide #that it is a new cell. if maxkey is not None: ekey = pkey _cellid_map[cellid] = ekey ekey = _cellid_map[cellid] entry = { "m": "md", "a": None, "s": time(), "r": None, "c": text, } record(ekey, entry, diff=True)
['def', 'record_markdown', '(', 'text', ',', 'cellid', ')', ':', 'from', 'acorn', '.', 'logging', '.', 'database', 'import', 'record', 'from', 'time', 'import', 'time', 'ekey', '=', '"nb-{}"', '.', 'format', '(', 'cellid', ')', 'global', '_cellid_map', 'if', 'cellid', 'not', 'in', '_cellid_map', ':', 'from', 'acorn', '.', 'logging', '.', 'database', 'import', 'active_db', 'from', 'difflib', 'import', 'SequenceMatcher', 'from', 'acorn', '.', 'logging', '.', 'diff', 'import', 'cascade', 'taskdb', '=', 'active_db', '(', ')', 'if', 'ekey', 'not', 'in', 'taskdb', '.', 'entities', ':', '#Compute a new ekey if possible with the most similar markdown cell', '#in the database.', 'possible', '=', '[', 'k', 'for', 'k', 'in', 'taskdb', '.', 'entities', 'if', 'k', '[', '0', ':', '3', ']', '==', '"nb-"', ']', 'maxkey', ',', 'maxvalue', '=', 'None', ',', '0.', 'for', 'pkey', 'in', 'possible', ':', 'sequence', '=', '[', 'e', '[', '"c"', ']', 'for', 'e', 'in', 'taskdb', '.', 'entities', '[', 'pkey', ']', ']', 'state', '=', "''", '.', 'join', '(', 'cascade', '(', 'sequence', ')', ')', 'matcher', '=', 'SequenceMatcher', '(', 'a', '=', 'state', ',', 'b', '=', 'text', ')', 'ratio', '=', 'matcher', '.', 'quick_ratio', '(', ')', 'if', 'ratio', '>', 'maxvalue', 'and', 'ratio', '>', '0.5', ':', 'maxkey', ',', 'maxvalue', '=', 'pkey', ',', 'ratio', '#We expect the similarity to be at least 0.5; otherwise we decide', '#that it is a new cell.', 'if', 'maxkey', 'is', 'not', 'None', ':', 'ekey', '=', 'pkey', '_cellid_map', '[', 'cellid', ']', '=', 'ekey', 'ekey', '=', '_cellid_map', '[', 'cellid', ']', 'entry', '=', '{', '"m"', ':', '"md"', ',', '"a"', ':', 'None', ',', '"s"', ':', 'time', '(', ')', ',', '"r"', ':', 'None', ',', '"c"', ':', 'text', ',', '}', 'record', '(', 'ekey', ',', 'entry', ',', 'diff', '=', 'True', ')']
Records the specified markdown text to the acorn database. Args: text (str): the *raw* markdown text entered into the cell in the ipython notebook.
['Records', 'the', 'specified', 'markdown', 'text', 'to', 'the', 'acorn', 'database', '.']
train
https://github.com/rosenbrockc/acorn/blob/9a44d1a1ad8bfc2c54a6b56d9efe54433a797820/acorn/ipython.py#L488-L534
3,673
brocade/pynos
pynos/versions/ver_6/ver_6_0_1/yang/brocade_port_profile.py
brocade_port_profile.port_profile_restrict_flooding_container_restrict_flooding
def port_profile_restrict_flooding_container_restrict_flooding(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") port_profile = ET.SubElement(config, "port-profile", xmlns="urn:brocade.com:mgmt:brocade-port-profile") name_key = ET.SubElement(port_profile, "name") name_key.text = kwargs.pop('name') restrict_flooding_container = ET.SubElement(port_profile, "restrict-flooding-container") restrict_flooding = ET.SubElement(restrict_flooding_container, "restrict-flooding") callback = kwargs.pop('callback', self._callback) return callback(config)
python
def port_profile_restrict_flooding_container_restrict_flooding(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") port_profile = ET.SubElement(config, "port-profile", xmlns="urn:brocade.com:mgmt:brocade-port-profile") name_key = ET.SubElement(port_profile, "name") name_key.text = kwargs.pop('name') restrict_flooding_container = ET.SubElement(port_profile, "restrict-flooding-container") restrict_flooding = ET.SubElement(restrict_flooding_container, "restrict-flooding") callback = kwargs.pop('callback', self._callback) return callback(config)
['def', 'port_profile_restrict_flooding_container_restrict_flooding', '(', 'self', ',', '*', '*', 'kwargs', ')', ':', 'config', '=', 'ET', '.', 'Element', '(', '"config"', ')', 'port_profile', '=', 'ET', '.', 'SubElement', '(', 'config', ',', '"port-profile"', ',', 'xmlns', '=', '"urn:brocade.com:mgmt:brocade-port-profile"', ')', 'name_key', '=', 'ET', '.', 'SubElement', '(', 'port_profile', ',', '"name"', ')', 'name_key', '.', 'text', '=', 'kwargs', '.', 'pop', '(', "'name'", ')', 'restrict_flooding_container', '=', 'ET', '.', 'SubElement', '(', 'port_profile', ',', '"restrict-flooding-container"', ')', 'restrict_flooding', '=', 'ET', '.', 'SubElement', '(', 'restrict_flooding_container', ',', '"restrict-flooding"', ')', 'callback', '=', 'kwargs', '.', 'pop', '(', "'callback'", ',', 'self', '.', '_callback', ')', 'return', 'callback', '(', 'config', ')']
Auto Generated Code
['Auto', 'Generated', 'Code']
train
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_6/ver_6_0_1/yang/brocade_port_profile.py#L660-L671
3,674
yyuu/botornado
botornado/__init__.py
connect_euca
def connect_euca(host=None, aws_access_key_id=None, aws_secret_access_key=None, port=8773, path='/services/Eucalyptus', is_secure=False, **kwargs): """ Connect to a Eucalyptus service. :type host: string :param host: the host name or ip address of the Eucalyptus server :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ec2.connection.EC2Connection` :return: A connection to Eucalyptus server """ raise BotoClientError('Not Implemented')
python
def connect_euca(host=None, aws_access_key_id=None, aws_secret_access_key=None, port=8773, path='/services/Eucalyptus', is_secure=False, **kwargs): """ Connect to a Eucalyptus service. :type host: string :param host: the host name or ip address of the Eucalyptus server :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ec2.connection.EC2Connection` :return: A connection to Eucalyptus server """ raise BotoClientError('Not Implemented')
['def', 'connect_euca', '(', 'host', '=', 'None', ',', 'aws_access_key_id', '=', 'None', ',', 'aws_secret_access_key', '=', 'None', ',', 'port', '=', '8773', ',', 'path', '=', "'/services/Eucalyptus'", ',', 'is_secure', '=', 'False', ',', '*', '*', 'kwargs', ')', ':', 'raise', 'BotoClientError', '(', "'Not Implemented'", ')']
Connect to a Eucalyptus service. :type host: string :param host: the host name or ip address of the Eucalyptus server :type aws_access_key_id: string :param aws_access_key_id: Your AWS Access Key ID :type aws_secret_access_key: string :param aws_secret_access_key: Your AWS Secret Access Key :rtype: :class:`boto.ec2.connection.EC2Connection` :return: A connection to Eucalyptus server
['Connect', 'to', 'a', 'Eucalyptus', 'service', '.']
train
https://github.com/yyuu/botornado/blob/fffb056f5ff2324d1d5c1304014cfb1d899f602e/botornado/__init__.py#L259-L277
3,675
pycontribs/pyrax
pyrax/cloudmonitoring.py
CloudMonitorNotificationManager.create
def create(self, notification_type, label=None, name=None, details=None): """ Defines a notification for handling an alarm. """ uri = "/%s" % self.uri_base body = {"label": label or name, "type": utils.get_id(notification_type), "details": details, } resp, resp_body = self.api.method_post(uri, body=body) return self.get(resp.headers["x-object-id"])
python
def create(self, notification_type, label=None, name=None, details=None): """ Defines a notification for handling an alarm. """ uri = "/%s" % self.uri_base body = {"label": label or name, "type": utils.get_id(notification_type), "details": details, } resp, resp_body = self.api.method_post(uri, body=body) return self.get(resp.headers["x-object-id"])
['def', 'create', '(', 'self', ',', 'notification_type', ',', 'label', '=', 'None', ',', 'name', '=', 'None', ',', 'details', '=', 'None', ')', ':', 'uri', '=', '"/%s"', '%', 'self', '.', 'uri_base', 'body', '=', '{', '"label"', ':', 'label', 'or', 'name', ',', '"type"', ':', 'utils', '.', 'get_id', '(', 'notification_type', ')', ',', '"details"', ':', 'details', ',', '}', 'resp', ',', 'resp_body', '=', 'self', '.', 'api', '.', 'method_post', '(', 'uri', ',', 'body', '=', 'body', ')', 'return', 'self', '.', 'get', '(', 'resp', '.', 'headers', '[', '"x-object-id"', ']', ')']
Defines a notification for handling an alarm.
