response
stringlengths 1
33.1k
| instruction
stringlengths 22
582k
|
---|---|
A private function to compute the brute force periodogram result. | def _bls_slow_one(t, y, ivar, duration, oversample, use_likelihood, period):
"""A private function to compute the brute force periodogram result."""
best = (-np.inf, None)
hp = 0.5 * period
min_t = np.min(t)
for dur in duration:
# Compute the phase grid (this is set by the duration and oversample).
d_phase = dur / oversample
phase = np.arange(0, period + d_phase, d_phase)
for t0 in phase:
# Figure out which data points are in and out of transit.
m_in = np.abs((t - min_t - t0 + hp) % period - hp) < 0.5 * dur
m_out = ~m_in
# Compute the estimates of the in and out-of-transit flux.
ivar_in = np.sum(ivar[m_in])
ivar_out = np.sum(ivar[m_out])
y_in = np.sum(y[m_in] * ivar[m_in]) / ivar_in
y_out = np.sum(y[m_out] * ivar[m_out]) / ivar_out
# Use this to compute the best fit depth and uncertainty.
depth = y_out - y_in
depth_err = np.sqrt(1.0 / ivar_in + 1.0 / ivar_out)
snr = depth / depth_err
# Compute the log likelihood of this model.
loglike = -0.5 * np.sum((y_in - y[m_in]) ** 2 * ivar[m_in])
loglike += 0.5 * np.sum((y_out - y[m_in]) ** 2 * ivar[m_in])
# Choose which objective should be used for the optimization.
if use_likelihood:
objective = loglike
else:
objective = snr
# If this model is better than any before, keep it.
if depth > 0 and objective > best[0]:
best = (
objective,
(
objective,
depth,
depth_err,
dur,
(t0 + min_t) % period,
snr,
loglike,
),
)
return best[1] |
Assert that another BoxLeastSquaresResults object is consistent
This method loops over all attributes and compares the values using
:func:`~astropy.tests.helper.assert_quantity_allclose` function.
Parameters
----------
other : BoxLeastSquaresResults
The other results object to compare. | def assert_allclose_blsresults(blsresult, other, **kwargs):
"""Assert that another BoxLeastSquaresResults object is consistent
This method loops over all attributes and compares the values using
:func:`~astropy.tests.helper.assert_quantity_allclose` function.
Parameters
----------
other : BoxLeastSquaresResults
The other results object to compare.
"""
for k, v in blsresult.items():
if k not in other:
raise AssertionError(f"missing key '{k}'")
if k == "objective":
assert (
v == other[k]
), f"Mismatched objectives. Expected '{v}', got '{other[k]}'"
continue
assert_quantity_allclose(v, other[k], **kwargs) |
Compute the reference chi-square for a particular dataset.
Note: this is not valid center_data=False and fit_mean=False.
Parameters
----------
y : array-like
data values
dy : float, array, or None, optional
data uncertainties
center_data : bool
specify whether data should be pre-centered
fit_mean : bool
specify whether model should fit the mean of the data
Returns
-------
chi2_ref : float
The reference chi-square for the periodogram of this data | def compute_chi2_ref(y, dy=None, center_data=True, fit_mean=True):
"""Compute the reference chi-square for a particular dataset.
Note: this is not valid center_data=False and fit_mean=False.
Parameters
----------
y : array-like
data values
dy : float, array, or None, optional
data uncertainties
center_data : bool
specify whether data should be pre-centered
fit_mean : bool
specify whether model should fit the mean of the data
Returns
-------
chi2_ref : float
The reference chi-square for the periodogram of this data
"""
if dy is None:
dy = 1
y, dy = np.broadcast_arrays(y, dy)
w = dy**-2.0
if center_data or fit_mean:
mu = np.dot(w, y) / w.sum()
else:
mu = 0
yw = (y - mu) / dy
return np.dot(yw, yw) |
Convert power from one normalization to another.
This currently only works for standard & floating-mean models.
Parameters
----------
Z : array-like
the periodogram output
N : int
the number of data points
from_normalization, to_normalization : str
the normalization to convert from and to. Options are
['standard', 'model', 'log', 'psd']
chi2_ref : float
The reference chi-square, required for converting to or from the
psd normalization.
Returns
-------
Z_out : ndarray
The periodogram in the new normalization | def convert_normalization(Z, N, from_normalization, to_normalization, chi2_ref=None):
"""Convert power from one normalization to another.
This currently only works for standard & floating-mean models.
Parameters
----------
Z : array-like
the periodogram output
N : int
the number of data points
from_normalization, to_normalization : str
the normalization to convert from and to. Options are
['standard', 'model', 'log', 'psd']
chi2_ref : float
The reference chi-square, required for converting to or from the
psd normalization.
Returns
-------
Z_out : ndarray
The periodogram in the new normalization
"""
Z = np.asarray(Z)
from_to = (from_normalization, to_normalization)
for norm in from_to:
if norm not in NORMALIZATIONS:
raise ValueError(f"{from_normalization} is not a valid normalization")
if from_normalization == to_normalization:
return Z
if "psd" in from_to and chi2_ref is None:
raise ValueError(
"must supply reference chi^2 when converting to or from psd normalization"
)
if from_to == ("log", "standard"):
return 1 - np.exp(-Z)
elif from_to == ("standard", "log"):
return -np.log(1 - Z)
elif from_to == ("log", "model"):
return np.exp(Z) - 1
elif from_to == ("model", "log"):
return np.log(Z + 1)
elif from_to == ("model", "standard"):
return Z / (1 + Z)
elif from_to == ("standard", "model"):
return Z / (1 - Z)
elif from_normalization == "psd":
return convert_normalization(
2 / chi2_ref * Z,
N,
from_normalization="standard",
to_normalization=to_normalization,
)
elif to_normalization == "psd":
Z_standard = convert_normalization(
Z, N, from_normalization=from_normalization, to_normalization="standard"
)
return 0.5 * chi2_ref * Z_standard
else:
raise NotImplementedError(
f"conversion from '{from_normalization}' to '{to_normalization}'"
) |
Probability density function for Lomb-Scargle periodogram.
Compute the expected probability density function of the periodogram
for the null hypothesis - i.e. data consisting of Gaussian noise.
Parameters
----------
z : array-like
The periodogram value.
N : int
The number of data points from which the periodogram was computed.
normalization : {'standard', 'model', 'log', 'psd'}
The periodogram normalization.
dH, dK : int, optional
The number of parameters in the null hypothesis and the model.
Returns
-------
pdf : np.ndarray
The expected probability density function.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
All expressions used here are adapted from Table 1 of Baluev 2008 [1]_.
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008) | def pdf_single(z, N, normalization, dH=1, dK=3):
"""Probability density function for Lomb-Scargle periodogram.
Compute the expected probability density function of the periodogram
for the null hypothesis - i.e. data consisting of Gaussian noise.
Parameters
----------
z : array-like
The periodogram value.
N : int
The number of data points from which the periodogram was computed.
normalization : {'standard', 'model', 'log', 'psd'}
The periodogram normalization.
dH, dK : int, optional
The number of parameters in the null hypothesis and the model.
Returns
-------
pdf : np.ndarray
The expected probability density function.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
All expressions used here are adapted from Table 1 of Baluev 2008 [1]_.
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008)
"""
z = np.asarray(z)
if dK - dH != 2:
raise NotImplementedError("Degrees of freedom != 2")
Nk = N - dK
if normalization == "psd":
return np.exp(-z)
elif normalization == "standard":
return 0.5 * Nk * (1 - z) ** (0.5 * Nk - 1)
elif normalization == "model":
return 0.5 * Nk * (1 + z) ** (-0.5 * Nk - 1)
elif normalization == "log":
return 0.5 * Nk * np.exp(-0.5 * Nk * z)
else:
raise ValueError(f"normalization='{normalization}' is not recognized") |
Single-frequency false alarm probability for the Lomb-Scargle periodogram.
This is equal to 1 - cdf, where cdf is the cumulative distribution.
The single-frequency false alarm probability should not be confused with
the false alarm probability for the largest peak.
Parameters
----------
z : array-like
The periodogram value.
N : int
The number of data points from which the periodogram was computed.
normalization : {'standard', 'model', 'log', 'psd'}
The periodogram normalization.
dH, dK : int, optional
The number of parameters in the null hypothesis and the model.
Returns
-------
false_alarm_probability : np.ndarray
The single-frequency false alarm probability.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
All expressions used here are adapted from Table 1 of Baluev 2008 [1]_.
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008) | def fap_single(z, N, normalization, dH=1, dK=3):
"""Single-frequency false alarm probability for the Lomb-Scargle periodogram.
This is equal to 1 - cdf, where cdf is the cumulative distribution.
The single-frequency false alarm probability should not be confused with
the false alarm probability for the largest peak.
Parameters
----------
z : array-like
The periodogram value.
N : int
The number of data points from which the periodogram was computed.
normalization : {'standard', 'model', 'log', 'psd'}
The periodogram normalization.
dH, dK : int, optional
The number of parameters in the null hypothesis and the model.
Returns
-------
false_alarm_probability : np.ndarray
The single-frequency false alarm probability.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
All expressions used here are adapted from Table 1 of Baluev 2008 [1]_.
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008)
"""
z = np.asarray(z)
if dK - dH != 2:
raise NotImplementedError("Degrees of freedom != 2")
Nk = N - dK
if normalization == "psd":
return np.exp(-z)
elif normalization == "standard":
return (1 - z) ** (0.5 * Nk)
elif normalization == "model":
return (1 + z) ** (-0.5 * Nk)
elif normalization == "log":
return np.exp(-0.5 * Nk * z)
else:
raise ValueError(f"normalization='{normalization}' is not recognized") |
Single-frequency inverse false alarm probability.
This function computes the periodogram value associated with the specified
single-frequency false alarm probability. This should not be confused with
the false alarm level of the largest peak.
Parameters
----------
fap : array-like
The false alarm probability.
N : int
The number of data points from which the periodogram was computed.
normalization : {'standard', 'model', 'log', 'psd'}
The periodogram normalization.
dH, dK : int, optional
The number of parameters in the null hypothesis and the model.
Returns
-------
z : np.ndarray
The periodogram power corresponding to the single-peak false alarm
probability.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
All expressions used here are adapted from Table 1 of Baluev 2008 [1]_.
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008) | def inv_fap_single(fap, N, normalization, dH=1, dK=3):
"""Single-frequency inverse false alarm probability.
This function computes the periodogram value associated with the specified
single-frequency false alarm probability. This should not be confused with
the false alarm level of the largest peak.
Parameters
----------
fap : array-like
The false alarm probability.
N : int
The number of data points from which the periodogram was computed.
normalization : {'standard', 'model', 'log', 'psd'}
The periodogram normalization.
dH, dK : int, optional
The number of parameters in the null hypothesis and the model.
Returns
-------
z : np.ndarray
The periodogram power corresponding to the single-peak false alarm
probability.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
All expressions used here are adapted from Table 1 of Baluev 2008 [1]_.
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008)
"""
fap = np.asarray(fap)
if dK - dH != 2:
raise NotImplementedError("Degrees of freedom != 2")
Nk = N - dK
# No warnings for fap = 0; rather, just let it give the right infinity.
with np.errstate(divide="ignore"):
if normalization == "psd":
return -np.log(fap)
elif normalization == "standard":
return 1 - fap ** (2 / Nk)
elif normalization == "model":
return -1 + fap ** (-2 / Nk)
elif normalization == "log":
return -2 / Nk * np.log(fap)
else:
raise ValueError(f"normalization='{normalization}' is not recognized") |
Cumulative distribution for the Lomb-Scargle periodogram.
Compute the expected cumulative distribution of the periodogram
for the null hypothesis - i.e. data consisting of Gaussian noise.
Parameters
----------
z : array-like
The periodogram value.
N : int
The number of data points from which the periodogram was computed.
normalization : {'standard', 'model', 'log', 'psd'}
The periodogram normalization.
dH, dK : int, optional
The number of parameters in the null hypothesis and the model.
Returns
-------
cdf : np.ndarray
The expected cumulative distribution function.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
All expressions used here are adapted from Table 1 of Baluev 2008 [1]_.
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008) | def cdf_single(z, N, normalization, dH=1, dK=3):
"""Cumulative distribution for the Lomb-Scargle periodogram.
Compute the expected cumulative distribution of the periodogram
for the null hypothesis - i.e. data consisting of Gaussian noise.
Parameters
----------
z : array-like
The periodogram value.
N : int
The number of data points from which the periodogram was computed.
normalization : {'standard', 'model', 'log', 'psd'}
The periodogram normalization.
dH, dK : int, optional
The number of parameters in the null hypothesis and the model.
Returns
-------
cdf : np.ndarray
The expected cumulative distribution function.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
All expressions used here are adapted from Table 1 of Baluev 2008 [1]_.
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008)
"""
return 1 - fap_single(z, N, normalization=normalization, dH=dH, dK=dK) |
tau factor for estimating Davies bound (Baluev 2008, Table 1). | def tau_davies(Z, fmax, t, y, dy, normalization="standard", dH=1, dK=3):
"""tau factor for estimating Davies bound (Baluev 2008, Table 1)."""
N = len(t)
NH = N - dH # DOF for null hypothesis
NK = N - dK # DOF for periodic hypothesis
Dt = _weighted_var(t, dy)
Teff = np.sqrt(4 * np.pi * Dt) # Effective baseline
W = fmax * Teff
Z = np.asarray(Z)
if normalization == "psd":
# 'psd' normalization is same as Baluev's z
return W * np.exp(-Z) * np.sqrt(Z)
elif normalization == "standard":
# 'standard' normalization is Z = 2/NH * z_1
return _gamma(NH) * W * (1 - Z) ** (0.5 * (NK - 1)) * np.sqrt(0.5 * NH * Z)
elif normalization == "model":
# 'model' normalization is Z = 2/NK * z_2
return _gamma(NK) * W * (1 + Z) ** (-0.5 * NK) * np.sqrt(0.5 * NK * Z)
elif normalization == "log":
# 'log' normalization is Z = 2/NK * z_3
return (
_gamma(NK)
* W
* np.exp(-0.5 * Z * (NK - 0.5))
* np.sqrt(NK * np.sinh(0.5 * Z))
)
else:
raise NotImplementedError(f"normalization={normalization}") |
False Alarm Probability based on estimated number of indep frequencies. | def fap_naive(Z, fmax, t, y, dy, normalization="standard"):
"""False Alarm Probability based on estimated number of indep frequencies."""