['Defines', 'a', 'notification', 'for', 'handling', 'an', 'alarm', '.']
train
https://github.com/pycontribs/pyrax/blob/9ddfd5064b3a292d7337906f3b2d5dce95b50b99/pyrax/cloudmonitoring.py#L289-L299
3,676
DataDog/integrations-core
sqlserver/datadog_checks/sqlserver/sqlserver.py
SQLServer._conn_string_adodbapi
def _conn_string_adodbapi(self, db_key, instance=None, conn_key=None, db_name=None): ''' Return a connection string to use with adodbapi ''' if instance: _, host, username, password, database, _ = self._get_access_info(instance, db_key, db_name) elif conn_key: _, host, username, password, database, _ = conn_key.split(":") p = self._get_adoprovider(instance) conn_str = 'Provider={};Data Source={};Initial Catalog={};'.format(p, host, database) if username: conn_str += 'User ID={};'.format(username) if password: conn_str += 'Password={};'.format(password) if not username and not password: conn_str += 'Integrated Security=SSPI;' return conn_str
python
def _conn_string_adodbapi(self, db_key, instance=None, conn_key=None, db_name=None): ''' Return a connection string to use with adodbapi ''' if instance: _, host, username, password, database, _ = self._get_access_info(instance, db_key, db_name) elif conn_key: _, host, username, password, database, _ = conn_key.split(":") p = self._get_adoprovider(instance) conn_str = 'Provider={};Data Source={};Initial Catalog={};'.format(p, host, database) if username: conn_str += 'User ID={};'.format(username) if password: conn_str += 'Password={};'.format(password) if not username and not password: conn_str += 'Integrated Security=SSPI;' return conn_str
['def', '_conn_string_adodbapi', '(', 'self', ',', 'db_key', ',', 'instance', '=', 'None', ',', 'conn_key', '=', 'None', ',', 'db_name', '=', 'None', ')', ':', 'if', 'instance', ':', '_', ',', 'host', ',', 'username', ',', 'password', ',', 'database', ',', '_', '=', 'self', '.', '_get_access_info', '(', 'instance', ',', 'db_key', ',', 'db_name', ')', 'elif', 'conn_key', ':', '_', ',', 'host', ',', 'username', ',', 'password', ',', 'database', ',', '_', '=', 'conn_key', '.', 'split', '(', '":"', ')', 'p', '=', 'self', '.', '_get_adoprovider', '(', 'instance', ')', 'conn_str', '=', "'Provider={};Data Source={};Initial Catalog={};'", '.', 'format', '(', 'p', ',', 'host', ',', 'database', ')', 'if', 'username', ':', 'conn_str', '+=', "'User ID={};'", '.', 'format', '(', 'username', ')', 'if', 'password', ':', 'conn_str', '+=', "'Password={};'", '.', 'format', '(', 'password', ')', 'if', 'not', 'username', 'and', 'not', 'password', ':', 'conn_str', '+=', "'Integrated Security=SSPI;'", 'return', 'conn_str']
Return a connection string to use with adodbapi
['Return', 'a', 'connection', 'string', 'to', 'use', 'with', 'adodbapi']
train
https://github.com/DataDog/integrations-core/blob/ebd41c873cf9f97a8c51bf9459bc6a7536af8acd/sqlserver/datadog_checks/sqlserver/sqlserver.py#L391-L408
3,677
mushkevych/scheduler
synergy/scheduler/timetable.py
Timetable.load_tree
def load_tree(self): """ method iterates thru all objects older than synergy_start_timeperiod parameter in job collections and loads them into this timetable""" timeperiod = settings.settings['synergy_start_timeperiod'] yearly_timeperiod = time_helper.cast_to_time_qualifier(QUALIFIER_YEARLY, timeperiod) monthly_timeperiod = time_helper.cast_to_time_qualifier(QUALIFIER_MONTHLY, timeperiod) daily_timeperiod = time_helper.cast_to_time_qualifier(QUALIFIER_DAILY, timeperiod) hourly_timeperiod = time_helper.cast_to_time_qualifier(QUALIFIER_HOURLY, timeperiod) self._build_tree_by_level(QUALIFIER_HOURLY, COLLECTION_JOB_HOURLY, since=hourly_timeperiod) self._build_tree_by_level(QUALIFIER_DAILY, COLLECTION_JOB_DAILY, since=daily_timeperiod) self._build_tree_by_level(QUALIFIER_MONTHLY, COLLECTION_JOB_MONTHLY, since=monthly_timeperiod) self._build_tree_by_level(QUALIFIER_YEARLY, COLLECTION_JOB_YEARLY, since=yearly_timeperiod)
python
def load_tree(self): """ method iterates thru all objects older than synergy_start_timeperiod parameter in job collections and loads them into this timetable""" timeperiod = settings.settings['synergy_start_timeperiod'] yearly_timeperiod = time_helper.cast_to_time_qualifier(QUALIFIER_YEARLY, timeperiod) monthly_timeperiod = time_helper.cast_to_time_qualifier(QUALIFIER_MONTHLY, timeperiod) daily_timeperiod = time_helper.cast_to_time_qualifier(QUALIFIER_DAILY, timeperiod) hourly_timeperiod = time_helper.cast_to_time_qualifier(QUALIFIER_HOURLY, timeperiod) self._build_tree_by_level(QUALIFIER_HOURLY, COLLECTION_JOB_HOURLY, since=hourly_timeperiod) self._build_tree_by_level(QUALIFIER_DAILY, COLLECTION_JOB_DAILY, since=daily_timeperiod) self._build_tree_by_level(QUALIFIER_MONTHLY, COLLECTION_JOB_MONTHLY, since=monthly_timeperiod) self._build_tree_by_level(QUALIFIER_YEARLY, COLLECTION_JOB_YEARLY, since=yearly_timeperiod)
['def', 'load_tree', '(', 'self', ')', ':', 'timeperiod', '=', 'settings', '.', 'settings', '[', "'synergy_start_timeperiod'", ']', 'yearly_timeperiod', '=', 'time_helper', '.', 'cast_to_time_qualifier', '(', 'QUALIFIER_YEARLY', ',', 'timeperiod', ')', 'monthly_timeperiod', '=', 'time_helper', '.', 'cast_to_time_qualifier', '(', 'QUALIFIER_MONTHLY', ',', 'timeperiod', ')', 'daily_timeperiod', '=', 'time_helper', '.', 'cast_to_time_qualifier', '(', 'QUALIFIER_DAILY', ',', 'timeperiod', ')', 'hourly_timeperiod', '=', 'time_helper', '.', 'cast_to_time_qualifier', '(', 'QUALIFIER_HOURLY', ',', 'timeperiod', ')', 'self', '.', '_build_tree_by_level', '(', 'QUALIFIER_HOURLY', ',', 'COLLECTION_JOB_HOURLY', ',', 'since', '=', 'hourly_timeperiod', ')', 'self', '.', '_build_tree_by_level', '(', 'QUALIFIER_DAILY', ',', 'COLLECTION_JOB_DAILY', ',', 'since', '=', 'daily_timeperiod', ')', 'self', '.', '_build_tree_by_level', '(', 'QUALIFIER_MONTHLY', ',', 'COLLECTION_JOB_MONTHLY', ',', 'since', '=', 'monthly_timeperiod', ')', 'self', '.', '_build_tree_by_level', '(', 'QUALIFIER_YEARLY', ',', 'COLLECTION_JOB_YEARLY', ',', 'since', '=', 'yearly_timeperiod', ')']
method iterates thru all objects older than synergy_start_timeperiod parameter in job collections and loads them into this timetable
['method', 'iterates', 'thru', 'all', 'objects', 'older', 'than', 'synergy_start_timeperiod', 'parameter', 'in', 'job', 'collections', 'and', 'loads', 'them', 'into', 'this', 'timetable']
train
https://github.com/mushkevych/scheduler/blob/6740331360f49083c208085fb5a60ce80ebf418b/synergy/scheduler/timetable.py#L207-L219
3,678
fake-name/WebRequest
WebRequest/WebRequestClass.py
WebGetRobust.getFileNameMime
def getFileNameMime(self, requestedUrl, *args, **kwargs): ''' Give a requested page (note: the arguments for this call are forwarded to getpage()), return the content at the target URL, the filename for the target content, and the mimetype for the content at the target URL, as a 3-tuple (pgctnt, hName, mime). The filename specified in the content-disposition header is used, if present. Otherwise, the last section of the url path segment is treated as the filename. ''' if 'returnMultiple' in kwargs: raise Exceptions.ArgumentError("getFileAndName cannot be called with 'returnMultiple'", requestedUrl) if 'soup' in kwargs and kwargs['soup']: raise Exceptions.ArgumentError("getFileAndName contradicts the 'soup' directive!", requestedUrl) kwargs["returnMultiple"] = True pgctnt, pghandle = self.getpage(requestedUrl, *args, **kwargs) info = pghandle.info() if not 'Content-Disposition' in info: hName = '' elif not 'filename=' in info['Content-Disposition']: hName = '' else: hName = info['Content-Disposition'].split('filename=')[1] # Unquote filename if it's quoted. if ((hName.startswith("'") and hName.endswith("'")) or hName.startswith('"') and hName.endswith('"')) and len(hName) >= 2: hName = hName[1:-1] mime = info.get_content_type() if not hName.strip(): requestedUrl = pghandle.geturl() hName = urllib.parse.urlsplit(requestedUrl).path.split("/")[-1].strip() if "/" in hName: hName = hName.split("/")[-1] return pgctnt, hName, mime
python