N = len(t)
T = max(t) - min(t)
N_eff = fmax * T
fap_s = fap_single(Z, N, normalization=normalization)
# result is 1 - (1 - fap_s) ** N_eff
# this is much more precise for small Z / large N
# Ignore divide by zero no np.log1p - fine to let it return -inf.
with np.errstate(divide="ignore"):
return -np.expm1(N_eff * np.log1p(-fap_s)) |
Inverse FAP based on estimated number of indep frequencies. | def inv_fap_naive(fap, fmax, t, y, dy, normalization="standard"):
"""Inverse FAP based on estimated number of indep frequencies."""
fap = np.asarray(fap)
N = len(t)
T = max(t) - min(t)
N_eff = fmax * T
# fap_s = 1 - (1 - fap) ** (1 / N_eff)
# Ignore divide by zero no np.log - fine to let it return -inf.
with np.errstate(divide="ignore"):
fap_s = -np.expm1(np.log(1 - fap) / N_eff)
return inv_fap_single(fap_s, N, normalization) |
Davies upper-bound to the false alarm probability.
(Eqn 5 of Baluev 2008) | def fap_davies(Z, fmax, t, y, dy, normalization="standard"):
"""Davies upper-bound to the false alarm probability.
(Eqn 5 of Baluev 2008)
"""
N = len(t)
fap_s = fap_single(Z, N, normalization=normalization)
tau = tau_davies(Z, fmax, t, y, dy, normalization=normalization)
return fap_s + tau |
Inverse of the davies upper-bound. | def inv_fap_davies(p, fmax, t, y, dy, normalization="standard"):
"""Inverse of the davies upper-bound."""
from scipy import optimize
args = (fmax, t, y, dy, normalization)
z0 = inv_fap_naive(p, *args)
func = lambda z, *args: fap_davies(z, *args) - p
res = optimize.root(func, z0, args=args, method="lm")
if not res.success:
raise ValueError(f"inv_fap_baluev did not converge for p={p}")
return res.x |
Alias-free approximation to false alarm probability.
(Eqn 6 of Baluev 2008) | def fap_baluev(Z, fmax, t, y, dy, normalization="standard"):
"""Alias-free approximation to false alarm probability.
(Eqn 6 of Baluev 2008)
"""
fap_s = fap_single(Z, len(t), normalization)
tau = tau_davies(Z, fmax, t, y, dy, normalization=normalization)
# result is 1 - (1 - fap_s) * np.exp(-tau)
# this is much more precise for small numbers
return -np.expm1(-tau) + fap_s * np.exp(-tau) |
Inverse of the Baluev alias-free approximation. | def inv_fap_baluev(p, fmax, t, y, dy, normalization="standard"):
"""Inverse of the Baluev alias-free approximation."""
from scipy import optimize
args = (fmax, t, y, dy, normalization)
z0 = inv_fap_naive(p, *args)
func = lambda z, *args: fap_baluev(z, *args) - p
res = optimize.root(func, z0, args=args, method="lm")
if not res.success:
raise ValueError(f"inv_fap_baluev did not converge for p={p}")
return res.x |
Generate a sequence of bootstrap estimates of the max. | def _bootstrap_max(t, y, dy, fmax, normalization, random_seed, n_bootstrap=1000):
"""Generate a sequence of bootstrap estimates of the max."""
from .core import LombScargle
rng = np.random.default_rng(random_seed)
power_max = []
for _ in range(n_bootstrap):
s = rng.integers(0, len(y), len(y)) # sample with replacement
ls_boot = LombScargle(
t, y[s], dy if dy is None else dy[s], normalization=normalization
)
freq, power = ls_boot.autopower(maximum_frequency=fmax)
power_max.append(power.max())
power_max = u.Quantity(power_max)
power_max.sort()
return power_max |
Bootstrap estimate of the false alarm probability. | def fap_bootstrap(
Z, fmax, t, y, dy, normalization="standard", n_bootstraps=1000, random_seed=None
):
"""Bootstrap estimate of the false alarm probability."""
pmax = _bootstrap_max(t, y, dy, fmax, normalization, random_seed, n_bootstraps)
return 1 - np.searchsorted(pmax, Z) / len(pmax) |
Bootstrap estimate of the inverse false alarm probability. | def inv_fap_bootstrap(
fap, fmax, t, y, dy, normalization="standard", n_bootstraps=1000, random_seed=None
):
"""Bootstrap estimate of the inverse false alarm probability."""
fap = np.asarray(fap)
pmax = _bootstrap_max(t, y, dy, fmax, normalization, random_seed, n_bootstraps)
return pmax[np.clip(np.floor((1 - fap) * len(pmax)).astype(int), 0, len(pmax) - 1)] |
Compute the approximate false alarm probability for periodogram peaks Z.
This gives an estimate of the false alarm probability for the largest value
in a periodogram, based on the null hypothesis of non-varying data with
Gaussian noise. The true probability cannot be computed analytically, so
each method available here is an approximation to the true value.
Parameters
----------
Z : array-like
The periodogram value.
fmax : float
The maximum frequency of the periodogram.
t, y, dy : array-like
The data times, values, and errors.
normalization : {'standard', 'model', 'log', 'psd'}, optional
The periodogram normalization.
method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional
The approximation method to use.
method_kwds : dict, optional
Additional method-specific keywords.
Returns
-------
false_alarm_probability : np.ndarray
The false alarm probability.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
See Also
--------
false_alarm_level : compute the periodogram level for a particular fap
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008) | def false_alarm_probability(
Z, fmax, t, y, dy, normalization="standard", method="baluev", method_kwds=None
):
"""Compute the approximate false alarm probability for periodogram peaks Z.
This gives an estimate of the false alarm probability for the largest value
in a periodogram, based on the null hypothesis of non-varying data with
Gaussian noise. The true probability cannot be computed analytically, so
each method available here is an approximation to the true value.
Parameters
----------
Z : array-like
The periodogram value.
fmax : float
The maximum frequency of the periodogram.
t, y, dy : array-like
The data times, values, and errors.
normalization : {'standard', 'model', 'log', 'psd'}, optional
The periodogram normalization.
method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional
The approximation method to use.
method_kwds : dict, optional
Additional method-specific keywords.
Returns
-------
false_alarm_probability : np.ndarray
The false alarm probability.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
See Also
--------
false_alarm_level : compute the periodogram level for a particular fap
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008)
"""
if method == "single":
return fap_single(Z, len(t), normalization)
elif method not in METHODS:
raise ValueError(f"Unrecognized method: {method}")
method = METHODS[method]
method_kwds = method_kwds or {}
return method(Z, fmax, t, y, dy, normalization, **method_kwds) |
Compute the approximate periodogram level given a false alarm probability.
This gives an estimate of the periodogram level corresponding to a specified
false alarm probability for the largest peak, assuming a null hypothesis
of non-varying data with Gaussian noise. The true level cannot be computed
analytically, so each method available here is an approximation to the true
value.
Parameters
----------
p : array-like
The false alarm probability (0 < p < 1).
fmax : float
The maximum frequency of the periodogram.
t, y, dy : arrays
The data times, values, and errors.
normalization : {'standard', 'model', 'log', 'psd'}, optional
The periodogram normalization.
method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional
The approximation method to use.
method_kwds : dict, optional
Additional method-specific keywords.
Returns
-------
z : np.ndarray
The periodogram level.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
See Also
--------
false_alarm_probability : compute the fap for a given periodogram level
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008) | def false_alarm_level(
p, fmax, t, y, dy, normalization, method="baluev", method_kwds=None
):
"""Compute the approximate periodogram level given a false alarm probability.
This gives an estimate of the periodogram level corresponding to a specified
false alarm probability for the largest peak, assuming a null hypothesis
of non-varying data with Gaussian noise. The true level cannot be computed
analytically, so each method available here is an approximation to the true
value.
Parameters
----------
p : array-like
The false alarm probability (0 < p < 1).
fmax : float
The maximum frequency of the periodogram.
t, y, dy : arrays
The data times, values, and errors.
normalization : {'standard', 'model', 'log', 'psd'}, optional
The periodogram normalization.
method : {'baluev', 'davies', 'naive', 'bootstrap'}, optional
The approximation method to use.
method_kwds : dict, optional
Additional method-specific keywords.
Returns
-------
z : np.ndarray
The periodogram level.
Notes
-----
For normalization='psd', the distribution can only be computed for
periodograms constructed with errors specified.
See Also
--------
false_alarm_probability : compute the fap for a given periodogram level
References
----------
.. [1] Baluev, R.V. MNRAS 385, 1279 (2008)
"""
if method == "single":
return inv_fap_single(p, len(t), normalization)
elif method not in INV_METHODS:
raise ValueError(f"Unrecognized method: {method}")
method = INV_METHODS[method]
method_kwds = method_kwds or {}
return method(p, fmax, t, y, dy, normalization, **method_kwds) |
Lomb-Scargle Periodogram.
This implements a chi-squared-based periodogram, which is relatively slow
but useful for validating the faster algorithms in the package.
Parameters
----------
t, y, dy : array-like
times, values, and errors of the data points. These should be
broadcastable to the same shape. None should be `~astropy.units.Quantity``.
frequency : array-like
frequencies (not angular frequencies) at which to calculate periodogram
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard', 'model', 'log', or 'psd'.
fit_mean : bool, optional
if True, include a constant offset as part of the model at each
frequency. This can lead to more accurate results, especially in the
case of incomplete phase coverage.
center_data : bool, optional
if True, pre-center the data by subtracting the weighted mean
of the input data. This is especially important if ``fit_mean = False``
nterms : int, optional
Number of Fourier terms in the fit
Returns
-------
power : array-like
Lomb-Scargle power associated with each frequency.
Units of the result depend on the normalization.
References
----------
.. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
.. [2] W. Press et al, Numerical Recipes in C (2002)
.. [3] Scargle, J.D. 1982, ApJ 263:835-853 | def lombscargle_chi2(
t,
y,
dy,
frequency,
normalization="standard",
fit_mean=True,
center_data=True,
nterms=1,
):
"""Lomb-Scargle Periodogram.
This implements a chi-squared-based periodogram, which is relatively slow
but useful for validating the faster algorithms in the package.
Parameters
----------
t, y, dy : array-like
times, values, and errors of the data points. These should be
broadcastable to the same shape. None should be `~astropy.units.Quantity``.
frequency : array-like
frequencies (not angular frequencies) at which to calculate periodogram
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard', 'model', 'log', or 'psd'.
fit_mean : bool, optional
if True, include a constant offset as part of the model at each
frequency. This can lead to more accurate results, especially in the
case of incomplete phase coverage.
center_data : bool, optional
if True, pre-center the data by subtracting the weighted mean
of the input data. This is especially important if ``fit_mean = False``
nterms : int, optional
Number of Fourier terms in the fit
Returns
-------
power : array-like
Lomb-Scargle power associated with each frequency.
Units of the result depend on the normalization.
References
----------
.. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
.. [2] W. Press et al, Numerical Recipes in C (2002)
.. [3] Scargle, J.D. 1982, ApJ 263:835-853
"""
if dy is None:
dy = 1
t, y, dy = np.broadcast_arrays(t, y, dy)
frequency = np.asarray(frequency)
if t.ndim != 1:
raise ValueError("t, y, dy should be one dimensional")
if frequency.ndim != 1:
raise ValueError("frequency should be one-dimensional")
w = dy**-2.0
w /= w.sum()
# if fit_mean is true, centering the data now simplifies the math below.
if center_data or fit_mean:
yw = (y - np.dot(w, y)) / dy
else:
yw = y / dy
chi2_ref = np.dot(yw, yw)
# compute the unnormalized model chi2 at each frequency
def compute_power(f):
X = design_matrix(t, f, dy=dy, bias=fit_mean, nterms=nterms)
XTX = np.dot(X.T, X)
XTy = np.dot(X.T, yw)
return np.dot(XTy.T, np.linalg.solve(XTX, XTy))
p = np.array([compute_power(f) for f in frequency])
if normalization == "psd":
p *= 0.5
elif normalization == "model":
p /= chi2_ref - p
elif normalization == "log":
p = -np.log(1 - p / chi2_ref)
elif normalization == "standard":
p /= chi2_ref
else:
raise ValueError(f"normalization='{normalization}' not recognized")
return p |
Lomb-Scargle Periodogram.
This implements a fast chi-squared periodogram using the algorithm
outlined in [4]_. The result is identical to the standard Lomb-Scargle
periodogram. The advantage of this algorithm is the
ability to compute multiterm periodograms relatively quickly.
Parameters
----------
t, y, dy : array-like
times, values, and errors of the data points. These should be
broadcastable to the same shape. None should be `~astropy.units.Quantity`.
f0, df, Nf : (float, float, int)
parameters describing the frequency grid, f = f0 + df * arange(Nf).
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard', 'model', 'log', or 'psd'.
fit_mean : bool, optional
if True, include a constant offset as part of the model at each
frequency. This can lead to more accurate results, especially in the
case of incomplete phase coverage.
center_data : bool, optional
if True, pre-center the data by subtracting the weighted mean
of the input data. This is especially important if ``fit_mean = False``
nterms : int, optional
Number of Fourier terms in the fit
Returns
-------
power : array-like
Lomb-Scargle power associated with each frequency.
Units of the result depend on the normalization.
References
----------
.. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
.. [2] W. Press et al, Numerical Recipes in C (2002)
.. [3] Scargle, J.D. ApJ 263:835-853 (1982)
.. [4] Palmer, J. ApJ 695:496-502 (2009) | def lombscargle_fastchi2(
t,
y,
dy,
f0,
df,
Nf,
normalization="standard",
fit_mean=True,
center_data=True,
nterms=1,
use_fft=True,
trig_sum_kwds=None,
):
"""Lomb-Scargle Periodogram.
This implements a fast chi-squared periodogram using the algorithm
outlined in [4]_. The result is identical to the standard Lomb-Scargle
periodogram. The advantage of this algorithm is the
ability to compute multiterm periodograms relatively quickly.
Parameters
----------
t, y, dy : array-like
times, values, and errors of the data points. These should be
broadcastable to the same shape. None should be `~astropy.units.Quantity`.
f0, df, Nf : (float, float, int)
parameters describing the frequency grid, f = f0 + df * arange(Nf).