def getFileNameMime(self, requestedUrl, *args, **kwargs): ''' Give a requested page (note: the arguments for this call are forwarded to getpage()), return the content at the target URL, the filename for the target content, and the mimetype for the content at the target URL, as a 3-tuple (pgctnt, hName, mime). The filename specified in the content-disposition header is used, if present. Otherwise, the last section of the url path segment is treated as the filename. ''' if 'returnMultiple' in kwargs: raise Exceptions.ArgumentError("getFileAndName cannot be called with 'returnMultiple'", requestedUrl) if 'soup' in kwargs and kwargs['soup']: raise Exceptions.ArgumentError("getFileAndName contradicts the 'soup' directive!", requestedUrl) kwargs["returnMultiple"] = True pgctnt, pghandle = self.getpage(requestedUrl, *args, **kwargs) info = pghandle.info() if not 'Content-Disposition' in info: hName = '' elif not 'filename=' in info['Content-Disposition']: hName = '' else: hName = info['Content-Disposition'].split('filename=')[1] # Unquote filename if it's quoted. if ((hName.startswith("'") and hName.endswith("'")) or hName.startswith('"') and hName.endswith('"')) and len(hName) >= 2: hName = hName[1:-1] mime = info.get_content_type() if not hName.strip(): requestedUrl = pghandle.geturl() hName = urllib.parse.urlsplit(requestedUrl).path.split("/")[-1].strip() if "/" in hName: hName = hName.split("/")[-1] return pgctnt, hName, mime
['def', 'getFileNameMime', '(', 'self', ',', 'requestedUrl', ',', '*', 'args', ',', '*', '*', 'kwargs', ')', ':', 'if', "'returnMultiple'", 'in', 'kwargs', ':', 'raise', 'Exceptions', '.', 'ArgumentError', '(', '"getFileAndName cannot be called with \'returnMultiple\'"', ',', 'requestedUrl', ')', 'if', "'soup'", 'in', 'kwargs', 'and', 'kwargs', '[', "'soup'", ']', ':', 'raise', 'Exceptions', '.', 'ArgumentError', '(', '"getFileAndName contradicts the \'soup\' directive!"', ',', 'requestedUrl', ')', 'kwargs', '[', '"returnMultiple"', ']', '=', 'True', 'pgctnt', ',', 'pghandle', '=', 'self', '.', 'getpage', '(', 'requestedUrl', ',', '*', 'args', ',', '*', '*', 'kwargs', ')', 'info', '=', 'pghandle', '.', 'info', '(', ')', 'if', 'not', "'Content-Disposition'", 'in', 'info', ':', 'hName', '=', "''", 'elif', 'not', "'filename='", 'in', 'info', '[', "'Content-Disposition'", ']', ':', 'hName', '=', "''", 'else', ':', 'hName', '=', 'info', '[', "'Content-Disposition'", ']', '.', 'split', '(', "'filename='", ')', '[', '1', ']', "# Unquote filename if it's quoted.", 'if', '(', '(', 'hName', '.', 'startswith', '(', '"\'"', ')', 'and', 'hName', '.', 'endswith', '(', '"\'"', ')', ')', 'or', 'hName', '.', 'startswith', '(', '\'"\'', ')', 'and', 'hName', '.', 'endswith', '(', '\'"\'', ')', ')', 'and', 'len', '(', 'hName', ')', '>=', '2', ':', 'hName', '=', 'hName', '[', '1', ':', '-', '1', ']', 'mime', '=', 'info', '.', 'get_content_type', '(', ')', 'if', 'not', 'hName', '.', 'strip', '(', ')', ':', 'requestedUrl', '=', 'pghandle', '.', 'geturl', '(', ')', 'hName', '=', 'urllib', '.', 'parse', '.', 'urlsplit', '(', 'requestedUrl', ')', '.', 'path', '.', 'split', '(', '"/"', ')', '[', '-', '1', ']', '.', 'strip', '(', ')', 'if', '"/"', 'in', 'hName', ':', 'hName', '=', 'hName', '.', 'split', '(', '"/"', ')', '[', '-', '1', ']', 'return', 'pgctnt', ',', 'hName', ',', 'mime']
Give a requested page (note: the arguments for this call are forwarded to getpage()), return the content at the target URL, the filename for the target content, and the mimetype for the content at the target URL, as a 3-tuple (pgctnt, hName, mime). The filename specified in the content-disposition header is used, if present. Otherwise, the last section of the url path segment is treated as the filename.
['Give', 'a', 'requested', 'page', '(', 'note', ':', 'the', 'arguments', 'for', 'this', 'call', 'are', 'forwarded', 'to', 'getpage', '()', ')', 'return', 'the', 'content', 'at', 'the', 'target', 'URL', 'the', 'filename', 'for', 'the', 'target', 'content', 'and', 'the', 'mimetype', 'for', 'the', 'content', 'at', 'the', 'target', 'URL', 'as', 'a', '3', '-', 'tuple', '(', 'pgctnt', 'hName', 'mime', ')', '.']
train
https://github.com/fake-name/WebRequest/blob/b6c94631ff88b5f81f26a9f99a2d5c706810b11f/WebRequest/WebRequestClass.py#L292-L334
3,679
kajala/django-jutil
jutil/dates.py
this_month
def this_month(today: datetime=None, tz=None): """ Returns current month begin (inclusive) and end (exclusive). :param today: Some date in the month (defaults current datetime) :param tz: Timezone (defaults pytz UTC) :return: begin (inclusive), end (exclusive) """ if today is None: today = datetime.utcnow() begin = datetime(day=1, month=today.month, year=today.year) end = begin + timedelta(days=32) end = datetime(day=1, month=end.month, year=end.year) return localize_time_range(begin, end, tz)
python
def this_month(today: datetime=None, tz=None): """ Returns current month begin (inclusive) and end (exclusive). :param today: Some date in the month (defaults current datetime) :param tz: Timezone (defaults pytz UTC) :return: begin (inclusive), end (exclusive) """ if today is None: today = datetime.utcnow() begin = datetime(day=1, month=today.month, year=today.year) end = begin + timedelta(days=32) end = datetime(day=1, month=end.month, year=end.year) return localize_time_range(begin, end, tz)
['def', 'this_month', '(', 'today', ':', 'datetime', '=', 'None', ',', 'tz', '=', 'None', ')', ':', 'if', 'today', 'is', 'None', ':', 'today', '=', 'datetime', '.', 'utcnow', '(', ')', 'begin', '=', 'datetime', '(', 'day', '=', '1', ',', 'month', '=', 'today', '.', 'month', ',', 'year', '=', 'today', '.', 'year', ')', 'end', '=', 'begin', '+', 'timedelta', '(', 'days', '=', '32', ')', 'end', '=', 'datetime', '(', 'day', '=', '1', ',', 'month', '=', 'end', '.', 'month', ',', 'year', '=', 'end', '.', 'year', ')', 'return', 'localize_time_range', '(', 'begin', ',', 'end', ',', 'tz', ')']
Returns current month begin (inclusive) and end (exclusive). :param today: Some date in the month (defaults current datetime) :param tz: Timezone (defaults pytz UTC) :return: begin (inclusive), end (exclusive)
['Returns', 'current', 'month', 'begin', '(', 'inclusive', ')', 'and', 'end', '(', 'exclusive', ')', '.', ':', 'param', 'today', ':', 'Some', 'date', 'in', 'the', 'month', '(', 'defaults', 'current', 'datetime', ')', ':', 'param', 'tz', ':', 'Timezone', '(', 'defaults', 'pytz', 'UTC', ')', ':', 'return', ':', 'begin', '(', 'inclusive', ')', 'end', '(', 'exclusive', ')']
train
https://github.com/kajala/django-jutil/blob/2abd93ebad51042744eaeb1ee1074ed0eb55ad0c/jutil/dates.py#L76-L88
3,680
santoshphilip/eppy
eppy/EPlusInterfaceFunctions/mylib2.py
tabfile2doefile
def tabfile2doefile(tabfile, doefile): """tabfile2doefile""" alist = tabfile2list(tabfile) astr = list2doe(alist) mylib1.write_str2file(doefile, astr)
python
def tabfile2doefile(tabfile, doefile): """tabfile2doefile""" alist = tabfile2list(tabfile) astr = list2doe(alist) mylib1.write_str2file(doefile, astr)
['def', 'tabfile2doefile', '(', 'tabfile', ',', 'doefile', ')', ':', 'alist', '=', 'tabfile2list', '(', 'tabfile', ')', 'astr', '=', 'list2doe', '(', 'alist', ')', 'mylib1', '.', 'write_str2file', '(', 'doefile', ',', 'astr', ')']
tabfile2doefile
['tabfile2doefile']
train
https://github.com/santoshphilip/eppy/blob/55410ff7c11722f35bc4331ff5e00a0b86f787e1/eppy/EPlusInterfaceFunctions/mylib2.py#L90-L94
3,681
tradenity/python-sdk
tradenity/resources/country.py
Country.get_country_by_id
def get_country_by_id(cls, country_id, **kwargs): """Find Country Return single instance of Country by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_country_by_id(country_id, async=True) >>> result = thread.get() :param async bool :param str country_id: ID of country to return (required) :return: Country If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._get_country_by_id_with_http_info(country_id, **kwargs) else: (data) = cls._get_country_by_id_with_http_info(country_id, **kwargs) return data
python
def get_country_by_id(cls, country_id, **kwargs): """Find Country Return single instance of Country by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_country_by_id(country_id, async=True) >>> result = thread.get() :param async bool :param str country_id: ID of country to return (required) :return: Country If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return cls._get_country_by_id_with_http_info(country_id, **kwargs) else: (data) = cls._get_country_by_id_with_http_info(country_id, **kwargs) return data
['def', 'get_country_by_id', '(', 'cls', ',', 'country_id', ',', '*', '*', 'kwargs', ')', ':', 'kwargs', '[', "'_return_http_data_only'", ']', '=', 'True', 'if', 'kwargs', '.', 'get', '(', "'async'", ')', ':', 'return', 'cls', '.', '_get_country_by_id_with_http_info', '(', 'country_id', ',', '*', '*', 'kwargs', ')', 'else', ':', '(', 'data', ')', '=', 'cls', '.', '_get_country_by_id_with_http_info', '(', 'country_id', ',', '*', '*', 'kwargs', ')', 'return', 'data']
Find Country Return single instance of Country by its ID. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_country_by_id(country_id, async=True) >>> result = thread.get() :param async bool :param str country_id: ID of country to return (required) :return: Country If the method is called asynchronously, returns the request thread.