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard', 'model', 'log', or 'psd'.
fit_mean : bool, optional
if True, include a constant offset as part of the model at each
frequency. This can lead to more accurate results, especially in the
case of incomplete phase coverage.
center_data : bool, optional
if True, pre-center the data by subtracting the weighted mean
of the input data. This is especially important if ``fit_mean = False``
nterms : int, optional
Number of Fourier terms in the fit
Returns
-------
power : array-like
Lomb-Scargle power associated with each frequency.
Units of the result depend on the normalization.
References
----------
.. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
.. [2] W. Press et al, Numerical Recipes in C (2002)
.. [3] Scargle, J.D. ApJ 263:835-853 (1982)
.. [4] Palmer, J. ApJ 695:496-502 (2009)
"""
if nterms == 0 and not fit_mean:
raise ValueError("Cannot have nterms = 0 without fitting bias")
if dy is None:
dy = 1
# Validate and setup input data
t, y, dy = np.broadcast_arrays(t, y, dy)
if t.ndim != 1:
raise ValueError("t, y, dy should be one dimensional")
# Validate and setup frequency grid
if f0 < 0:
raise ValueError("Frequencies must be positive")
if df <= 0:
raise ValueError("Frequency steps must be positive")
if Nf <= 0:
raise ValueError("Number of frequencies must be positive")
w = dy**-2.0
ws = np.sum(w)
# if fit_mean is true, centering the data now simplifies the math below.
if center_data or fit_mean:
y = y - np.dot(w, y) / ws
yw = y / dy
chi2_ref = np.dot(yw, yw)
kwargs = dict.copy(trig_sum_kwds or {})
kwargs.update(f0=f0, df=df, use_fft=use_fft, N=Nf)
# Here we build-up the matrices XTX and XTy using pre-computed
# sums. The relevant identities are
# 2 sin(mx) sin(nx) = cos(m-n)x - cos(m+n)x
# 2 cos(mx) cos(nx) = cos(m-n)x + cos(m+n)x
# 2 sin(mx) cos(nx) = sin(m-n)x + sin(m+n)x
yws = np.sum(y * w)
SCw = [(np.zeros(Nf), ws * np.ones(Nf))]
SCw.extend(
[trig_sum(t, w, freq_factor=i, **kwargs) for i in range(1, 2 * nterms + 1)]
)
Sw, Cw = zip(*SCw)
SCyw = [(np.zeros(Nf), yws * np.ones(Nf))]
SCyw.extend(
[trig_sum(t, w * y, freq_factor=i, **kwargs) for i in range(1, nterms + 1)]
)
Syw, Cyw = zip(*SCyw)
# Now create an indexing scheme so we can quickly
# build-up matrices at each frequency
order = [("C", 0)] if fit_mean else []
order.extend(chain(*([("S", i), ("C", i)] for i in range(1, nterms + 1))))
funcs = dict(
S=lambda m, i: Syw[m][i],
C=lambda m, i: Cyw[m][i],
SS=lambda m, n, i: 0.5 * (Cw[abs(m - n)][i] - Cw[m + n][i]),
CC=lambda m, n, i: 0.5 * (Cw[abs(m - n)][i] + Cw[m + n][i]),
SC=lambda m, n, i: 0.5 * (np.sign(m - n) * Sw[abs(m - n)][i] + Sw[m + n][i]),
CS=lambda m, n, i: 0.5 * (np.sign(n - m) * Sw[abs(n - m)][i] + Sw[n + m][i]),
)
def compute_power(i):
XTX = np.array(
[[funcs[A[0] + B[0]](A[1], B[1], i) for A in order] for B in order]
)
XTy = np.array([funcs[A[0]](A[1], i) for A in order])
return np.dot(XTy.T, np.linalg.solve(XTX, XTy))
p = np.array([compute_power(i) for i in range(Nf)])
if normalization == "psd":
p *= 0.5
elif normalization == "standard":
p /= chi2_ref
elif normalization == "log":
p = -np.log(1 - p / chi2_ref)
elif normalization == "model":
p /= chi2_ref - p
else:
raise ValueError(f"normalization='{normalization}' not recognized")
return p |
Fast Lomb-Scargle Periodogram.
This implements the Press & Rybicki method [1]_ for fast O[N log(N)]
Lomb-Scargle periodograms.
Parameters
----------
t, y, dy : array-like
times, values, and errors of the data points. These should be
broadcastable to the same shape. None should be `~astropy.units.Quantity`.
f0, df, Nf : (float, float, int)
parameters describing the frequency grid, f = f0 + df * arange(Nf).
center_data : bool (default=True)
Specify whether to subtract the mean of the data before the fit
fit_mean : bool (default=True)
If True, then compute the floating-mean periodogram; i.e. let the mean
vary with the fit.
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard', 'model', 'log', or 'psd'.
use_fft : bool (default=True)
If True, then use the Press & Rybicki O[NlogN] algorithm to compute
the result. Otherwise, use a slower O[N^2] algorithm
trig_sum_kwds : dict or None, optional
extra keyword arguments to pass to the ``trig_sum`` utility.
Options are ``oversampling`` and ``Mfft``. See documentation
of ``trig_sum`` for details.
Returns
-------
power : ndarray
Lomb-Scargle power associated with each frequency.
Units of the result depend on the normalization.
Notes
-----
Note that the ``use_fft=True`` algorithm is an approximation to the true
Lomb-Scargle periodogram, and as the number of points grows this
approximation improves. On the other hand, for very small datasets
(<~50 points or so) this approximation may not be useful.
References
----------
.. [1] Press W.H. and Rybicki, G.B, "Fast algorithm for spectral analysis
of unevenly sampled data". ApJ 1:338, p277, 1989
.. [2] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
.. [3] W. Press et al, Numerical Recipes in C (2002) | def lombscargle_fast(
t,
y,
dy,
f0,
df,
Nf,
center_data=True,
fit_mean=True,
normalization="standard",
use_fft=True,
trig_sum_kwds=None,
):
"""Fast Lomb-Scargle Periodogram.
This implements the Press & Rybicki method [1]_ for fast O[N log(N)]
Lomb-Scargle periodograms.
Parameters
----------
t, y, dy : array-like
times, values, and errors of the data points. These should be
broadcastable to the same shape. None should be `~astropy.units.Quantity`.
f0, df, Nf : (float, float, int)
parameters describing the frequency grid, f = f0 + df * arange(Nf).
center_data : bool (default=True)
Specify whether to subtract the mean of the data before the fit
fit_mean : bool (default=True)
If True, then compute the floating-mean periodogram; i.e. let the mean
vary with the fit.
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard', 'model', 'log', or 'psd'.
use_fft : bool (default=True)
If True, then use the Press & Rybicki O[NlogN] algorithm to compute
the result. Otherwise, use a slower O[N^2] algorithm
trig_sum_kwds : dict or None, optional
extra keyword arguments to pass to the ``trig_sum`` utility.
Options are ``oversampling`` and ``Mfft``. See documentation
of ``trig_sum`` for details.
Returns
-------
power : ndarray
Lomb-Scargle power associated with each frequency.
Units of the result depend on the normalization.
Notes
-----
Note that the ``use_fft=True`` algorithm is an approximation to the true
Lomb-Scargle periodogram, and as the number of points grows this
approximation improves. On the other hand, for very small datasets
(<~50 points or so) this approximation may not be useful.
References
----------
.. [1] Press W.H. and Rybicki, G.B, "Fast algorithm for spectral analysis
of unevenly sampled data". ApJ 1:338, p277, 1989
.. [2] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
.. [3] W. Press et al, Numerical Recipes in C (2002)
"""
if dy is None:
dy = 1
# Validate and setup input data
t, y, dy = np.broadcast_arrays(t, y, dy)
if t.ndim != 1:
raise ValueError("t, y, dy should be one dimensional")
# Validate and setup frequency grid
if f0 < 0:
raise ValueError("Frequencies must be positive")
if df <= 0:
raise ValueError("Frequency steps must be positive")
if Nf <= 0:
raise ValueError("Number of frequencies must be positive")
w = dy**-2.0
w /= w.sum()
# Center the data. Even if we're fitting the offset,
# this step makes the expressions below more succinct
if center_data or fit_mean:
y = y - np.dot(w, y)
# set up arguments to trig_sum
kwargs = dict.copy(trig_sum_kwds or {})
kwargs.update(f0=f0, df=df, use_fft=use_fft, N=Nf)
# ----------------------------------------------------------------------
# 1. compute functions of the time-shift tau at each frequency
Sh, Ch = trig_sum(t, w * y, **kwargs)
S2, C2 = trig_sum(t, w, freq_factor=2, **kwargs)
if fit_mean:
S, C = trig_sum(t, w, **kwargs)
tan_2omega_tau = (S2 - 2 * S * C) / (C2 - (C * C - S * S))
else:
tan_2omega_tau = S2 / C2
# This is what we're computing below; the straightforward way is slower
# and less stable, so we use trig identities instead
#
# omega_tau = 0.5 * np.arctan(tan_2omega_tau)
# S2w, C2w = np.sin(2 * omega_tau), np.cos(2 * omega_tau)
# Sw, Cw = np.sin(omega_tau), np.cos(omega_tau)
S2w = tan_2omega_tau / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau)
C2w = 1 / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau)
Cw = np.sqrt(0.5) * np.sqrt(1 + C2w)
Sw = np.sqrt(0.5) * np.sign(S2w) * np.sqrt(1 - C2w)
# ----------------------------------------------------------------------
# 2. Compute the periodogram, following Zechmeister & Kurster
# and using tricks from Press & Rybicki.
YY = np.dot(w, y**2)
YC = Ch * Cw + Sh * Sw
YS = Sh * Cw - Ch * Sw
CC = 0.5 * (1 + C2 * C2w + S2 * S2w)
SS = 0.5 * (1 - C2 * C2w - S2 * S2w)
if fit_mean:
CC -= (C * Cw + S * Sw) ** 2
SS -= (S * Cw - C * Sw) ** 2
power = YC * YC / CC + YS * YS / SS
if normalization == "standard":
power /= YY
elif normalization == "model":
power /= YY - power
elif normalization == "log":
power = -np.log(1 - power / YY)
elif normalization == "psd":
power *= 0.5 * (dy**-2.0).sum()
else:
raise ValueError(f"normalization='{normalization}' not recognized")
return power |
Utility to get grid parameters from a frequency array.
Parameters
----------
frequency : array-like or `~astropy.units.Quantity` ['frequency']
input frequency grid
assume_regular_frequency : bool (default = False)
if True, then do not check whether frequency is a regular grid
Returns
-------
f0, df, N : scalar
Parameters such that all(frequency == f0 + df * np.arange(N)) | def _get_frequency_grid(frequency, assume_regular_frequency=False):
"""Utility to get grid parameters from a frequency array.
Parameters
----------
frequency : array-like or `~astropy.units.Quantity` ['frequency']
input frequency grid
assume_regular_frequency : bool (default = False)
if True, then do not check whether frequency is a regular grid
Returns
-------
f0, df, N : scalar
Parameters such that all(frequency == f0 + df * np.arange(N))
"""
frequency = np.asarray(frequency)
if frequency.ndim != 1:
raise ValueError("frequency grid must be 1 dimensional")
elif len(frequency) == 1:
return frequency[0], frequency[0], 1
elif not (assume_regular_frequency or _is_regular(frequency)):
raise ValueError("frequency must be a regular grid")
return frequency[0], frequency[1] - frequency[0], len(frequency) |
Validate the method argument, and if method='auto'
choose the appropriate method. | def validate_method(method, dy, fit_mean, nterms, frequency, assume_regular_frequency):
"""
Validate the method argument, and if method='auto'
choose the appropriate method.
"""
methods = available_methods()
prefer_fast = len(frequency) > 200 and (
assume_regular_frequency or _is_regular(frequency)
)
prefer_scipy = "scipy" in methods and dy is None and not fit_mean
# automatically choose the appropriate method
if method == "auto":
if nterms != 1:
if prefer_fast:
method = "fastchi2"
else:
method = "chi2"
elif prefer_fast:
method = "fast"
elif prefer_scipy:
method = "scipy"
else:
method = "cython"
if method not in METHODS:
raise ValueError(f"invalid method: {method}")
return method |
Compute the Lomb-scargle Periodogram with a given method.
Parameters
----------
t : array-like
sequence of observation times
y : array-like
sequence of observations associated with times t
dy : float or array-like, optional
error or sequence of observational errors associated with times t
frequency : array-like
frequencies (not angular frequencies) at which to evaluate the
periodogram. If not specified, optimal frequencies will be chosen using
a heuristic which will attempt to provide sufficient frequency range
and sampling so that peaks will not be missed. Note that in order to
use method='fast', frequencies must be regularly spaced.
method : str, optional
specify the lomb scargle implementation to use. Options are:
- 'auto': choose the best method based on the input
- 'fast': use the O[N log N] fast method. Note that this requires
evenly-spaced frequencies: by default this will be checked unless
``assume_regular_frequency`` is set to True.
- `slow`: use the O[N^2] pure-python implementation
- `chi2`: use the O[N^2] chi2/linear-fitting implementation
- `fastchi2`: use the O[N log N] chi2 implementation. Note that this
requires evenly-spaced frequencies: by default this will be checked
unless `assume_regular_frequency` is set to True.
- `scipy`: use ``scipy.signal.lombscargle``, which is an O[N^2]
implementation written in C. Note that this does not support
heteroskedastic errors.
assume_regular_frequency : bool, optional
if True, assume that the input frequency is of the form
freq = f0 + df * np.arange(N). Only referenced if method is 'auto'
or 'fast'.
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard' or 'psd'.
fit_mean : bool, optional
if True, include a constant offset as part of the model at each
frequency. This can lead to more accurate results, especially in the
case of incomplete phase coverage.
center_data : bool, optional
if True, pre-center the data by subtracting the weighted mean
of the input data. This is especially important if `fit_mean = False`
method_kwds : dict, optional
additional keywords to pass to the lomb-scargle method
nterms : int, optional
number of Fourier terms to use in the periodogram.
Not supported with every method.
Returns
-------
PLS : array-like
Lomb-Scargle power associated with each frequency omega | def lombscargle(
t,
y,
dy=None,
frequency=None,
method="auto",
assume_regular_frequency=False,
normalization="standard",
fit_mean=True,
center_data=True,
method_kwds=None,
nterms=1,
):
"""
Compute the Lomb-scargle Periodogram with a given method.