['Find', 'Country']
train
https://github.com/tradenity/python-sdk/blob/d13fbe23f4d6ff22554c6d8d2deaf209371adaf1/tradenity/resources/country.py#L599-L619
3,682
lovvskillz/python-discord-webhook
discord_webhook/webhook.py
DiscordEmbed.set_thumbnail
def set_thumbnail(self, **kwargs): """ set thumbnail of embed :keyword url: source url of thumbnail (only supports http(s) and attachments) :keyword proxy_url: a proxied thumbnail of the image :keyword height: height of thumbnail :keyword width: width of thumbnail """ self.thumbnail = { 'url': kwargs.get('url'), 'proxy_url': kwargs.get('proxy_url'), 'height': kwargs.get('height'), 'width': kwargs.get('width'), }
python
def set_thumbnail(self, **kwargs): """ set thumbnail of embed :keyword url: source url of thumbnail (only supports http(s) and attachments) :keyword proxy_url: a proxied thumbnail of the image :keyword height: height of thumbnail :keyword width: width of thumbnail """ self.thumbnail = { 'url': kwargs.get('url'), 'proxy_url': kwargs.get('proxy_url'), 'height': kwargs.get('height'), 'width': kwargs.get('width'), }
['def', 'set_thumbnail', '(', 'self', ',', '*', '*', 'kwargs', ')', ':', 'self', '.', 'thumbnail', '=', '{', "'url'", ':', 'kwargs', '.', 'get', '(', "'url'", ')', ',', "'proxy_url'", ':', 'kwargs', '.', 'get', '(', "'proxy_url'", ')', ',', "'height'", ':', 'kwargs', '.', 'get', '(', "'height'", ')', ',', "'width'", ':', 'kwargs', '.', 'get', '(', "'width'", ')', ',', '}']
set thumbnail of embed :keyword url: source url of thumbnail (only supports http(s) and attachments) :keyword proxy_url: a proxied thumbnail of the image :keyword height: height of thumbnail :keyword width: width of thumbnail
['set', 'thumbnail', 'of', 'embed', ':', 'keyword', 'url', ':', 'source', 'url', 'of', 'thumbnail', '(', 'only', 'supports', 'http', '(', 's', ')', 'and', 'attachments', ')', ':', 'keyword', 'proxy_url', ':', 'a', 'proxied', 'thumbnail', 'of', 'the', 'image', ':', 'keyword', 'height', ':', 'height', 'of', 'thumbnail', ':', 'keyword', 'width', ':', 'width', 'of', 'thumbnail']
train
https://github.com/lovvskillz/python-discord-webhook/blob/5278184078c9da9362b6343c478a92e0904a7f83/discord_webhook/webhook.py#L205-L218
3,683
sailthru/sailthru-python-client
sailthru/sailthru_client.py
SailthruClient.multi_send
def multi_send(self, template, emails, _vars=None, evars=None, schedule_time=None, options=None): """ Remotely send an email template to multiple email addresses. http://docs.sailthru.com/api/send @param template: template string @param emails: List with email values or comma separated email string @param _vars: a key/value hash of the replacement vars to use in the send. Each var may be referenced as {varname} within the template itself @param options: optional dictionary to include replyto and/or test keys @param schedule_time: do not send the email immediately, but at some point in the future. Any date recognized by PHP's strtotime function is valid, but be sure to specify timezone or use a UTC time to avoid confusion """ _vars = _vars or {} evars = evars or {} options = options or {} data = {'template': template, 'email': ','.join(emails) if isinstance(emails, list) else emails, 'vars': _vars.copy(), 'evars': evars.copy(), 'options': options.copy()} if schedule_time is not None: data['schedule_time'] = schedule_time return self.api_post('send', data)
python
def multi_send(self, template, emails, _vars=None, evars=None, schedule_time=None, options=None): """ Remotely send an email template to multiple email addresses. http://docs.sailthru.com/api/send @param template: template string @param emails: List with email values or comma separated email string @param _vars: a key/value hash of the replacement vars to use in the send. Each var may be referenced as {varname} within the template itself @param options: optional dictionary to include replyto and/or test keys @param schedule_time: do not send the email immediately, but at some point in the future. Any date recognized by PHP's strtotime function is valid, but be sure to specify timezone or use a UTC time to avoid confusion """ _vars = _vars or {} evars = evars or {} options = options or {} data = {'template': template, 'email': ','.join(emails) if isinstance(emails, list) else emails, 'vars': _vars.copy(), 'evars': evars.copy(), 'options': options.copy()} if schedule_time is not None: data['schedule_time'] = schedule_time return self.api_post('send', data)
['def', 'multi_send', '(', 'self', ',', 'template', ',', 'emails', ',', '_vars', '=', 'None', ',', 'evars', '=', 'None', ',', 'schedule_time', '=', 'None', ',', 'options', '=', 'None', ')', ':', '_vars', '=', '_vars', 'or', '{', '}', 'evars', '=', 'evars', 'or', '{', '}', 'options', '=', 'options', 'or', '{', '}', 'data', '=', '{', "'template'", ':', 'template', ',', "'email'", ':', "','", '.', 'join', '(', 'emails', ')', 'if', 'isinstance', '(', 'emails', ',', 'list', ')', 'else', 'emails', ',', "'vars'", ':', '_vars', '.', 'copy', '(', ')', ',', "'evars'", ':', 'evars', '.', 'copy', '(', ')', ',', "'options'", ':', 'options', '.', 'copy', '(', ')', '}', 'if', 'schedule_time', 'is', 'not', 'None', ':', 'data', '[', "'schedule_time'", ']', '=', 'schedule_time', 'return', 'self', '.', 'api_post', '(', "'send'", ',', 'data', ')']
Remotely send an email template to multiple email addresses. http://docs.sailthru.com/api/send @param template: template string @param emails: List with email values or comma separated email string @param _vars: a key/value hash of the replacement vars to use in the send. Each var may be referenced as {varname} within the template itself @param options: optional dictionary to include replyto and/or test keys @param schedule_time: do not send the email immediately, but at some point in the future. Any date recognized by PHP's strtotime function is valid, but be sure to specify timezone or use a UTC time to avoid confusion
['Remotely', 'send', 'an', 'email', 'template', 'to', 'multiple', 'email', 'addresses', '.', 'http', ':', '//', 'docs', '.', 'sailthru', '.', 'com', '/', 'api', '/', 'send']
train
https://github.com/sailthru/sailthru-python-client/blob/22aa39ba0c5bddd7b8743e24ada331128c0f4f54/sailthru/sailthru_client.py#L88-L108
3,684
cqparts/cqparts
src/cqparts_template/catalogue/scripts/build.py
_relative_path_to
def _relative_path_to(path_list, filename): """Get a neat relative path to files relative to the CWD""" return os.path.join( os.path.relpath(os.path.join(*path_list), os.getcwd()), filename )
python
def _relative_path_to(path_list, filename): """Get a neat relative path to files relative to the CWD""" return os.path.join( os.path.relpath(os.path.join(*path_list), os.getcwd()), filename )
['def', '_relative_path_to', '(', 'path_list', ',', 'filename', ')', ':', 'return', 'os', '.', 'path', '.', 'join', '(', 'os', '.', 'path', '.', 'relpath', '(', 'os', '.', 'path', '.', 'join', '(', '*', 'path_list', ')', ',', 'os', '.', 'getcwd', '(', ')', ')', ',', 'filename', ')']
Get a neat relative path to files relative to the CWD
['Get', 'a', 'neat', 'relative', 'path', 'to', 'files', 'relative', 'to', 'the', 'CWD']
train
https://github.com/cqparts/cqparts/blob/018e87e14c2c4d1d40b4bfe6a7e22bcf9baf0a53/src/cqparts_template/catalogue/scripts/build.py#L21-L26
3,685
pyvisa/pyvisa
pyvisa/resources/resource.py
Resource.lock_context
def lock_context(self, timeout='default', requested_key='exclusive'): """A context that locks :param timeout: Absolute time period (in milliseconds) that a resource waits to get unlocked by the locking session before returning an error. (Defaults to self.timeout) :param requested_key: When using default of 'exclusive' the lock is an exclusive lock. Otherwise it is the access key for the shared lock or None to generate a new shared access key. The returned context is the access_key if applicable. """ if requested_key == 'exclusive': self.lock_excl(timeout) access_key = None else: access_key = self.lock(timeout, requested_key) try: yield access_key finally: self.unlock()
python
def lock_context(self, timeout='default', requested_key='exclusive'): """A context that locks :param timeout: Absolute time period (in milliseconds) that a resource waits to get unlocked by the locking session before returning an error. (Defaults to self.timeout) :param requested_key: When using default of 'exclusive' the lock is an exclusive lock. Otherwise it is the access key for the shared lock or None to generate a new shared access key. The returned context is the access_key if applicable. """ if requested_key == 'exclusive': self.lock_excl(timeout) access_key = None else: access_key = self.lock(timeout, requested_key) try: yield access_key finally: self.unlock()
['def', 'lock_context', '(', 'self', ',', 'timeout', '=', "'default'", ',', 'requested_key', '=', "'exclusive'", ')', ':', 'if', 'requested_key', '==', "'exclusive'", ':', 'self', '.', 'lock_excl', '(', 'timeout', ')', 'access_key', '=', 'None', 'else', ':', 'access_key', '=', 'self', '.', 'lock', '(', 'timeout', ',', 'requested_key', ')', 'try', ':', 'yield', 'access_key', 'finally', ':', 'self', '.', 'unlock', '(', ')']
A context that locks :param timeout: Absolute time period (in milliseconds) that a resource waits to get unlocked by the locking session before returning an error. (Defaults to self.timeout) :param requested_key: When using default of 'exclusive' the lock is an exclusive lock. Otherwise it is the access key for the shared lock or None to generate a new shared access key. The returned context is the access_key if applicable.
['A', 'context', 'that', 'locks']
train
https://github.com/pyvisa/pyvisa/blob/b8b2d4371e1f00782856aa9176ff1ced6bcb3798/pyvisa/resources/resource.py#L385-L407
3,686
joeyespo/grip
grip/renderers.py
OfflineRenderer.render
def render(self, text, auth=None): """ Renders the specified markdown content and embedded styles. """ if markdown is None: import markdown if UrlizeExtension is None: from .mdx_urlize import UrlizeExtension return markdown.markdown(text, extensions=[ 'fenced_code', 'codehilite(css_class=highlight)', 'toc', 'tables', 'sane_lists', UrlizeExtension(), ])
python
def render(self, text, auth=None): """ Renders the specified markdown content and embedded styles. """ if markdown is None: import markdown if UrlizeExtension is None: from .mdx_urlize import UrlizeExtension return markdown.markdown(text, extensions=[ 'fenced_code', 'codehilite(css_class=highlight)', 'toc', 'tables', 'sane_lists', UrlizeExtension(), ])
['def', 'render', '(', 'self', ',', 'text', ',', 'auth', '=', 'None', ')', ':', 'if', 'markdown', 'is', 'None', ':', 'import', 'markdown', 'if', 'UrlizeExtension', 'is', 'None', ':', 'from', '.', 'mdx_urlize', 'import', 'UrlizeExtension', 'return', 'markdown', '.', 'markdown', '(', 'text', ',', 'extensions', '=', '[', "'fenced_code'", ',', "'codehilite(css_class=highlight)'", ',', "'toc'", ',', "'tables'", ',', "'sane_lists'", ',', 'UrlizeExtension', '(', ')', ',', ']', ')']
Renders the specified markdown content and embedded styles.
['Renders', 'the', 'specified', 'markdown', 'content', 'and', 'embedded', 'styles', '.']
train
https://github.com/joeyespo/grip/blob/ce933ccc4ca8e0d3718f271c59bd530a4518bf63/grip/renderers.py#L95-L110
3,687
rameshg87/pyremotevbox
pyremotevbox/ZSI/wstools/c14n.py
_utilized
def _utilized(n, node, other_attrs, unsuppressedPrefixes): '''_utilized(n, node, other_attrs, unsuppressedPrefixes) -> boolean Return true if that nodespace is utilized within the node''' if n.startswith('xmlns:'): n = n[6:] elif n.startswith('xmlns'): n = n[5:] if (n=="" and node.prefix in ["#default", None]) or \ n == node.prefix or n in unsuppressedPrefixes: return 1 for attr in other_attrs: if n == attr.prefix: return 1 # For exclusive need to look at attributes if unsuppressedPrefixes is not None: for attr in _attrs(node): if n == attr.prefix: return 1 return 0
python
def _utilized(n, node, other_attrs, unsuppressedPrefixes): '''_utilized(n, node, other_attrs, unsuppressedPrefixes) -> boolean Return true if that nodespace is utilized within the node''' if n.startswith('xmlns:'): n = n[6:] elif n.startswith('xmlns'): n = n[5:] if (n=="" and node.prefix in ["#default", None]) or \ n == node.prefix or n in unsuppressedPrefixes: return 1 for attr in other_attrs: if n == attr.prefix: return 1 # For exclusive need to look at attributes if unsuppressedPrefixes is not None: for attr in _attrs(node): if n == attr.prefix: return 1 return 0
['def', '_utilized', '(', 'n', ',', 'node', ',', 'other_attrs', ',', 'unsuppressedPrefixes', ')', ':', 'if', 'n', '.', 'startswith', '(', "'xmlns:'", ')', ':', 'n', '=', 'n', '[', '6', ':', ']', 'elif', 'n', '.', 'startswith', '(', "'xmlns'", ')', ':', 'n', '=', 'n', '[', '5', ':', ']', 'if', '(', 'n', '==', '""', 'and', 'node', '.', 'prefix', 'in', '[', '"#default"', ',', 'None', ']', ')', 'or', 'n', '==', 'node', '.', 'prefix', 'or', 'n', 'in', 'unsuppressedPrefixes', ':', 'return', '1', 'for', 'attr', 'in', 'other_attrs', ':', 'if', 'n', '==', 'attr', '.', 'prefix', ':', 'return', '1', '# For exclusive need to look at attributes', 'if', 'unsuppressedPrefixes', 'is', 'not', 'None', ':', 'for', 'attr', 'in', '_attrs', '(', 'node', ')', ':', 'if', 'n', '==', 'attr', '.', 'prefix', ':', 'return', '1', 'return', '0']
_utilized(n, node, other_attrs, unsuppressedPrefixes) -> boolean Return true if that nodespace is utilized within the node
['_utilized', '(', 'n', 'node', 'other_attrs', 'unsuppressedPrefixes', ')', '-', '>', 'boolean', 'Return', 'true', 'if', 'that', 'nodespace', 'is', 'utilized', 'within', 'the', 'node']
train
https://github.com/rameshg87/pyremotevbox/blob/123dffff27da57c8faa3ac1dd4c68b1cf4558b1a/pyremotevbox/ZSI/wstools/c14n.py#L91-L108
3,688
EventTeam/beliefs
src/beliefs/cells/colors.py
RGBColorCell.from_name
def from_name(clz, name): """ Instantiates the object from a known name """ if isinstance(name, list) and "green" in name: name = "teal" assert name in COLOR_NAMES, 'Unknown color name' r, b, g = COLOR_NAMES[name] return clz(r, b, g)
python
def from_name(clz, name): """ Instantiates the object from a known name """ if isinstance(name, list) and "green" in name: name = "teal" assert name in COLOR_NAMES, 'Unknown color name' r, b, g = COLOR_NAMES[name] return clz(r, b, g)
['def', 'from_name', '(', 'clz', ',', 'name', ')', ':', 'if', 'isinstance', '(', 'name', ',', 'list', ')', 'and', '"green"', 'in', 'name', ':', 'name', '=', '"teal"', 'assert', 'name', 'in', 'COLOR_NAMES', ',', "'Unknown color name'", 'r', ',', 'b', ',', 'g', '=', 'COLOR_NAMES', '[', 'name', ']', 'return', 'clz', '(', 'r', ',', 'b', ',', 'g', ')']
Instantiates the object from a known name
['Instantiates', 'the', 'object', 'from', 'a', 'known', 'name']
train
https://github.com/EventTeam/beliefs/blob/c07d22b61bebeede74a72800030dde770bf64208/src/beliefs/cells/colors.py#L27-L35
3,689
ultrabug/py3status
py3status/command.py
CommandServer.run
def run(self): """ Main thread listen to socket and send any commands to the CommandRunner. """ while True: try: data = None # Wait for a connection if self.debug: self.py3_wrapper.log("waiting for a connection") connection, client_address = self.sock.accept() try: if self.debug: self.py3_wrapper.log("connection from") data = connection.recv(MAX_SIZE) if data: data = json.loads(data.decode("utf-8")) if self.debug: self.py3_wrapper.log(u"received %s" % data) self.command_runner.run_command(data) finally: # Clean up the connection connection.close() except Exception: if data: self.py3_wrapper.log("Command error") self.py3_wrapper.log(data) self.py3_wrapper.report_exception("command failed")
python
def run(self): """ Main thread listen to socket and send any commands to the CommandRunner. """ while True: try: data = None # Wait for a connection if self.debug: self.py3_wrapper.log("waiting for a connection") connection, client_address = self.sock.accept() try: if self.debug: self.py3_wrapper.log("connection from") data = connection.recv(MAX_SIZE) if data: data = json.loads(data.decode("utf-8")) if self.debug: self.py3_wrapper.log(u"received %s" % data) self.command_runner.run_command(data) finally: # Clean up the connection connection.close() except Exception: if data: self.py3_wrapper.log("Command error") self.py3_wrapper.log(data) self.py3_wrapper.report_exception("command failed")
['def', 'run', '(', 'self', ')', ':', 'while', 'True', ':', 'try', ':', 'data', '=', 'None', '# Wait for a connection', 'if', 'self', '.', 'debug', ':', 'self', '.', 'py3_wrapper', '.', 'log', '(', '"waiting for a connection"', ')', 'connection', ',', 'client_address', '=', 'self', '.', 'sock', '.', 'accept', '(', ')', 'try', ':', 'if', 'self', '.', 'debug', ':', 'self', '.', 'py3_wrapper', '.', 'log', '(', '"connection from"', ')', 'data', '=', 'connection', '.', 'recv', '(', 'MAX_SIZE', ')', 'if', 'data', ':', 'data', '=', 'json', '.', 'loads', '(', 'data', '.', 'decode', '(', '"utf-8"', ')', ')', 'if', 'self', '.', 'debug', ':', 'self', '.', 'py3_wrapper', '.', 'log', '(', 'u"received %s"', '%', 'data', ')', 'self', '.', 'command_runner', '.', 'run_command', '(', 'data', ')', 'finally', ':', '# Clean up the connection', 'connection', '.', 'close', '(', ')', 'except', 'Exception', ':', 'if', 'data', ':', 'self', '.', 'py3_wrapper', '.', 'log', '(', '"Command error"', ')', 'self', '.', 'py3_wrapper', '.', 'log', '(', 'data', ')', 'self', '.', 'py3_wrapper', '.', 'report_exception', '(', '"command failed"', ')']
Main thread listen to socket and send any commands to the CommandRunner.