Parameters
----------
t : array-like
sequence of observation times
y : array-like
sequence of observations associated with times t
dy : float or array-like, optional
error or sequence of observational errors associated with times t
frequency : array-like
frequencies (not angular frequencies) at which to evaluate the
periodogram. If not specified, optimal frequencies will be chosen using
a heuristic which will attempt to provide sufficient frequency range
and sampling so that peaks will not be missed. Note that in order to
use method='fast', frequencies must be regularly spaced.
method : str, optional
specify the lomb scargle implementation to use. Options are:
- 'auto': choose the best method based on the input
- 'fast': use the O[N log N] fast method. Note that this requires
evenly-spaced frequencies: by default this will be checked unless
``assume_regular_frequency`` is set to True.
- `slow`: use the O[N^2] pure-python implementation
- `chi2`: use the O[N^2] chi2/linear-fitting implementation
- `fastchi2`: use the O[N log N] chi2 implementation. Note that this
requires evenly-spaced frequencies: by default this will be checked
unless `assume_regular_frequency` is set to True.
- `scipy`: use ``scipy.signal.lombscargle``, which is an O[N^2]
implementation written in C. Note that this does not support
heteroskedastic errors.
assume_regular_frequency : bool, optional
if True, assume that the input frequency is of the form
freq = f0 + df * np.arange(N). Only referenced if method is 'auto'
or 'fast'.
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard' or 'psd'.
fit_mean : bool, optional
if True, include a constant offset as part of the model at each
frequency. This can lead to more accurate results, especially in the
case of incomplete phase coverage.
center_data : bool, optional
if True, pre-center the data by subtracting the weighted mean
of the input data. This is especially important if `fit_mean = False`
method_kwds : dict, optional
additional keywords to pass to the lomb-scargle method
nterms : int, optional
number of Fourier terms to use in the periodogram.
Not supported with every method.
Returns
-------
PLS : array-like
Lomb-Scargle power associated with each frequency omega
"""
# frequencies should be one-dimensional arrays
output_shape = frequency.shape
frequency = frequency.ravel()
# we'll need to adjust args and kwds for each method
args = (t, y, dy)
kwds = dict(
frequency=frequency,
center_data=center_data,
fit_mean=fit_mean,
normalization=normalization,
nterms=nterms,
**(method_kwds or {}),
)
method = validate_method(
method,
dy=dy,
fit_mean=fit_mean,
nterms=nterms,
frequency=frequency,
assume_regular_frequency=assume_regular_frequency,
)
# scipy doesn't support dy or fit_mean=True
if method == "scipy":
if kwds.pop("fit_mean"):
raise ValueError("scipy method does not support fit_mean=True")
if dy is not None:
dy = np.ravel(np.asarray(dy))
if not np.allclose(dy[0], dy):
raise ValueError("scipy method only supports uniform uncertainties dy")
args = (t, y)
# fast methods require frequency expressed as a grid
if method.startswith("fast"):
f0, df, Nf = _get_frequency_grid(
kwds.pop("frequency"), assume_regular_frequency
)
kwds.update(f0=f0, df=df, Nf=Nf)
# only chi2 methods support nterms
if not method.endswith("chi2"):
if kwds.pop("nterms") != 1:
raise ValueError(
"nterms != 1 only supported with 'chi2' or 'fastchi2' methods"
)
PLS = METHODS[method](*args, **kwds)
return PLS.reshape(output_shape) |
Compute the Lomb-Scargle design matrix at the given frequency.
This is the matrix X such that the periodic model at the given frequency
can be expressed :math:`\hat{y} = X \theta`.
Parameters
----------
t : array-like, shape=(n_times,)
times at which to compute the design matrix
frequency : float
frequency for the design matrix
dy : float or array-like, optional
data uncertainties: should be broadcastable with `t`
bias : bool (default=True)
If true, include a bias column in the matrix
nterms : int (default=1)
Number of Fourier terms to include in the model
Returns
-------
X : ndarray, shape=(n_times, n_parameters)
The design matrix, where n_parameters = bool(bias) + 2 * nterms | def design_matrix(t, frequency, dy=None, bias=True, nterms=1):
"""Compute the Lomb-Scargle design matrix at the given frequency.
This is the matrix X such that the periodic model at the given frequency
can be expressed :math:`\\hat{y} = X \\theta`.
Parameters
----------
t : array-like, shape=(n_times,)
times at which to compute the design matrix
frequency : float
frequency for the design matrix
dy : float or array-like, optional
data uncertainties: should be broadcastable with `t`
bias : bool (default=True)
If true, include a bias column in the matrix
nterms : int (default=1)
Number of Fourier terms to include in the model
Returns
-------
X : ndarray, shape=(n_times, n_parameters)
The design matrix, where n_parameters = bool(bias) + 2 * nterms
"""
t = np.asarray(t)
frequency = np.asarray(frequency)
if t.ndim != 1:
raise ValueError("t should be one dimensional")
if frequency.ndim != 0:
raise ValueError("frequency must be a scalar")
if nterms == 0 and not bias:
raise ValueError("cannot have nterms=0 and no bias")
if bias:
cols = [np.ones_like(t)]
else:
cols = []
for i in range(1, nterms + 1):
cols.append(np.sin(2 * np.pi * i * frequency * t))
cols.append(np.cos(2 * np.pi * i * frequency * t))
XT = np.vstack(cols)
if dy is not None:
XT /= dy
return np.transpose(XT) |
Compute the Lomb-Scargle model fit at a given frequency.
Parameters
----------
t, y, dy : float or array-like
The times, observations, and uncertainties to fit
frequency : float
The frequency at which to compute the model
t_fit : float or array-like
The times at which the fit should be computed
center_data : bool (default=True)
If True, center the input data before applying the fit
fit_mean : bool (default=True)
If True, include the bias as part of the model
nterms : int (default=1)
The number of Fourier terms to include in the fit
Returns
-------
y_fit : ndarray
The model fit evaluated at each value of t_fit | def periodic_fit(t, y, dy, frequency, t_fit, center_data=True, fit_mean=True, nterms=1):
"""Compute the Lomb-Scargle model fit at a given frequency.
Parameters
----------
t, y, dy : float or array-like
The times, observations, and uncertainties to fit
frequency : float
The frequency at which to compute the model
t_fit : float or array-like
The times at which the fit should be computed
center_data : bool (default=True)
If True, center the input data before applying the fit
fit_mean : bool (default=True)
If True, include the bias as part of the model
nterms : int (default=1)
The number of Fourier terms to include in the fit
Returns
-------
y_fit : ndarray
The model fit evaluated at each value of t_fit
"""
t, y, frequency = map(np.asarray, (t, y, frequency))
if dy is None:
dy = np.ones_like(y)
else:
dy = np.asarray(dy)
t_fit = np.asarray(t_fit)
if t.ndim != 1:
raise ValueError("t, y, dy should be one dimensional")
if t_fit.ndim != 1:
raise ValueError("t_fit should be one dimensional")
if frequency.ndim != 0:
raise ValueError("frequency should be a scalar")
if center_data:
w = dy**-2.0
y_mean = np.dot(y, w) / w.sum()
y = y - y_mean
else:
y_mean = 0
X = design_matrix(t, frequency, dy=dy, bias=fit_mean, nterms=nterms)
theta_MLE = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, y / dy))
X_fit = design_matrix(t_fit, frequency, bias=fit_mean, nterms=nterms)
return y_mean + np.dot(X_fit, theta_MLE) |
Lomb-Scargle Periodogram.
This is a wrapper of ``scipy.signal.lombscargle`` for computation of the
Lomb-Scargle periodogram. This is a relatively fast version of the naive
O[N^2] algorithm, but cannot handle heteroskedastic errors.
Parameters
----------
t, y : array-like
times, values, and errors of the data points. These should be
broadcastable to the same shape. None should be `~astropy.units.Quantity`.
frequency : array-like
frequencies (not angular frequencies) at which to calculate periodogram
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard', 'model', 'log', or 'psd'.
center_data : bool, optional
if True, pre-center the data by subtracting the weighted mean
of the input data.
Returns
-------
power : array-like
Lomb-Scargle power associated with each frequency.
Units of the result depend on the normalization.
References
----------
.. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
.. [2] W. Press et al, Numerical Recipes in C (2002)
.. [3] Scargle, J.D. 1982, ApJ 263:835-853 | def lombscargle_scipy(t, y, frequency, normalization="standard", center_data=True):
"""Lomb-Scargle Periodogram.
This is a wrapper of ``scipy.signal.lombscargle`` for computation of the
Lomb-Scargle periodogram. This is a relatively fast version of the naive
O[N^2] algorithm, but cannot handle heteroskedastic errors.
Parameters
----------
t, y : array-like
times, values, and errors of the data points. These should be
broadcastable to the same shape. None should be `~astropy.units.Quantity`.
frequency : array-like
frequencies (not angular frequencies) at which to calculate periodogram
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard', 'model', 'log', or 'psd'.
center_data : bool, optional
if True, pre-center the data by subtracting the weighted mean
of the input data.
Returns
-------
power : array-like
Lomb-Scargle power associated with each frequency.
Units of the result depend on the normalization.
References
----------
.. [1] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
.. [2] W. Press et al, Numerical Recipes in C (2002)
.. [3] Scargle, J.D. 1982, ApJ 263:835-853
"""
try:
from scipy import signal
except ImportError:
raise ImportError("scipy must be installed to use lombscargle_scipy")
t, y = np.broadcast_arrays(t, y)
# Scipy requires floating-point input
t = np.asarray(t, dtype=float)
y = np.asarray(y, dtype=float)
frequency = np.asarray(frequency, dtype=float)
if t.ndim != 1:
raise ValueError("t, y, dy should be one dimensional")
if frequency.ndim != 1:
raise ValueError("frequency should be one-dimensional")
if center_data:
y = y - y.mean()
# Note: scipy input accepts angular frequencies
p = signal.lombscargle(t, y, 2 * np.pi * frequency)
if normalization == "psd":
pass
elif normalization == "standard":
p *= 2 / (t.size * np.mean(y**2))
elif normalization == "log":
p = -np.log(1 - 2 * p / (t.size * np.mean(y**2)))
elif normalization == "model":
p /= 0.5 * t.size * np.mean(y**2) - p
else:
raise ValueError(f"normalization='{normalization}' not recognized")
return p |
Lomb-Scargle Periodogram.
This is a pure-python implementation of the original Lomb-Scargle formalism
(e.g. [1]_, [2]_), with the addition of the floating mean (e.g. [3]_)
Parameters
----------
t, y, dy : array-like
times, values, and errors of the data points. These should be
broadcastable to the same shape. None should be `~astropy.units.Quantity`.
frequency : array-like
frequencies (not angular frequencies) at which to calculate periodogram
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard', 'model', 'log', or 'psd'.
fit_mean : bool, optional
if True, include a constant offset as part of the model at each
frequency. This can lead to more accurate results, especially in the
case of incomplete phase coverage.
center_data : bool, optional
if True, pre-center the data by subtracting the weighted mean
of the input data. This is especially important if ``fit_mean = False``
Returns
-------
power : array-like
Lomb-Scargle power associated with each frequency.
Units of the result depend on the normalization.
References
----------
.. [1] W. Press et al, Numerical Recipes in C (2002)
.. [2] Scargle, J.D. 1982, ApJ 263:835-853
.. [3] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009) | def lombscargle_slow(
t, y, dy, frequency, normalization="standard", fit_mean=True, center_data=True
):
"""Lomb-Scargle Periodogram.
This is a pure-python implementation of the original Lomb-Scargle formalism
(e.g. [1]_, [2]_), with the addition of the floating mean (e.g. [3]_)
Parameters
----------
t, y, dy : array-like
times, values, and errors of the data points. These should be
broadcastable to the same shape. None should be `~astropy.units.Quantity`.
frequency : array-like
frequencies (not angular frequencies) at which to calculate periodogram
normalization : str, optional
Normalization to use for the periodogram.
Options are 'standard', 'model', 'log', or 'psd'.
fit_mean : bool, optional
if True, include a constant offset as part of the model at each
frequency. This can lead to more accurate results, especially in the
case of incomplete phase coverage.
center_data : bool, optional
if True, pre-center the data by subtracting the weighted mean
of the input data. This is especially important if ``fit_mean = False``
Returns
-------
power : array-like
Lomb-Scargle power associated with each frequency.
Units of the result depend on the normalization.
References
----------
.. [1] W. Press et al, Numerical Recipes in C (2002)
.. [2] Scargle, J.D. 1982, ApJ 263:835-853
.. [3] M. Zechmeister and M. Kurster, A&A 496, 577-584 (2009)
"""
if dy is None:
dy = 1
t, y, dy = np.broadcast_arrays(t, y, dy)
frequency = np.asarray(frequency)
if t.ndim != 1:
raise ValueError("t, y, dy should be one dimensional")
if frequency.ndim != 1:
raise ValueError("frequency should be one-dimensional")
w = dy**-2.0
w /= w.sum()
# if fit_mean is true, centering the data now simplifies the math below.
if fit_mean or center_data:
y = y - np.dot(w, y)
omega = 2 * np.pi * frequency
omega = omega.ravel()[np.newaxis, :]
# make following arrays into column vectors
t, y, dy, w = (x[:, np.newaxis] for x in (t, y, dy, w))
sin_omega_t = np.sin(omega * t)
cos_omega_t = np.cos(omega * t)
# compute time-shift tau
# S2 = np.dot(w.T, np.sin(2 * omega * t)
S2 = 2 * np.dot(w.T, sin_omega_t * cos_omega_t)
# C2 = np.dot(w.T, np.cos(2 * omega * t)
C2 = 2 * np.dot(w.T, 0.5 - sin_omega_t**2)
if fit_mean:
S = np.dot(w.T, sin_omega_t)
C = np.dot(w.T, cos_omega_t)
S2 -= 2 * S * C
C2 -= C * C - S * S
# compute components needed for the fit
omega_t_tau = omega * t - 0.5 * np.arctan2(S2, C2)
sin_omega_t_tau = np.sin(omega_t_tau)
cos_omega_t_tau = np.cos(omega_t_tau)
Y = np.dot(w.T, y)
wy = w * y
YCtau = np.dot(wy.T, cos_omega_t_tau)
YStau = np.dot(wy.T, sin_omega_t_tau)
CCtau = np.dot(w.T, cos_omega_t_tau * cos_omega_t_tau)
SStau = np.dot(w.T, sin_omega_t_tau * sin_omega_t_tau)
if fit_mean:
Ctau = np.dot(w.T, cos_omega_t_tau)
Stau = np.dot(w.T, sin_omega_t_tau)
YCtau -= Y * Ctau
YStau -= Y * Stau
CCtau -= Ctau * Ctau
SStau -= Stau * Stau
p = YCtau * YCtau / CCtau + YStau * YStau / SStau
YY = np.dot(w.T, y * y)
if normalization == "standard":
p /= YY
elif normalization == "model":
p /= YY - p
elif normalization == "log":
p = -np.log(1 - p / YY)
elif normalization == "psd":
p *= 0.5 * (dy**-2.0).sum()
else:
raise ValueError(f"normalization='{normalization}' not recognized")
return p.ravel() |
Find the bit (i.e. power of 2) immediately greater than or equal to N
Note: this works for numbers up to 2 ** 64.
Roughly equivalent to int(2 ** np.ceil(np.log2(N))). | def bitceil(N):
"""
Find the bit (i.e. power of 2) immediately greater than or equal to N
Note: this works for numbers up to 2 ** 64.
Roughly equivalent to int(2 ** np.ceil(np.log2(N))).
"""
return 1 << int(N - 1).bit_length() |
Extirpolate the values (x, y) onto an integer grid range(N),
using lagrange polynomial weights on the M nearest points.
Parameters
----------
x : array-like
array of abscissas
y : array-like
array of ordinates
N : int
number of integer bins to use. For best performance, N should be larger
than the maximum of x
M : int
number of adjoining points on which to extirpolate.
Returns
-------
yN : ndarray
N extirpolated values associated with range(N)
Examples
--------
>>> rng = np.random.default_rng(0)
>>> x = 100 * rng.random(20)
>>> y = np.sin(x)
>>> y_hat = extirpolate(x, y)
>>> x_hat = np.arange(len(y_hat))
>>> f = lambda x: np.sin(x / 10)
>>> np.allclose(np.sum(y * f(x)), np.sum(y_hat * f(x_hat)))
True
Notes
-----
This code is based on the C implementation of spread() presented in
Numerical Recipes in C, Second Edition (Press et al. 1989; p.583). | def extirpolate(x, y, N=None, M=4):
"""
Extirpolate the values (x, y) onto an integer grid range(N),
using lagrange polynomial weights on the M nearest points.
Parameters
----------
x : array-like
array of abscissas
y : array-like
array of ordinates
N : int
number of integer bins to use. For best performance, N should be larger
than the maximum of x
M : int
number of adjoining points on which to extirpolate.
Returns
-------
yN : ndarray
N extirpolated values associated with range(N)
Examples
--------
>>> rng = np.random.default_rng(0)
>>> x = 100 * rng.random(20)
>>> y = np.sin(x)
>>> y_hat = extirpolate(x, y)
>>> x_hat = np.arange(len(y_hat))
>>> f = lambda x: np.sin(x / 10)
>>> np.allclose(np.sum(y * f(x)), np.sum(y_hat * f(x_hat)))
True
Notes
-----
This code is based on the C implementation of spread() presented in
Numerical Recipes in C, Second Edition (Press et al. 1989; p.583).
"""
x, y = map(np.ravel, np.broadcast_arrays(x, y))
if N is None:
N = int(np.max(x) + 0.5 * M + 1)
# Now use legendre polynomial weights to populate the results array;
# This is an efficient recursive implementation (See Press et al. 1989)
result = np.zeros(N, dtype=y.dtype)
# first take care of the easy cases where x is an integer
integers = x % 1 == 0
np.add.at(result, x[integers].astype(int), y[integers])
x, y = x[~integers], y[~integers]
# For each remaining x, find the index describing the extirpolation range.
# i.e. ilo[i] < x[i] < ilo[i] + M with x[i] in the center,
# adjusted so that the limits are within the range 0...N
ilo = np.clip((x - M // 2).astype(int), 0, N - M)
numerator = y * np.prod(x - ilo - np.arange(M)[:, np.newaxis], 0)
denominator = factorial(M - 1)
for j in range(M):
if j > 0:
denominator *= j / (j - M)
ind = ilo + (M - 1 - j)
np.add.at(result, ind, numerator / (denominator * (x - ind)))
return result |
Compute (approximate) trigonometric sums for a number of frequencies.
This routine computes weighted sine and cosine sums::
S_j = sum_i { h_i * sin(2 pi * f_j * t_i) }
C_j = sum_i { h_i * cos(2 pi * f_j * t_i) }
Where f_j = freq_factor * (f0 + j * df) for the values j in 1 ... N.
The sums can be computed either by a brute force O[N^2] method, or
by an FFT-based O[Nlog(N)] method.
Parameters
----------
t : array-like
array of input times
h : array-like
array weights for the sum
df : float
frequency spacing
N : int
number of frequency bins to return
f0 : float, optional
The low frequency to use
freq_factor : float, optional
Factor which multiplies the frequency
use_fft : bool
if True, use the approximate FFT algorithm to compute the result.
This uses the FFT with Press & Rybicki's Lagrangian extirpolation.
oversampling : int (default = 5)
oversampling freq_factor for the approximation; roughly the number of
time samples across the highest-frequency sinusoid. This parameter
contains the trade-off between accuracy and speed. Not referenced
if use_fft is False.
Mfft : int
The number of adjacent points to use in the FFT approximation.
Not referenced if use_fft is False.
Returns
-------
S, C : ndarray
summation arrays for frequencies f = df * np.arange(1, N + 1) | def trig_sum(t, h, df, N, f0=0, freq_factor=1, oversampling=5, use_fft=True, Mfft=4):
"""Compute (approximate) trigonometric sums for a number of frequencies.
This routine computes weighted sine and cosine sums::
S_j = sum_i { h_i * sin(2 pi * f_j * t_i) }
C_j = sum_i { h_i * cos(2 pi * f_j * t_i) }
Where f_j = freq_factor * (f0 + j * df) for the values j in 1 ... N.
The sums can be computed either by a brute force O[N^2] method, or
by an FFT-based O[Nlog(N)] method.
Parameters
----------
t : array-like
array of input times
h : array-like
array weights for the sum
df : float
frequency spacing
N : int
number of frequency bins to return
f0 : float, optional
The low frequency to use
freq_factor : float, optional
Factor which multiplies the frequency
use_fft : bool
if True, use the approximate FFT algorithm to compute the result.
This uses the FFT with Press & Rybicki's Lagrangian extirpolation.
oversampling : int (default = 5)
oversampling freq_factor for the approximation; roughly the number of
time samples across the highest-frequency sinusoid. This parameter
contains the trade-off between accuracy and speed. Not referenced
if use_fft is False.
Mfft : int
The number of adjacent points to use in the FFT approximation.
Not referenced if use_fft is False.
Returns
-------
S, C : ndarray
summation arrays for frequencies f = df * np.arange(1, N + 1)
"""
df *= freq_factor
f0 *= freq_factor
if df <= 0:
raise ValueError("df must be positive")
t, h = map(np.ravel, np.broadcast_arrays(t, h))
if use_fft:
Mfft = int(Mfft)
if Mfft <= 0:
raise ValueError("Mfft must be positive")
# required size of fft is the power of 2 above the oversampling rate
Nfft = bitceil(N * oversampling)
t0 = t.min()
if f0 > 0:
h = h * np.exp(2j * np.pi * f0 * (t - t0))
tnorm = ((t - t0) * Nfft * df) % Nfft
grid = extirpolate(tnorm, h, Nfft, Mfft)
fftgrid = np.fft.ifft(grid)[:N]
if t0 != 0:
f = f0 + df * np.arange(N)
fftgrid *= np.exp(2j * np.pi * t0 * f)
C = Nfft * fftgrid.real
S = Nfft * fftgrid.imag
else:
f = f0 + df * np.arange(N)
C = np.dot(h, np.cos(2 * np.pi * f * t[:, np.newaxis]))
S = np.dot(h, np.sin(2 * np.pi * f * t[:, np.newaxis]))
return S, C |
Generate some data for testing | def data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0):
"""Generate some data for testing"""
rng = np.random.default_rng(rseed)
t = 20 * period * rng.random(N)
omega = 2 * np.pi / period
y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t)
dy = dy * (0.5 + rng.random(N))
y += dy * rng.standard_normal(N)
return t, y, dy |
Generate some data for testing | def make_data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0, units=False):
"""Generate some data for testing"""
rng = np.random.default_rng(rseed)
t = 5 * period * rng.random(N)
omega = 2 * np.pi / period
y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t)
dy = dy * (0.5 + rng.random(N))
y += dy * rng.standard_normal(N)
fmax = 5
if units:
return t * u.day, y * u.mag, dy * u.mag, fmax / u.day
else:
return t, y, dy, fmax |
Generate null hypothesis data | def null_data(N=1000, dy=1, rseed=0, units=False):
"""Generate null hypothesis data"""
rng = np.random.default_rng(rseed)
t = 100 * rng.random(N)
dy = 0.5 * dy * (1 + rng.random(N))
y = dy * rng.standard_normal(N)
fmax = 40
if units:
return t * u.day, y * u.mag, dy * u.mag, fmax / u.day
else:
return t, y, dy, fmax |
Generate some data for testing | def data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0):
"""Generate some data for testing"""
rng = np.random.default_rng(rseed)
t = 5 * period * rng.random(N)
omega = 2 * np.pi / period
y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t)
dy = dy * (0.5 + rng.random(N))
y += dy * rng.standard_normal(N)
return t, y, dy |
Compute the Lomb-Scargle model fit at a given frequency
Parameters
----------
t, y, dy : float or array-like
The times, observations, and uncertainties to fit
bands : str, or array-like
The bands of each observation
frequency : float
The frequency at which to compute the model
t_fit : float or array-like
The times at which the fit should be computed
center_data : bool (default=True)
If True, center the input data before applying the fit
nterms : int (default=1)
The number of Fourier terms to include in the fit
Returns
-------
y_fit : ndarray
The model fit evaluated at each value of t_fit | def periodic_fit(
t,
y,
dy,
bands,
frequency,
t_fit,
bands_fit,
center_data=True,
nterms_base=1,
nterms_band=1,
reg_base=None,
reg_band=1e-6,
regularize_by_trace=True,
):
"""Compute the Lomb-Scargle model fit at a given frequency
Parameters
----------
t, y, dy : float or array-like
The times, observations, and uncertainties to fit
bands : str, or array-like
The bands of each observation
frequency : float
The frequency at which to compute the model
t_fit : float or array-like
The times at which the fit should be computed
center_data : bool (default=True)
If True, center the input data before applying the fit
nterms : int (default=1)
The number of Fourier terms to include in the fit
Returns
-------
y_fit : ndarray
The model fit evaluated at each value of t_fit
"""
t, y, bands, frequency = map(np.asarray, (t, y, bands, frequency))
bands_fit = bands_fit[:, np.newaxis]
unique_bands = np.unique(bands)
unique_bands_fit = np.unique(bands_fit)
if not set(unique_bands_fit).issubset(set(unique_bands)):
raise ValueError(
"bands_fit does not match training data: "
f"input: {set(unique_bands_fit)} output: {set(unique_bands)}"
)
t_fit, bands_fit = np.broadcast_arrays(t_fit, bands_fit)
if dy is None:
dy = np.ones_like(y)
else:
dy = np.asarray(dy)
if t.ndim != 1 or y.ndim != 1 or dy.ndim != 1:
raise ValueError("t, y, dy should be one dimensional")
if frequency.ndim != 0:
raise ValueError("frequency should be a scalar")
# need to make sure all unique filters are represented
u, i = np.unique(
np.concatenate([bands_fit.ravel(), unique_bands]), return_inverse=True
)
# Calculate ymeans
ymeans = np.zeros(
y.shape
) # An array of shape y, with each index given a filter specific mean
if center_data:
for band in unique_bands:
mask = bands == band
ymeans[mask] = np.average(y[mask], weights=1 / dy[mask] ** 2)
y = y - ymeans
ymeans_fit = ymeans[i[: -len(unique_bands)]]
# Theta -- Construct X and M from t and bands, using weighting
X = design_matrix(
t, bands, frequency, dy=dy, nterms_base=nterms_base, nterms_band=nterms_band
)
M = np.dot(X.T, X)
regularization = construct_regularization(
bands,
nterms_base=nterms_base,
nterms_band=nterms_band,
reg_base=reg_base,
reg_band=reg_band,
)
if regularization is not None:
diag = M.ravel(order="K")[
:: M.shape[0] + 1
] # M is being affected by operations on diag
if regularize_by_trace:
diag += diag.sum() * np.asarray(regularization)
else:
diag += np.asarray(regularization)
theta_MLE = np.linalg.solve(M, np.dot(X.T, y / dy))
# Fit to t_fit and bands_fit
X_fit = design_matrix(
t_fit.ravel(),
bands_fit.ravel(),
frequency,
dy=None,
nterms_base=nterms_base,
nterms_band=nterms_band,
)
if center_data:
y_fit = ymeans_fit + np.dot(X_fit, theta_MLE)
else:
y_fit = np.dot(X_fit, theta_MLE)
return y_fit.reshape(np.shape(t_fit)) |
Generate some data for testing | def data(N=100, period=1, theta=[10, 2, 3], nbands=3, dy=1, rseed=0):
"""Generate some data for testing"""
t_arr = []
y_arr = []
band_arr = []
dy_arr = []
for band in range(nbands):
rng = np.random.default_rng(rseed + band)
t_band = 20 * period * rng.random(N)
omega = 2 * np.pi / period
y_band = (
theta[0]
+ theta[1] * np.sin(omega * t_band)
+ theta[2] * np.cos(omega * t_band)
)
dy_band = dy * (0.5 + rng.random(N))
y_band += dy_band * rng.standard_normal(N)
t_arr += list(t_band)
y_arr += list(y_band)
dy_arr += list(dy_band)
band_arr += ["a" * (band + 1)] * N # labels bands as "a","aa","aaa",....