['Main', 'thread', 'listen', 'to', 'socket', 'and', 'send', 'any', 'commands', 'to', 'the', 'CommandRunner', '.']
train
https://github.com/ultrabug/py3status/blob/4c105f1b44f7384ca4f7da5f821a47e468c7dee2/py3status/command.py#L264-L294
3,690
RockFeng0/rtsf
rtsf/p_report.py
HtmlReporter.add_report_data
def add_report_data(list_all=[], module_name="TestModule", **kwargs): ''' add report data to a list @param list_all: a list which save the report data @param module_name: test set name or test module name @param kwargs: such as case_name: testcase name status: test result, Pass or Fail resp_tester: responsible tester who write this case tester: tester who execute the test start_at: tester run this case at time end_at: tester stop this case at time ''' start_at = kwargs.get("start_at") case_name = kwargs.get("case_name","TestCase") raw_case_name = kwargs.get("raw_case_name","TestCase") exec_date_time = time.localtime(start_at) execdate = time.strftime("%Y-%m-%d",exec_date_time) exectime = time.strftime("%H:%M:%S",exec_date_time) _case_report = { 'resp_tester': kwargs.get("resp_tester","administrator"), 'tester': kwargs.get("tester","administrator"), 'case_name': case_name, 'raw_case_name': raw_case_name, 'status': kwargs.get("status","Pass"), 'exec_date': execdate, 'exec_time': exectime, 'start_at': start_at, 'end_at': kwargs.get("end_at"), } for module in list_all: if module_name != module["Name"]: continue for case in module["TestCases"]: if raw_case_name == case["raw_case_name"]: case.update(_case_report) return list_all module["TestCases"].append(_case_report) return list_all list_all.append({"Name": module_name, "TestCases": [_case_report]}) return list_all
python
def add_report_data(list_all=[], module_name="TestModule", **kwargs): ''' add report data to a list @param list_all: a list which save the report data @param module_name: test set name or test module name @param kwargs: such as case_name: testcase name status: test result, Pass or Fail resp_tester: responsible tester who write this case tester: tester who execute the test start_at: tester run this case at time end_at: tester stop this case at time ''' start_at = kwargs.get("start_at") case_name = kwargs.get("case_name","TestCase") raw_case_name = kwargs.get("raw_case_name","TestCase") exec_date_time = time.localtime(start_at) execdate = time.strftime("%Y-%m-%d",exec_date_time) exectime = time.strftime("%H:%M:%S",exec_date_time) _case_report = { 'resp_tester': kwargs.get("resp_tester","administrator"), 'tester': kwargs.get("tester","administrator"), 'case_name': case_name, 'raw_case_name': raw_case_name, 'status': kwargs.get("status","Pass"), 'exec_date': execdate, 'exec_time': exectime, 'start_at': start_at, 'end_at': kwargs.get("end_at"), } for module in list_all: if module_name != module["Name"]: continue for case in module["TestCases"]: if raw_case_name == case["raw_case_name"]: case.update(_case_report) return list_all module["TestCases"].append(_case_report) return list_all list_all.append({"Name": module_name, "TestCases": [_case_report]}) return list_all
['def', 'add_report_data', '(', 'list_all', '=', '[', ']', ',', 'module_name', '=', '"TestModule"', ',', '*', '*', 'kwargs', ')', ':', 'start_at', '=', 'kwargs', '.', 'get', '(', '"start_at"', ')', 'case_name', '=', 'kwargs', '.', 'get', '(', '"case_name"', ',', '"TestCase"', ')', 'raw_case_name', '=', 'kwargs', '.', 'get', '(', '"raw_case_name"', ',', '"TestCase"', ')', 'exec_date_time', '=', 'time', '.', 'localtime', '(', 'start_at', ')', 'execdate', '=', 'time', '.', 'strftime', '(', '"%Y-%m-%d"', ',', 'exec_date_time', ')', 'exectime', '=', 'time', '.', 'strftime', '(', '"%H:%M:%S"', ',', 'exec_date_time', ')', '_case_report', '=', '{', "'resp_tester'", ':', 'kwargs', '.', 'get', '(', '"resp_tester"', ',', '"administrator"', ')', ',', "'tester'", ':', 'kwargs', '.', 'get', '(', '"tester"', ',', '"administrator"', ')', ',', "'case_name'", ':', 'case_name', ',', "'raw_case_name'", ':', 'raw_case_name', ',', "'status'", ':', 'kwargs', '.', 'get', '(', '"status"', ',', '"Pass"', ')', ',', "'exec_date'", ':', 'execdate', ',', "'exec_time'", ':', 'exectime', ',', "'start_at'", ':', 'start_at', ',', "'end_at'", ':', 'kwargs', '.', 'get', '(', '"end_at"', ')', ',', '}', 'for', 'module', 'in', 'list_all', ':', 'if', 'module_name', '!=', 'module', '[', '"Name"', ']', ':', 'continue', 'for', 'case', 'in', 'module', '[', '"TestCases"', ']', ':', 'if', 'raw_case_name', '==', 'case', '[', '"raw_case_name"', ']', ':', 'case', '.', 'update', '(', '_case_report', ')', 'return', 'list_all', 'module', '[', '"TestCases"', ']', '.', 'append', '(', '_case_report', ')', 'return', 'list_all', 'list_all', '.', 'append', '(', '{', '"Name"', ':', 'module_name', ',', '"TestCases"', ':', '[', '_case_report', ']', '}', ')', 'return', 'list_all']
add report data to a list @param list_all: a list which save the report data @param module_name: test set name or test module name @param kwargs: such as case_name: testcase name status: test result, Pass or Fail resp_tester: responsible tester who write this case tester: tester who execute the test start_at: tester run this case at time end_at: tester stop this case at time
['add', 'report', 'data', 'to', 'a', 'list']
train
https://github.com/RockFeng0/rtsf/blob/fbc0d57edaeca86418af3942472fcc6d3e9ce591/rtsf/p_report.py#L196-L241
3,691
tariqdaouda/rabaDB
rabaDB/Raba.py
RabaListPupa._attachToObject
def _attachToObject(self, anchorObj, relationName) : "dummy fct for compatibility reasons, a RabaListPupa is attached by default" #MutableSequence.__getattribute__(self, "develop")() self.develop() self._attachToObject(anchorObj, relationName)
python
def _attachToObject(self, anchorObj, relationName) : "dummy fct for compatibility reasons, a RabaListPupa is attached by default" #MutableSequence.__getattribute__(self, "develop")() self.develop() self._attachToObject(anchorObj, relationName)
['def', '_attachToObject', '(', 'self', ',', 'anchorObj', ',', 'relationName', ')', ':', '#MutableSequence.__getattribute__(self, "develop")()', 'self', '.', 'develop', '(', ')', 'self', '.', '_attachToObject', '(', 'anchorObj', ',', 'relationName', ')']
dummy fct for compatibility reasons, a RabaListPupa is attached by default
['dummy', 'fct', 'for', 'compatibility', 'reasons', 'a', 'RabaListPupa', 'is', 'attached', 'by', 'default']
train
https://github.com/tariqdaouda/rabaDB/blob/42e0d6ee65149ae4f1e4c380cc695a9e7d2d1bbc/rabaDB/Raba.py#L739-L743
3,692
ga4gh/ga4gh-server
ga4gh/server/backend.py
Backend.runSearchVariantAnnotationSets
def runSearchVariantAnnotationSets(self, request): """ Runs the specified SearchVariantAnnotationSetsRequest. """ return self.runSearchRequest( request, protocol.SearchVariantAnnotationSetsRequest, protocol.SearchVariantAnnotationSetsResponse, self.variantAnnotationSetsGenerator)
python
def runSearchVariantAnnotationSets(self, request): """ Runs the specified SearchVariantAnnotationSetsRequest. """ return self.runSearchRequest( request, protocol.SearchVariantAnnotationSetsRequest, protocol.SearchVariantAnnotationSetsResponse, self.variantAnnotationSetsGenerator)
['def', 'runSearchVariantAnnotationSets', '(', 'self', ',', 'request', ')', ':', 'return', 'self', '.', 'runSearchRequest', '(', 'request', ',', 'protocol', '.', 'SearchVariantAnnotationSetsRequest', ',', 'protocol', '.', 'SearchVariantAnnotationSetsResponse', ',', 'self', '.', 'variantAnnotationSetsGenerator', ')']
Runs the specified SearchVariantAnnotationSetsRequest.
['Runs', 'the', 'specified', 'SearchVariantAnnotationSetsRequest', '.']
train
https://github.com/ga4gh/ga4gh-server/blob/1aa18922ef136db8604f6f098cb1732cba6f2a76/ga4gh/server/backend.py#L946-L953
3,693
automl/HpBandSter
hpbandster/examples/example_5_pytorch_worker.py
PyTorchWorker.compute
def compute(self, config, budget, working_directory, *args, **kwargs): """ Simple example for a compute function using a feed forward network. It is trained on the MNIST dataset. The input parameter "config" (dictionary) contains the sampled configurations passed by the bohb optimizer """ # device = torch.device('cpu') model = MNISTConvNet(num_conv_layers=config['num_conv_layers'], num_filters_1=config['num_filters_1'], num_filters_2=config['num_filters_2'] if 'num_filters_2' in config else None, num_filters_3=config['num_filters_3'] if 'num_filters_3' in config else None, dropout_rate=config['dropout_rate'], num_fc_units=config['num_fc_units'], kernel_size=3 ) criterion = torch.nn.CrossEntropyLoss() if config['optimizer'] == 'Adam': optimizer = torch.optim.Adam(model.parameters(), lr=config['lr']) else: optimizer = torch.optim.SGD(model.parameters(), lr=config['lr'], momentum=config['sgd_momentum']) for epoch in range(int(budget)): loss = 0 model.train() for i, (x, y) in enumerate(self.train_loader): optimizer.zero_grad() output = model(x) loss = F.nll_loss(output, y) loss.backward() optimizer.step() train_accuracy = self.evaluate_accuracy(model, self.train_loader) validation_accuracy = self.evaluate_accuracy(model, self.validation_loader) test_accuracy = self.evaluate_accuracy(model, self.test_loader) return ({ 'loss': 1-validation_accuracy, # remember: HpBandSter always minimizes! 'info': { 'test accuracy': test_accuracy, 'train accuracy': train_accuracy, 'validation accuracy': validation_accuracy, 'number of parameters': model.number_of_parameters(), } })
python
def compute(self, config, budget, working_directory, *args, **kwargs): """ Simple example for a compute function using a feed forward network. It is trained on the MNIST dataset. The input parameter "config" (dictionary) contains the sampled configurations passed by the bohb optimizer """ # device = torch.device('cpu') model = MNISTConvNet(num_conv_layers=config['num_conv_layers'], num_filters_1=config['num_filters_1'], num_filters_2=config['num_filters_2'] if 'num_filters_2' in config else None, num_filters_3=config['num_filters_3'] if 'num_filters_3' in config else None, dropout_rate=config['dropout_rate'], num_fc_units=config['num_fc_units'], kernel_size=3 ) criterion = torch.nn.CrossEntropyLoss() if config['optimizer'] == 'Adam': optimizer = torch.optim.Adam(model.parameters(), lr=config['lr']) else: optimizer = torch.optim.SGD(model.parameters(), lr=config['lr'], momentum=config['sgd_momentum']) for epoch in range(int(budget)): loss = 0 model.train() for i, (x, y) in enumerate(self.train_loader): optimizer.zero_grad() output = model(x) loss = F.nll_loss(output, y) loss.backward() optimizer.step() train_accuracy = self.evaluate_accuracy(model, self.train_loader) validation_accuracy = self.evaluate_accuracy(model, self.validation_loader) test_accuracy = self.evaluate_accuracy(model, self.test_loader) return ({ 'loss': 1-validation_accuracy, # remember: HpBandSter always minimizes! 'info': { 'test accuracy': test_accuracy, 'train accuracy': train_accuracy, 'validation accuracy': validation_accuracy, 'number of parameters': model.number_of_parameters(), } })
['def', 'compute', '(', 'self', ',', 'config', ',', 'budget', ',', 'working_directory', ',', '*', 'args', ',', '*', '*', 'kwargs', ')', ':', "# device = torch.device('cpu')", 'model', '=', 'MNISTConvNet', '(', 'num_conv_layers', '=', 'config', '[', "'num_conv_layers'", ']', ',', 'num_filters_1', '=', 'config', '[', "'num_filters_1'", ']', ',', 'num_filters_2', '=', 'config', '[', "'num_filters_2'", ']', 'if', "'num_filters_2'", 'in', 'config', 'else', 'None', ',', 'num_filters_3', '=', 'config', '[', "'num_filters_3'", ']', 'if', "'num_filters_3'", 'in', 'config', 'else', 'None', ',', 'dropout_rate', '=', 'config', '[', "'dropout_rate'", ']', ',', 'num_fc_units', '=', 'config', '[', "'num_fc_units'", ']', ',', 'kernel_size', '=', '3', ')', 'criterion', '=', 'torch', '.', 'nn', '.', 'CrossEntropyLoss', '(', ')', 'if', 'config', '[', "'optimizer'", ']', '==', "'Adam'", ':', 'optimizer', '=', 'torch', '.', 'optim', '.', 'Adam', '(', 'model', '.', 'parameters', '(', ')', ',', 'lr', '=', 'config', '[', "'lr'", ']', ')', 'else', ':', 'optimizer', '=', 'torch', '.', 'optim', '.', 'SGD', '(', 'model', '.', 'parameters', '(', ')', ',', 'lr', '=', 'config', '[', "'lr'", ']', ',', 'momentum', '=', 'config', '[', "'sgd_momentum'", ']', ')', 'for', 'epoch', 'in', 'range', '(', 'int', '(', 'budget', ')', ')', ':', 'loss', '=', '0', 'model', '.', 'train', '(', ')', 'for', 'i', ',', '(', 'x', ',', 'y', ')', 'in', 'enumerate', '(', 'self', '.', 'train_loader', ')', ':', 'optimizer', '.', 'zero_grad', '(', ')', 'output', '=', 'model', '(', 'x', ')', 'loss', '=', 'F', '.', 'nll_loss', '(', 'output', ',', 'y', ')', 'loss', '.', 'backward', '(', ')', 'optimizer', '.', 'step', '(', ')', 'train_accuracy', '=', 'self', '.', 'evaluate_accuracy', '(', 'model', ',', 'self', '.', 'train_loader', ')', 'validation_accuracy', '=', 'self', '.', 'evaluate_accuracy', '(', 'model', ',', 'self', '.', 'validation_loader', ')', 'test_accuracy', '=', 'self', '.', 'evaluate_accuracy', '(', 'model', ',', 'self', '.', 'test_loader', ')', 'return', '(', '{', "'loss'", ':', '1', '-', 'validation_accuracy', ',', '# remember: HpBandSter always minimizes!', "'info'", ':', '{', "'test accuracy'", ':', 'test_accuracy', ',', "'train accuracy'", ':', 'train_accuracy', ',', "'validation accuracy'", ':', 'validation_accuracy', ',', "'number of parameters'", ':', 'model', '.', 'number_of_parameters', '(', ')', ',', '}', '}', ')']
Simple example for a compute function using a feed forward network. It is trained on the MNIST dataset. The input parameter "config" (dictionary) contains the sampled configurations passed by the bohb optimizer
['Simple', 'example', 'for', 'a', 'compute', 'function', 'using', 'a', 'feed', 'forward', 'network', '.', 'It', 'is', 'trained', 'on', 'the', 'MNIST', 'dataset', '.', 'The', 'input', 'parameter', 'config', '(', 'dictionary', ')', 'contains', 'the', 'sampled', 'configurations', 'passed', 'by', 'the', 'bohb', 'optimizer']
train
https://github.com/automl/HpBandSter/blob/841db4b827f342e5eb7f725723ea6461ac52d45a/hpbandster/examples/example_5_pytorch_worker.py#L99-L144
3,694
ArabellaTech/django-basic-cms
basic_cms/templatetags/pages_tags.py
show_slug_with_level
def show_slug_with_level(context, page, lang=None, fallback=True): """Display slug with level by language.""" if not lang: lang = context.get('lang', pages_settings.PAGE_DEFAULT_LANGUAGE) page = get_page_from_string_or_id(page, lang) if not page: return '' return {'content': page.slug_with_level(lang)}
python
def show_slug_with_level(context, page, lang=None, fallback=True): """Display slug with level by language.""" if not lang: lang = context.get('lang', pages_settings.PAGE_DEFAULT_LANGUAGE) page = get_page_from_string_or_id(page, lang) if not page: return '' return {'content': page.slug_with_level(lang)}
['def', 'show_slug_with_level', '(', 'context', ',', 'page', ',', 'lang', '=', 'None', ',', 'fallback', '=', 'True', ')', ':', 'if', 'not', 'lang', ':', 'lang', '=', 'context', '.', 'get', '(', "'lang'", ',', 'pages_settings', '.', 'PAGE_DEFAULT_LANGUAGE', ')', 'page', '=', 'get_page_from_string_or_id', '(', 'page', ',', 'lang', ')', 'if', 'not', 'page', ':', 'return', "''", 'return', '{', "'content'", ':', 'page', '.', 'slug_with_level', '(', 'lang', ')', '}']
Display slug with level by language.