t_arr = np.array(t_arr)
y_arr = np.array(y_arr)
band_arr = np.array(band_arr)
dy_arr = np.array(dy_arr)
return t_arr, y_arr, band_arr, dy_arr |
Generate an astropy.timeseries.TimeSeries table | def timeseries_data():
"""Generate an astropy.timeseries.TimeSeries table"""
rng = np.random.default_rng(1)
deltas = 240 * rng.random(180)
ts1 = TimeSeries(time_start="2011-01-01T00:00:00", time_delta=deltas * u.minute)
# g band fluxes
g_flux = [0] * 180 * u.mJy
g_err = [0] * 180 * u.mJy
y_g = np.round(3 + 2 * np.sin(10 * np.pi * ts1["time"].mjd[0:60]), 3)
dy_g = np.round(0.01 * (0.5 + rng.random(60)), 3) # uncertainties
g_flux.value[0:60] = y_g
g_err.value[0:60] = dy_g
ts1["g_flux"] = MaskedColumn(g_flux, mask=[False] * 60 + [True] * 120)
ts1["g_err"] = MaskedColumn(g_err, mask=[False] * 60 + [True] * 120)
# r band fluxes
r_flux = [0] * 180 * u.mJy
r_err = [0] * 180 * u.mJy
y_r = np.round(3 + 2 * np.sin(10 * np.pi * ts1["time"].mjd[60:120]), 3)
dy_r = np.round(0.01 * (0.5 + rng.random(60)), 3) # uncertainties
r_flux.value[60:120] = y_r
r_err.value[60:120] = dy_r
ts1["r_flux"] = MaskedColumn(r_flux, mask=[True] * 60 + [False] * 60 + [True] * 60)
ts1["r_err"] = MaskedColumn(r_err, mask=[True] * 60 + [False] * 60 + [True] * 60)
# i band fluxes
i_flux = [0] * 180 * u.mJy
i_err = [0] * 180 * u.mJy
y_i = np.round(3 + 2 * np.sin(10 * np.pi * ts1["time"].mjd[120:]), 3)
dy_i = np.round(0.01 * (0.5 + rng.random(60)), 3) # uncertainties
i_flux.value[120:] = y_i
i_err.value[120:] = dy_i
ts1["i_flux"] = MaskedColumn(i_flux, mask=[True] * 120 + [False] * 60)
ts1["i_err"] = MaskedColumn(i_err, mask=[True] * 120 + [False] * 60)
return ts1 |
Regression test for #12527: allow downsampling even if all bins fall
before or beyond the time span of the data. | def test_downsample_edge_cases(time, time_bin_start, time_bin_end):
"""Regression test for #12527: allow downsampling even if all bins fall
before or beyond the time span of the data."""
ts = TimeSeries(time=time, data=[np.ones(len(time))], names=["a"])
down = aggregate_downsample(
ts, time_bin_start=time_bin_start, time_bin_end=time_bin_end
)
assert len(down) == len(time_bin_start)
assert all(down["time_bin_size"] >= 0) # bin lengths shall never be negative
if ts.time.min() < time_bin_start[0] or time_bin_end is not None:
assert down[
"a"
].mask.all() # all bins placed *beyond* the time span of the data
elif ts.time.min() < time_bin_start[1]:
assert (
down["a"][0] == ts["a"][0]
) |
A test on time precision limit supported by downsample().
It is related to an implementation details: that time comparison (and sorting indirectly)
is done with relative time for computational efficiency.
The relative time converted has a slight loss of precision, which worsens
as the gap between a time and the base time increases, e.g., when downsampling
a timeseries that combines current observation with archival data years back.
This test is to document the acceptable precision limit.
see also: https://github.com/astropy/astropy/pull/13069#issuecomment-1093069184 | def test_time_precision_limit(diff_from_base):
"""
A test on time precision limit supported by downsample().
It is related to an implementation details: that time comparison (and sorting indirectly)
is done with relative time for computational efficiency.
The relative time converted has a slight loss of precision, which worsens
as the gap between a time and the base time increases, e.g., when downsampling
a timeseries that combines current observation with archival data years back.
This test is to document the acceptable precision limit.
see also: https://github.com/astropy/astropy/pull/13069#issuecomment-1093069184
"""
precision_limit = 500 * u.ns
from astropy.timeseries.downsample import _to_relative_longdouble
t_base = Time("1980-01-01T12:30:31.000", format="isot", scale="tdb")
t2 = t_base + diff_from_base
t3 = t2 + precision_limit
r_t2 = _to_relative_longdouble(t2, t_base)
r_t3 = _to_relative_longdouble(t3, t_base)
# ensure in the converted relative time,
# t2 and t3 can still be correctly compared
assert r_t3 > r_t2 |
Create a Gaussian/normal distribution.
Parameters
----------
center : `~astropy.units.Quantity`
The center of this distribution
std : `~astropy.units.Quantity` or None
The standard deviation/σ of this distribution. Shape must match and unit
must be compatible with ``center``, or be `None` (if ``var`` or ``ivar``
are set).
var : `~astropy.units.Quantity` or None
The variance of this distribution. Shape must match and unit must be
compatible with ``center``, or be `None` (if ``std`` or ``ivar`` are set).
ivar : `~astropy.units.Quantity` or None
The inverse variance of this distribution. Shape must match and unit
must be compatible with ``center``, or be `None` (if ``std`` or ``var``
are set).
n_samples : int
The number of Monte Carlo samples to use with this distribution
cls : class
The class to use to create this distribution. Typically a
`Distribution` subclass.
Remaining keywords are passed into the constructor of the ``cls``
Returns
-------
distr : `~astropy.uncertainty.Distribution` or object
The sampled Gaussian distribution.
The type will be the same as the parameter ``cls``. | def normal(
center, *, std=None, var=None, ivar=None, n_samples, cls=Distribution, **kwargs
):
"""
Create a Gaussian/normal distribution.
Parameters
----------
center : `~astropy.units.Quantity`
The center of this distribution
std : `~astropy.units.Quantity` or None
The standard deviation/σ of this distribution. Shape must match and unit
must be compatible with ``center``, or be `None` (if ``var`` or ``ivar``
are set).
var : `~astropy.units.Quantity` or None
The variance of this distribution. Shape must match and unit must be
compatible with ``center``, or be `None` (if ``std`` or ``ivar`` are set).
ivar : `~astropy.units.Quantity` or None
The inverse variance of this distribution. Shape must match and unit
must be compatible with ``center``, or be `None` (if ``std`` or ``var``
are set).
n_samples : int
The number of Monte Carlo samples to use with this distribution
cls : class
The class to use to create this distribution. Typically a
`Distribution` subclass.
Remaining keywords are passed into the constructor of the ``cls``
Returns
-------
distr : `~astropy.uncertainty.Distribution` or object
The sampled Gaussian distribution.
The type will be the same as the parameter ``cls``.
"""
center = np.asanyarray(center)
if var is not None:
if std is None:
std = np.asanyarray(var) ** 0.5
else:
raise ValueError("normal cannot take both std and var")
if ivar is not None:
if std is None:
std = np.asanyarray(ivar) ** -0.5
else:
raise ValueError("normal cannot take both ivar and and std or var")
if std is None:
raise ValueError("normal requires one of std, var, or ivar")
else:
std = np.asanyarray(std)
randshape = np.broadcast(std, center).shape + (n_samples,)
samples = (
center[..., np.newaxis] + np.random.randn(*randshape) * std[..., np.newaxis]
)
return cls(samples, **kwargs) |
Create a Poisson distribution.
Parameters
----------
center : `~astropy.units.Quantity`
The center value of this distribution (i.e., λ).
n_samples : int
The number of Monte Carlo samples to use with this distribution
cls : class
The class to use to create this distribution. Typically a
`Distribution` subclass.
Remaining keywords are passed into the constructor of the ``cls``
Returns
-------
distr : `~astropy.uncertainty.Distribution` or object
The sampled Poisson distribution.
The type will be the same as the parameter ``cls``. | def poisson(center, n_samples, cls=Distribution, **kwargs):
"""
Create a Poisson distribution.
Parameters
----------
center : `~astropy.units.Quantity`
The center value of this distribution (i.e., λ).
n_samples : int
The number of Monte Carlo samples to use with this distribution
cls : class
The class to use to create this distribution. Typically a
`Distribution` subclass.
Remaining keywords are passed into the constructor of the ``cls``
Returns
-------
distr : `~astropy.uncertainty.Distribution` or object
The sampled Poisson distribution.
The type will be the same as the parameter ``cls``.
"""
# we convert to arrays because np.random.poisson has trouble with quantities
has_unit = False
if hasattr(center, "unit"):
has_unit = True
poissonarr = np.asanyarray(center.value)
else:
poissonarr = np.asanyarray(center)
randshape = poissonarr.shape + (n_samples,)
samples = np.random.poisson(poissonarr[..., np.newaxis], randshape)
if has_unit:
if center.unit == u.adu:
warn(
"ADUs were provided to poisson. ADUs are not strictly count"
"units because they need the gain to be applied. It is "
"recommended you apply the gain to convert to e.g. electrons."
)
elif center.unit not in COUNT_UNITS:
warn(
f"Unit {center.unit} was provided to poisson, which is not one of"
f' {COUNT_UNITS}, and therefore suspect as a "counting" unit. Ensure'
" you mean to use Poisson statistics."
)
# re-attach the unit
samples = samples * center.unit
return cls(samples, **kwargs) |
Create a Uniform distriution from the lower and upper bounds.
Note that this function requires keywords to be explicit, and requires
either ``lower``/``upper`` or ``center``/``width``.
Parameters
----------
lower : array-like
The lower edge of this distribution. If a `~astropy.units.Quantity`, the
distribution will have the same units as ``lower``.
upper : `~astropy.units.Quantity`
The upper edge of this distribution. Must match shape and if a
`~astropy.units.Quantity` must have compatible units with ``lower``.
center : array-like
The center value of the distribution. Cannot be provided at the same
time as ``lower``/``upper``.
width : array-like
The width of the distribution. Must have the same shape and compatible
units with ``center`` (if any).
n_samples : int
The number of Monte Carlo samples to use with this distribution
cls : class
The class to use to create this distribution. Typically a
`Distribution` subclass.
Remaining keywords are passed into the constructor of the ``cls``
Returns
-------
distr : `~astropy.uncertainty.Distribution` or object
The sampled uniform distribution.
The type will be the same as the parameter ``cls``. | def uniform(
*,
lower=None,
upper=None,
center=None,
width=None,
n_samples,
cls=Distribution,
**kwargs,
):
"""
Create a Uniform distriution from the lower and upper bounds.
Note that this function requires keywords to be explicit, and requires
either ``lower``/``upper`` or ``center``/``width``.
Parameters
----------
lower : array-like
The lower edge of this distribution. If a `~astropy.units.Quantity`, the
distribution will have the same units as ``lower``.
upper : `~astropy.units.Quantity`
The upper edge of this distribution. Must match shape and if a
`~astropy.units.Quantity` must have compatible units with ``lower``.
center : array-like
The center value of the distribution. Cannot be provided at the same
time as ``lower``/``upper``.
width : array-like
The width of the distribution. Must have the same shape and compatible
units with ``center`` (if any).
n_samples : int
The number of Monte Carlo samples to use with this distribution
cls : class
The class to use to create this distribution. Typically a
`Distribution` subclass.
Remaining keywords are passed into the constructor of the ``cls``
Returns
-------
distr : `~astropy.uncertainty.Distribution` or object
The sampled uniform distribution.
The type will be the same as the parameter ``cls``.
"""
if center is None and width is None:
lower = np.asanyarray(lower)
upper = np.asanyarray(upper)
if lower.shape != upper.shape:
raise ValueError("lower and upper must have consistent shapes")
elif upper is None and lower is None:
center = np.asanyarray(center)
width = np.asanyarray(width)
lower = center - width / 2
upper = center + width / 2
else:
raise ValueError(
"either upper/lower or center/width must be given "
"to uniform - other combinations are not valid"
)
newshape = lower.shape + (n_samples,)
if lower.shape == tuple() and upper.shape == tuple():
width = upper - lower # scalar
else:
width = (upper - lower)[:, np.newaxis]
lower = lower[:, np.newaxis]
samples = lower + width * np.random.uniform(size=newshape)
return cls(samples, **kwargs) |
Get n_samples from the first Distribution amount arrays.
The logic of getting ``n_samples`` from the first |Distribution|
is that the code will raise an appropriate exception later if
distributions do not have the same ``n_samples``. | def get_n_samples(*arrays):
"""Get n_samples from the first Distribution amount arrays.
The logic of getting ``n_samples`` from the first |Distribution|
is that the code will raise an appropriate exception later if
distributions do not have the same ``n_samples``.
"""
# TODO: add verification if another function needs it.
for array in arrays:
if is_distribution(array):
return array.n_samples
raise RuntimeError("no Distribution found! Please raise an issue.") |
Broadcast arrays to a common shape.
Like `numpy.broadcast_arrays`, applied to both distributions and other data.
Note that ``subok`` is taken to mean whether or not subclasses of
the distribution are allowed, i.e., for ``subok=False``,
`~astropy.uncertainty.NdarrayDistribution` instances will be returned. | def broadcast_arrays(*args, subok=False):
"""Broadcast arrays to a common shape.
Like `numpy.broadcast_arrays`, applied to both distributions and other data.
Note that ``subok`` is taken to mean whether or not subclasses of
the distribution are allowed, i.e., for ``subok=False``,
`~astropy.uncertainty.NdarrayDistribution` instances will be returned.
"""
if not subok:
args = tuple(
arg.view(np.ndarray) if isinstance(arg, np.ndarray) else np.array(arg)
for arg in args
)
return args, {"subok": True}, True |
Concatenate arrays.
Like `numpy.concatenate`, but any array that is not already a |Distribution|
is turned into one with identical samples. | def concatenate(arrays, axis=0, out=None, dtype=None, casting="same_kind"):
"""Concatenate arrays.
Like `numpy.concatenate`, but any array that is not already a |Distribution|
is turned into one with identical samples.
"""
n_samples = get_n_samples(*arrays, out)
converted = tuple(
array.distribution
if is_distribution(array)
else (
np.broadcast_to(
array[..., np.newaxis], array.shape + (n_samples,), subok=True
)
if getattr(array, "shape", False)
else array
)
for array in arrays
)
if axis < 0:
axis = axis - 1 # not in-place, just in case.
kwargs = dict(axis=axis, dtype=dtype, casting=casting)
if out is not None:
if is_distribution(out):
kwargs["out"] = out.distribution
else:
raise NotImplementedError
return (converted,), kwargs, out |
Initialize CDS units module. | def _initialize_module():
"""Initialize CDS units module."""
# Local imports to avoid polluting top-level namespace
import numpy as np
from astropy import units as u
from astropy.constants import si as _si
from . import core
# The CDS format also supports power-of-2 prefixes as defined here:
# http://physics.nist.gov/cuu/Units/binary.html
prefixes = core.si_prefixes + core.binary_prefixes
# CDS only uses the short prefixes
prefixes = [(short, short, factor) for (short, long, factor) in prefixes]
# The following units are defined in alphabetical order, directly from
# here: https://vizier.unistra.fr/viz-bin/Unit
mapping = [
(["A"], u.A, "Ampere"),
(["a"], u.a, "year", ["P"]),
(["a0"], _si.a0, "Bohr radius"),
(["al"], u.lyr, "Light year", ["c", "d"]),
(["lyr"], u.lyr, "Light year"),
(["alpha"], _si.alpha, "Fine structure constant"),
((["AA", "Å"], ["Angstrom", "Angstroem"]), u.AA, "Angstrom"),
(["arcmin", "arcm"], u.arcminute, "minute of arc"),
(["arcsec", "arcs"], u.arcsecond, "second of arc"),
(["atm"], _si.atm, "atmosphere"),
(["AU", "au"], u.au, "astronomical unit"),
(["bar"], u.bar, "bar"),
(["barn"], u.barn, "barn"),
(["bit"], u.bit, "bit"),
(["byte"], u.byte, "byte"),
(["C"], u.C, "Coulomb"),
(["c"], _si.c, "speed of light", ["p"]),
(["cal"], 4.1854 * u.J, "calorie"),
(["cd"], u.cd, "candela"),
(["ct"], u.ct, "count"),
(["D"], u.D, "Debye (dipole)"),
(["d"], u.d, "Julian day", ["c"]),
((["deg", "°"], ["degree"]), u.degree, "degree"),
(["dyn"], u.dyn, "dyne"),
(["e"], _si.e, "electron charge", ["m"]),
(["eps0"], _si.eps0, "electric constant"),
(["erg"], u.erg, "erg"),
(["eV"], u.eV, "electron volt"),
(["F"], u.F, "Farad"),
(["G"], _si.G, "Gravitation constant"),
(["g"], u.g, "gram"),
(["gauss"], u.G, "Gauss"),
(["geoMass", "Mgeo"], u.M_earth, "Earth mass"),
(["H"], u.H, "Henry"),
(["h"], u.h, "hour", ["p"]),
(["hr"], u.h, "hour"),
(["\\h"], _si.h, "Planck constant"),
(["Hz"], u.Hz, "Hertz"),
(["inch"], 0.0254 * u.m, "inch"),
(["J"], u.J, "Joule"),
(["JD"], u.d, "Julian day", ["M"]),
(["jovMass", "Mjup"], u.M_jup, "Jupiter mass"),
(["Jy"], u.Jy, "Jansky"),
(["K"], u.K, "Kelvin"),
(["k"], _si.k_B, "Boltzmann"),
(["l"], u.l, "litre", ["a"]),
(["lm"], u.lm, "lumen"),
(["Lsun", "solLum"], u.solLum, "solar luminosity"),
(["lx"], u.lx, "lux"),
(["m"], u.m, "meter"),
(["mag"], u.mag, "magnitude"),
(["me"], _si.m_e, "electron mass"),
(["min"], u.minute, "minute"),
(["MJD"], u.d, "Julian day"),
(["mmHg"], 133.322387415 * u.Pa, "millimeter of mercury"),
(["mol"], u.mol, "mole"),
(["mp"], _si.m_p, "proton mass"),
(["Msun", "solMass"], u.solMass, "solar mass"),
((["mu0", "µ0"], []), _si.mu0, "magnetic constant"),
(["muB"], _si.muB, "Bohr magneton"),
(["N"], u.N, "Newton"),
(["Ohm"], u.Ohm, "Ohm"),
(["Pa"], u.Pa, "Pascal"),
(["pc"], u.pc, "parsec"),
(["ph"], u.ph, "photon"),
(["pi"], u.Unit(np.pi), "π"),
(["pix"], u.pix, "pixel"),
(["ppm"], u.Unit(1e-6), "parts per million"),
(["R"], _si.R, "gas constant"),
(["rad"], u.radian, "radian"),
(["Rgeo"], _si.R_earth, "Earth equatorial radius"),
(["Rjup"], _si.R_jup, "Jupiter equatorial radius"),
(["Rsun", "solRad"], u.solRad, "solar radius"),
(["Ry"], u.Ry, "Rydberg"),
(["S"], u.S, "Siemens"),
(["s", "sec"], u.s, "second"),
(["sr"], u.sr, "steradian"),
(["Sun"], u.Sun, "solar unit"),
(["T"], u.T, "Tesla"),
(["t"], 1e3 * u.kg, "metric tonne", ["c"]),
(["u"], _si.u, "atomic mass", ["da", "a"]),
(["V"], u.V, "Volt"),
(["W"], u.W, "Watt"),
(["Wb"], u.Wb, "Weber"),
(["yr"], u.a, "year"),
]
for entry in mapping:
if len(entry) == 3:
names, unit, doc = entry
excludes = []
else:
names, unit, doc, excludes = entry
core.def_unit(
names,
unit,
prefixes=prefixes,
namespace=_ns,
doc=doc,
exclude_prefixes=excludes,
)
core.def_unit(["µas"], u.microarcsecond, doc="microsecond of arc", namespace=_ns)
core.def_unit(["mas"], u.milliarcsecond, doc="millisecond of arc", namespace=_ns)
core.def_unit(
["---", "-"],
u.dimensionless_unscaled,
doc="dimensionless and unscaled",
namespace=_ns,
)
core.def_unit(["%"], u.percent, doc="percent", namespace=_ns)
# The Vizier "standard" defines this in units of "kg s-3", but
# that may not make a whole lot of sense, so here we just define
# it as its own new disconnected unit.
core.def_unit(["Crab"], prefixes=prefixes, namespace=_ns, doc="Crab (X-ray) flux") |
Enable CDS units so they appear in results of
`~astropy.units.UnitBase.find_equivalent_units` and
`~astropy.units.UnitBase.compose`. This will disable
all of the "default" `astropy.units` units, since there
are some namespace clashes between the two.
This may be used with the ``with`` statement to enable CDS
units only temporarily. | def enable():
"""
Enable CDS units so they appear in results of
`~astropy.units.UnitBase.find_equivalent_units` and
`~astropy.units.UnitBase.compose`. This will disable
all of the "default" `astropy.units` units, since there
are some namespace clashes between the two.
This may be used with the ``with`` statement to enable CDS
units only temporarily.
"""
# Local imports to avoid cyclical import and polluting namespace
import inspect
from .core import set_enabled_units
return set_enabled_units(inspect.getmodule(enable)) |
Given a list of sequences, modules or dictionaries of units, or
single units, return a flat set of all the units found. | def _flatten_units_collection(items):
"""
Given a list of sequences, modules or dictionaries of units, or
single units, return a flat set of all the units found.
"""
if not isinstance(items, list):
items = [items]
result = set()
for item in items:
if isinstance(item, UnitBase):
result.add(item)
else:
if isinstance(item, dict):
units = item.values()
elif inspect.ismodule(item):
units = vars(item).values()
elif isiterable(item):
units = item
else:
continue
for unit in units:
if isinstance(unit, UnitBase):
result.add(unit)
return result |
Normalizes equivalencies ensuring each is a 4-tuple.
The resulting tuple is of the form::
(from_unit, to_unit, forward_func, backward_func)
Parameters
----------
equivalencies : list of equivalency pairs
Raises
------
ValueError if an equivalency cannot be interpreted | def _normalize_equivalencies(equivalencies):
"""Normalizes equivalencies ensuring each is a 4-tuple.
The resulting tuple is of the form::
(from_unit, to_unit, forward_func, backward_func)
Parameters
----------
equivalencies : list of equivalency pairs
Raises
------
ValueError if an equivalency cannot be interpreted
"""
if equivalencies is None:
return []
normalized = []
for i, equiv in enumerate(equivalencies):
if len(equiv) == 2:
funit, tunit = equiv
a = b = lambda x: x
elif len(equiv) == 3:
funit, tunit, a = equiv
b = a
elif len(equiv) == 4:
funit, tunit, a, b = equiv
else:
raise ValueError(f"Invalid equivalence entry {i}: {equiv!r}")
if not (
funit is Unit(funit)
and (tunit is None or tunit is Unit(tunit))
and callable(a)
and callable(b)
):
raise ValueError(f"Invalid equivalence entry {i}: {equiv!r}")
normalized.append((funit, tunit, a, b))
return normalized |
Sets the units enabled in the unit registry.
These units are searched when using
`UnitBase.find_equivalent_units`, for example.
This may be used either permanently, or as a context manager using
the ``with`` statement (see example below).
Parameters
----------
units : list of sequence, dict, or module
This is a list of things in which units may be found
(sequences, dicts or modules), or units themselves. The
entire set will be "enabled" for searching through by methods
like `UnitBase.find_equivalent_units` and `UnitBase.compose`.
Examples
--------
>>> from astropy import units as u
>>> with u.set_enabled_units([u.pc]):
... u.m.find_equivalent_units()
...
Primary name | Unit definition | Aliases
[
pc | 3.08568e+16 m | parsec ,
]
>>> u.m.find_equivalent_units()
Primary name | Unit definition | Aliases
[
AU | 1.49598e+11 m | au, astronomical_unit ,
Angstrom | 1e-10 m | AA, angstrom ,
cm | 0.01 m | centimeter ,
earthRad | 6.3781e+06 m | R_earth, Rearth ,
jupiterRad | 7.1492e+07 m | R_jup, Rjup, R_jupiter, Rjupiter ,
lsec | 2.99792e+08 m | lightsecond ,
lyr | 9.46073e+15 m | lightyear ,
m | irreducible | meter ,
micron | 1e-06 m | ,
pc | 3.08568e+16 m | parsec ,
solRad | 6.957e+08 m | R_sun, Rsun ,
] | def set_enabled_units(units):
"""
Sets the units enabled in the unit registry.
These units are searched when using
`UnitBase.find_equivalent_units`, for example.
This may be used either permanently, or as a context manager using
the ``with`` statement (see example below).
Parameters
----------
units : list of sequence, dict, or module
This is a list of things in which units may be found
(sequences, dicts or modules), or units themselves. The
entire set will be "enabled" for searching through by methods
like `UnitBase.find_equivalent_units` and `UnitBase.compose`.
Examples
--------
>>> from astropy import units as u
>>> with u.set_enabled_units([u.pc]):
... u.m.find_equivalent_units()
...
Primary name | Unit definition | Aliases
[
pc | 3.08568e+16 m | parsec ,
]
>>> u.m.find_equivalent_units()
Primary name | Unit definition | Aliases
[
AU | 1.49598e+11 m | au, astronomical_unit ,
Angstrom | 1e-10 m | AA, angstrom ,
cm | 0.01 m | centimeter ,
earthRad | 6.3781e+06 m | R_earth, Rearth ,
jupiterRad | 7.1492e+07 m | R_jup, Rjup, R_jupiter, Rjupiter ,
lsec | 2.99792e+08 m | lightsecond ,
lyr | 9.46073e+15 m | lightyear ,
m | irreducible | meter ,
micron | 1e-06 m | ,
pc | 3.08568e+16 m | parsec ,
solRad | 6.957e+08 m | R_sun, Rsun ,
]
"""
# get a context with a new registry, using equivalencies of the current one
context = _UnitContext(equivalencies=get_current_unit_registry().equivalencies)
# in this new current registry, enable the units requested
get_current_unit_registry().set_enabled_units(units)
return context |
Adds to the set of units enabled in the unit registry.
These units are searched when using
`UnitBase.find_equivalent_units`, for example.
This may be used either permanently, or as a context manager using
the ``with`` statement (see example below).
Parameters
----------
units : list of sequence, dict, or module
This is a list of things in which units may be found
(sequences, dicts or modules), or units themselves. The
entire set will be added to the "enabled" set for searching
through by methods like `UnitBase.find_equivalent_units` and
`UnitBase.compose`.
Examples
--------
>>> from astropy import units as u
>>> from astropy.units import imperial
>>> with u.add_enabled_units(imperial):
... u.m.find_equivalent_units()
...
Primary name | Unit definition | Aliases
[
AU | 1.49598e+11 m | au, astronomical_unit ,
Angstrom | 1e-10 m | AA, angstrom ,
cm | 0.01 m | centimeter ,
earthRad | 6.3781e+06 m | R_earth, Rearth ,
ft | 0.3048 m | foot ,
fur | 201.168 m | furlong ,
inch | 0.0254 m | ,
jupiterRad | 7.1492e+07 m | R_jup, Rjup, R_jupiter, Rjupiter ,
lsec | 2.99792e+08 m | lightsecond ,
lyr | 9.46073e+15 m | lightyear ,
m | irreducible | meter ,
mi | 1609.34 m | mile ,
micron | 1e-06 m | ,
mil | 2.54e-05 m | thou ,
nmi | 1852 m | nauticalmile, NM ,
pc | 3.08568e+16 m | parsec ,
solRad | 6.957e+08 m | R_sun, Rsun ,
yd | 0.9144 m | yard ,
] | def add_enabled_units(units):
"""
Adds to the set of units enabled in the unit registry.
These units are searched when using
`UnitBase.find_equivalent_units`, for example.
This may be used either permanently, or as a context manager using
the ``with`` statement (see example below).
Parameters
----------
units : list of sequence, dict, or module
This is a list of things in which units may be found
(sequences, dicts or modules), or units themselves. The
entire set will be added to the "enabled" set for searching
through by methods like `UnitBase.find_equivalent_units` and
`UnitBase.compose`.
Examples
--------
>>> from astropy import units as u
>>> from astropy.units import imperial
>>> with u.add_enabled_units(imperial):
... u.m.find_equivalent_units()
...