['Display', 'slug', 'with', 'level', 'by', 'language', '.']
train
https://github.com/ArabellaTech/django-basic-cms/blob/863f3c6098606f663994930cd8e7723ad0c07caf/basic_cms/templatetags/pages_tags.py#L174-L183
3,695
tkem/cachetools
cachetools/func.py
lfu_cache
def lfu_cache(maxsize=128, typed=False): """Decorator to wrap a function with a memoizing callable that saves up to `maxsize` results based on a Least Frequently Used (LFU) algorithm. """ if maxsize is None: return _cache(_UnboundCache(), typed) else: return _cache(LFUCache(maxsize), typed)
python
def lfu_cache(maxsize=128, typed=False): """Decorator to wrap a function with a memoizing callable that saves up to `maxsize` results based on a Least Frequently Used (LFU) algorithm. """ if maxsize is None: return _cache(_UnboundCache(), typed) else: return _cache(LFUCache(maxsize), typed)
['def', 'lfu_cache', '(', 'maxsize', '=', '128', ',', 'typed', '=', 'False', ')', ':', 'if', 'maxsize', 'is', 'None', ':', 'return', '_cache', '(', '_UnboundCache', '(', ')', ',', 'typed', ')', 'else', ':', 'return', '_cache', '(', 'LFUCache', '(', 'maxsize', ')', ',', 'typed', ')']
Decorator to wrap a function with a memoizing callable that saves up to `maxsize` results based on a Least Frequently Used (LFU) algorithm.
['Decorator', 'to', 'wrap', 'a', 'function', 'with', 'a', 'memoizing', 'callable', 'that', 'saves', 'up', 'to', 'maxsize', 'results', 'based', 'on', 'a', 'Least', 'Frequently', 'Used', '(', 'LFU', ')', 'algorithm', '.']
train
https://github.com/tkem/cachetools/blob/1b67cddadccb89993e9d2567bac22e57e2b2b373/cachetools/func.py#L96-L105
3,696
patrickayoup/md2remark
md2remark/main.py
parse_cl_args
def parse_cl_args(arg_vector): '''Parses the command line arguments''' parser = argparse.ArgumentParser(description='Compiles markdown files into html files for remark.js') parser.add_argument('source', metavar='source', help='the source to compile. If a directory is provided, all markdown files in that directory are compiled. Output is saved in the current working directory under a md2remark_build subdirectory.') return parser.parse_args(arg_vector)
python
def parse_cl_args(arg_vector): '''Parses the command line arguments''' parser = argparse.ArgumentParser(description='Compiles markdown files into html files for remark.js') parser.add_argument('source', metavar='source', help='the source to compile. If a directory is provided, all markdown files in that directory are compiled. Output is saved in the current working directory under a md2remark_build subdirectory.') return parser.parse_args(arg_vector)
['def', 'parse_cl_args', '(', 'arg_vector', ')', ':', 'parser', '=', 'argparse', '.', 'ArgumentParser', '(', 'description', '=', "'Compiles markdown files into html files for remark.js'", ')', 'parser', '.', 'add_argument', '(', "'source'", ',', 'metavar', '=', "'source'", ',', 'help', '=', "'the source to compile. If a directory is provided, all markdown files in that directory are compiled. Output is saved in the current working directory under a md2remark_build subdirectory.'", ')', 'return', 'parser', '.', 'parse_args', '(', 'arg_vector', ')']
Parses the command line arguments
['Parses', 'the', 'command', 'line', 'arguments']
train
https://github.com/patrickayoup/md2remark/blob/04e66462046cd123c5b1810454d949c3a05bc057/md2remark/main.py#L38-L43
3,697
cebel/pyuniprot
src/pyuniprot/manager/database.py
DbManager.db_import_xml
def db_import_xml(self, url=None, force_download=False, taxids=None, silent=False): """Updates the CTD database 1. downloads gzipped XML 2. drops all tables in database 3. creates all tables in database 4. import XML 5. close session :param Optional[list[int]] taxids: list of NCBI taxonomy identifier :param str url: iterable of URL strings :param bool force_download: force method to download :param bool silent: """ log.info('Update UniProt database from {}'.format(url)) self._drop_tables() xml_gzipped_file_path, version_file_path = self.download(url, force_download) self._create_tables() self.import_version(version_file_path) self.import_xml(xml_gzipped_file_path, taxids, silent) self.session.close()
python
def db_import_xml(self, url=None, force_download=False, taxids=None, silent=False): """Updates the CTD database 1. downloads gzipped XML 2. drops all tables in database 3. creates all tables in database 4. import XML 5. close session :param Optional[list[int]] taxids: list of NCBI taxonomy identifier :param str url: iterable of URL strings :param bool force_download: force method to download :param bool silent: """ log.info('Update UniProt database from {}'.format(url)) self._drop_tables() xml_gzipped_file_path, version_file_path = self.download(url, force_download) self._create_tables() self.import_version(version_file_path) self.import_xml(xml_gzipped_file_path, taxids, silent) self.session.close()
['def', 'db_import_xml', '(', 'self', ',', 'url', '=', 'None', ',', 'force_download', '=', 'False', ',', 'taxids', '=', 'None', ',', 'silent', '=', 'False', ')', ':', 'log', '.', 'info', '(', "'Update UniProt database from {}'", '.', 'format', '(', 'url', ')', ')', 'self', '.', '_drop_tables', '(', ')', 'xml_gzipped_file_path', ',', 'version_file_path', '=', 'self', '.', 'download', '(', 'url', ',', 'force_download', ')', 'self', '.', '_create_tables', '(', ')', 'self', '.', 'import_version', '(', 'version_file_path', ')', 'self', '.', 'import_xml', '(', 'xml_gzipped_file_path', ',', 'taxids', ',', 'silent', ')', 'self', '.', 'session', '.', 'close', '(', ')']
Updates the CTD database 1. downloads gzipped XML 2. drops all tables in database 3. creates all tables in database 4. import XML 5. close session :param Optional[list[int]] taxids: list of NCBI taxonomy identifier :param str url: iterable of URL strings :param bool force_download: force method to download :param bool silent:
['Updates', 'the', 'CTD', 'database', '1', '.', 'downloads', 'gzipped', 'XML', '2', '.', 'drops', 'all', 'tables', 'in', 'database', '3', '.', 'creates', 'all', 'tables', 'in', 'database', '4', '.', 'import', 'XML', '5', '.', 'close', 'session']
train
https://github.com/cebel/pyuniprot/blob/9462a6042c7c9295415a5eb589b77b27cb7c142b/src/pyuniprot/manager/database.py#L135-L156
3,698
defunkt/pystache
pystache/locator.py
Locator.find_object
def find_object(self, obj, search_dirs, file_name=None): """ Return the path to a template associated with the given object. """ if file_name is None: # TODO: should we define a make_file_name() method? template_name = self.make_template_name(obj) file_name = self.make_file_name(template_name) dir_path = self.get_object_directory(obj) if dir_path is not None: search_dirs = [dir_path] + search_dirs path = self._find_path_required(search_dirs, file_name) return path
python
def find_object(self, obj, search_dirs, file_name=None): """ Return the path to a template associated with the given object. """ if file_name is None: # TODO: should we define a make_file_name() method? template_name = self.make_template_name(obj) file_name = self.make_file_name(template_name) dir_path = self.get_object_directory(obj) if dir_path is not None: search_dirs = [dir_path] + search_dirs path = self._find_path_required(search_dirs, file_name) return path
['def', 'find_object', '(', 'self', ',', 'obj', ',', 'search_dirs', ',', 'file_name', '=', 'None', ')', ':', 'if', 'file_name', 'is', 'None', ':', '# TODO: should we define a make_file_name() method?', 'template_name', '=', 'self', '.', 'make_template_name', '(', 'obj', ')', 'file_name', '=', 'self', '.', 'make_file_name', '(', 'template_name', ')', 'dir_path', '=', 'self', '.', 'get_object_directory', '(', 'obj', ')', 'if', 'dir_path', 'is', 'not', 'None', ':', 'search_dirs', '=', '[', 'dir_path', ']', '+', 'search_dirs', 'path', '=', 'self', '.', '_find_path_required', '(', 'search_dirs', ',', 'file_name', ')', 'return', 'path']
Return the path to a template associated with the given object.
['Return', 'the', 'path', 'to', 'a', 'template', 'associated', 'with', 'the', 'given', 'object', '.']
train
https://github.com/defunkt/pystache/blob/17a5dfdcd56eb76af731d141de395a7632a905b8/pystache/locator.py#L154-L171
3,699
bharadwajyarlagadda/bingmaps
bingmaps/apiservices/trafficincidents.py
TrafficIncidentsApi.get_data
def get_data(self): """Gets data from the given url""" url = self.build_url() self.incidents_data = requests.get(url) if not self.incidents_data.status_code == 200: raise self.incidents_data.raise_for_status()
python
def get_data(self): """Gets data from the given url""" url = self.build_url() self.incidents_data = requests.get(url) if not self.incidents_data.status_code == 200: raise self.incidents_data.raise_for_status()
['def', 'get_data', '(', 'self', ')', ':', 'url', '=', 'self', '.', 'build_url', '(', ')', 'self', '.', 'incidents_data', '=', 'requests', '.', 'get', '(', 'url', ')', 'if', 'not', 'self', '.', 'incidents_data', '.', 'status_code', '==', '200', ':', 'raise', 'self', '.', 'incidents_data', '.', 'raise_for_status', '(', ')']
Gets data from the given url
['Gets', 'data', 'from', 'the', 'given', 'url']
train
https://github.com/bharadwajyarlagadda/bingmaps/blob/6bb3cdadfb121aaff96704509cedff2710a62b6d/bingmaps/apiservices/trafficincidents.py#L89-L94