Primary name | Unit definition | Aliases
[
AU | 1.49598e+11 m | au, astronomical_unit ,
Angstrom | 1e-10 m | AA, angstrom ,
cm | 0.01 m | centimeter ,
earthRad | 6.3781e+06 m | R_earth, Rearth ,
ft | 0.3048 m | foot ,
fur | 201.168 m | furlong ,
inch | 0.0254 m | ,
jupiterRad | 7.1492e+07 m | R_jup, Rjup, R_jupiter, Rjupiter ,
lsec | 2.99792e+08 m | lightsecond ,
lyr | 9.46073e+15 m | lightyear ,
m | irreducible | meter ,
mi | 1609.34 m | mile ,
micron | 1e-06 m | ,
mil | 2.54e-05 m | thou ,
nmi | 1852 m | nauticalmile, NM ,
pc | 3.08568e+16 m | parsec ,
solRad | 6.957e+08 m | R_sun, Rsun ,
yd | 0.9144 m | yard ,
]
"""
# get a context with a new registry, which is a copy of the current one
context = _UnitContext(get_current_unit_registry())
# in this new current registry, enable the further units requested
get_current_unit_registry().add_enabled_units(units)
return context |
Sets the equivalencies enabled in the unit registry.
These equivalencies are used if no explicit equivalencies are given,
both in unit conversion and in finding equivalent units.
This is meant in particular for allowing angles to be dimensionless.
Use with care.
Parameters
----------
equivalencies : list of tuple
list of equivalent pairs, e.g., as returned by
`~astropy.units.equivalencies.dimensionless_angles`.
Examples
--------
Exponentiation normally requires dimensionless quantities. To avoid
problems with complex phases::
>>> from astropy import units as u
>>> with u.set_enabled_equivalencies(u.dimensionless_angles()):
... phase = 0.5 * u.cycle
... np.exp(1j*phase) # doctest: +FLOAT_CMP
<Quantity -1.+1.2246468e-16j> | def set_enabled_equivalencies(equivalencies):
"""
Sets the equivalencies enabled in the unit registry.
These equivalencies are used if no explicit equivalencies are given,
both in unit conversion and in finding equivalent units.
This is meant in particular for allowing angles to be dimensionless.
Use with care.
Parameters
----------
equivalencies : list of tuple
list of equivalent pairs, e.g., as returned by
`~astropy.units.equivalencies.dimensionless_angles`.
Examples
--------
Exponentiation normally requires dimensionless quantities. To avoid
problems with complex phases::
>>> from astropy import units as u
>>> with u.set_enabled_equivalencies(u.dimensionless_angles()):
... phase = 0.5 * u.cycle
... np.exp(1j*phase) # doctest: +FLOAT_CMP
<Quantity -1.+1.2246468e-16j>
"""
# get a context with a new registry, using all units of the current one
context = _UnitContext(get_current_unit_registry())
# in this new current registry, enable the equivalencies requested
get_current_unit_registry().set_enabled_equivalencies(equivalencies)
return context |
Adds to the equivalencies enabled in the unit registry.
These equivalencies are used if no explicit equivalencies are given,
both in unit conversion and in finding equivalent units.
This is meant in particular for allowing angles to be dimensionless.
Since no equivalencies are enabled by default, generally it is recommended
to use `set_enabled_equivalencies`.
Parameters
----------
equivalencies : list of tuple
list of equivalent pairs, e.g., as returned by
`~astropy.units.equivalencies.dimensionless_angles`. | def add_enabled_equivalencies(equivalencies):
"""
Adds to the equivalencies enabled in the unit registry.
These equivalencies are used if no explicit equivalencies are given,
both in unit conversion and in finding equivalent units.
This is meant in particular for allowing angles to be dimensionless.
Since no equivalencies are enabled by default, generally it is recommended
to use `set_enabled_equivalencies`.
Parameters
----------
equivalencies : list of tuple
list of equivalent pairs, e.g., as returned by
`~astropy.units.equivalencies.dimensionless_angles`.
"""
# get a context with a new registry, which is a copy of the current one
context = _UnitContext(get_current_unit_registry())
# in this new current registry, enable the further equivalencies requested
get_current_unit_registry().add_enabled_equivalencies(equivalencies)
return context |
Set aliases for units.
This is useful for handling alternate spellings for units, or
misspelled units in files one is trying to read.
Parameters
----------
aliases : dict of str, Unit
The aliases to set. The keys must be the string aliases, and values
must be the `astropy.units.Unit` that the alias will be mapped to.
Raises
------
ValueError
If the alias already defines a different unit.
Examples
--------
To temporarily allow for a misspelled 'Angstroem' unit::
>>> from astropy import units as u
>>> with u.set_enabled_aliases({'Angstroem': u.Angstrom}):
... print(u.Unit("Angstroem", parse_strict="raise") == u.Angstrom)
True | def set_enabled_aliases(aliases):
"""
Set aliases for units.
This is useful for handling alternate spellings for units, or
misspelled units in files one is trying to read.
Parameters
----------
aliases : dict of str, Unit
The aliases to set. The keys must be the string aliases, and values
must be the `astropy.units.Unit` that the alias will be mapped to.
Raises
------
ValueError
If the alias already defines a different unit.
Examples
--------
To temporarily allow for a misspelled 'Angstroem' unit::
>>> from astropy import units as u
>>> with u.set_enabled_aliases({'Angstroem': u.Angstrom}):
... print(u.Unit("Angstroem", parse_strict="raise") == u.Angstrom)
True
"""
# get a context with a new registry, which is a copy of the current one
context = _UnitContext(get_current_unit_registry())
# in this new current registry, enable the further equivalencies requested
get_current_unit_registry().set_enabled_aliases(aliases)
return context |
Add aliases for units.
This is useful for handling alternate spellings for units, or
misspelled units in files one is trying to read.
Since no aliases are enabled by default, generally it is recommended
to use `set_enabled_aliases`.
Parameters
----------
aliases : dict of str, Unit
The aliases to add. The keys must be the string aliases, and values
must be the `astropy.units.Unit` that the alias will be mapped to.
Raises
------
ValueError
If the alias already defines a different unit.
Examples
--------
To temporarily allow for a misspelled 'Angstroem' unit::
>>> from astropy import units as u
>>> with u.add_enabled_aliases({'Angstroem': u.Angstrom}):
... print(u.Unit("Angstroem", parse_strict="raise") == u.Angstrom)
True | def add_enabled_aliases(aliases):
"""
Add aliases for units.
This is useful for handling alternate spellings for units, or
misspelled units in files one is trying to read.
Since no aliases are enabled by default, generally it is recommended
to use `set_enabled_aliases`.
Parameters
----------
aliases : dict of str, Unit
The aliases to add. The keys must be the string aliases, and values
must be the `astropy.units.Unit` that the alias will be mapped to.
Raises
------
ValueError
If the alias already defines a different unit.
Examples
--------
To temporarily allow for a misspelled 'Angstroem' unit::
>>> from astropy import units as u
>>> with u.add_enabled_aliases({'Angstroem': u.Angstrom}):
... print(u.Unit("Angstroem", parse_strict="raise") == u.Angstrom)
True
"""
# get a context with a new registry, which is a copy of the current one
context = _UnitContext(get_current_unit_registry())
# in this new current registry, enable the further equivalencies requested
get_current_unit_registry().add_enabled_aliases(aliases)
return context |
This is used to reconstruct units when passed around by
multiprocessing. | def _recreate_irreducible_unit(cls, names, registered):
"""
This is used to reconstruct units when passed around by
multiprocessing.
"""
registry = get_current_unit_registry().registry
if names[0] in registry:
# If in local registry return that object.
return registry[names[0]]
else:
# otherwise, recreate the unit.
unit = cls(names)
if registered:
# If not in local registry but registered in origin registry,
# enable unit in local registry.
get_current_unit_registry().add_enabled_units([unit])
return unit |
Set up all of the standard metric prefixes for a unit. This
function should not be used directly, but instead use the
`prefixes` kwarg on `def_unit`.
Parameters
----------
excludes : list of str, optional
Any prefixes to exclude from creation to avoid namespace
collisions.
namespace : dict, optional
When provided, inject the unit (and all of its aliases) into
the given namespace dictionary.
prefixes : list, optional
When provided, it is a list of prefix definitions of the form:
(short_names, long_tables, factor) | def _add_prefixes(u, excludes=[], namespace=None, prefixes=False):
"""
Set up all of the standard metric prefixes for a unit. This
function should not be used directly, but instead use the
`prefixes` kwarg on `def_unit`.
Parameters
----------
excludes : list of str, optional
Any prefixes to exclude from creation to avoid namespace
collisions.
namespace : dict, optional
When provided, inject the unit (and all of its aliases) into
the given namespace dictionary.
prefixes : list, optional
When provided, it is a list of prefix definitions of the form:
(short_names, long_tables, factor)
"""
if prefixes is True:
prefixes = si_prefixes
elif prefixes is False:
prefixes = []
for short, full, factor in prefixes:
names = []
format = {}
for prefix in short:
if prefix in excludes:
continue
for alias in u.short_names:
names.append(prefix + alias)
# This is a hack to use Greek mu as a prefix
# for some formatters.
if prefix == "u":
format["latex"] = r"\mu " + u.get_format_name("latex")
format["unicode"] = "\N{MICRO SIGN}" + u.get_format_name("unicode")
for key, val in u._format.items():
format.setdefault(key, prefix + val)
for prefix in full:
if prefix in excludes:
continue
for alias in u.long_names:
names.append(prefix + alias)
if len(names):
PrefixUnit(
names,
CompositeUnit(factor, [u], [1], _error_check=False),
namespace=namespace,
format=format,
) |
Factory function for defining new units.
Parameters
----------
s : str or list of str
The name of the unit. If a list, the first element is the
canonical (short) name, and the rest of the elements are
aliases.
represents : UnitBase instance, optional
The unit that this named unit represents. If not provided,
a new `IrreducibleUnit` is created.
doc : str, optional
A docstring describing the unit.
format : dict, optional
A mapping to format-specific representations of this unit.
For example, for the ``Ohm`` unit, it might be nice to
have it displayed as ``\Omega`` by the ``latex``
formatter. In that case, `format` argument should be set
to::
{'latex': r'\Omega'}
prefixes : bool or list, optional
When `True`, generate all of the SI prefixed versions of the
unit as well. For example, for a given unit ``m``, will
generate ``mm``, ``cm``, ``km``, etc. When a list, it is a list of
prefix definitions of the form:
(short_names, long_tables, factor)
Default is `False`. This function always returns the base
unit object, even if multiple scaled versions of the unit were
created.
exclude_prefixes : list of str, optional
If any of the SI prefixes need to be excluded, they may be
listed here. For example, ``Pa`` can be interpreted either as
"petaannum" or "Pascal". Therefore, when defining the
prefixes for ``a``, ``exclude_prefixes`` should be set to
``["P"]``.
namespace : dict, optional
When provided, inject the unit (and all of its aliases and
prefixes), into the given namespace dictionary.
Returns
-------
unit : `~astropy.units.UnitBase`
The newly-defined unit, or a matching unit that was already
defined. | def def_unit(
s,
represents=None,
doc=None,
format=None,
prefixes=False,
exclude_prefixes=[],
namespace=None,
):
"""
Factory function for defining new units.
Parameters
----------
s : str or list of str
The name of the unit. If a list, the first element is the
canonical (short) name, and the rest of the elements are
aliases.
represents : UnitBase instance, optional
The unit that this named unit represents. If not provided,
a new `IrreducibleUnit` is created.
doc : str, optional
A docstring describing the unit.
format : dict, optional
A mapping to format-specific representations of this unit.
For example, for the ``Ohm`` unit, it might be nice to
have it displayed as ``\\Omega`` by the ``latex``
formatter. In that case, `format` argument should be set
to::
{'latex': r'\\Omega'}
prefixes : bool or list, optional
When `True`, generate all of the SI prefixed versions of the
unit as well. For example, for a given unit ``m``, will
generate ``mm``, ``cm``, ``km``, etc. When a list, it is a list of
prefix definitions of the form:
(short_names, long_tables, factor)
Default is `False`. This function always returns the base
unit object, even if multiple scaled versions of the unit were
created.
exclude_prefixes : list of str, optional
If any of the SI prefixes need to be excluded, they may be
listed here. For example, ``Pa`` can be interpreted either as
"petaannum" or "Pascal". Therefore, when defining the
prefixes for ``a``, ``exclude_prefixes`` should be set to
``["P"]``.
namespace : dict, optional
When provided, inject the unit (and all of its aliases and
prefixes), into the given namespace dictionary.
Returns
-------
unit : `~astropy.units.UnitBase`
The newly-defined unit, or a matching unit that was already
defined.
"""
if represents is not None:
result = Unit(s, represents, namespace=namespace, doc=doc, format=format)
else:
result = IrreducibleUnit(s, namespace=namespace, doc=doc, format=format)
if prefixes:
_add_prefixes(
result, excludes=exclude_prefixes, namespace=namespace, prefixes=prefixes
)
return result |
Validate value is acceptable for conversion purposes.
Will convert into an array if not a scalar, and can be converted
into an array
Parameters
----------
value : int or float value, or sequence of such values
Returns
-------
Scalar value or numpy array
Raises
------
ValueError
If value is not as expected | def _condition_arg(value):
"""
Validate value is acceptable for conversion purposes.
Will convert into an array if not a scalar, and can be converted
into an array
Parameters
----------
value : int or float value, or sequence of such values
Returns
-------
Scalar value or numpy array
Raises
------
ValueError
If value is not as expected
"""
if isinstance(value, (np.ndarray, float, int, complex, np.void)):
return value
avalue = np.array(value)
if avalue.dtype.kind not in ["i", "f", "c"]:
raise ValueError(
"Value not scalar compatible or convertible to "
"an int, float, or complex array"
)
return avalue |
Function that just multiplies the value by unity.
This is a separate function so it can be recognized and
discarded in unit conversion. | def unit_scale_converter(val):
"""Function that just multiplies the value by unity.
This is a separate function so it can be recognized and
discarded in unit conversion.
"""
return 1.0 * _condition_arg(val) |
From a list of target units (either as strings or unit objects) and physical
types, return a list of Unit objects. | def _get_allowed_units(targets):
"""
From a list of target units (either as strings or unit objects) and physical
types, return a list of Unit objects.
"""
allowed_units = []
for target in targets:
try:
unit = Unit(target)
except (TypeError, ValueError):
try:
unit = get_physical_type(target)._unit
except (TypeError, ValueError, KeyError): # KeyError for Enum
raise ValueError(f"Invalid unit or physical type {target!r}.") from None
allowed_units.append(unit)
return allowed_units |
Validates the object passed in to the wrapped function, ``arg``, with target
unit or physical type, ``target``. | def _validate_arg_value(
param_name, func_name, arg, targets, equivalencies, strict_dimensionless=False
):
"""
Validates the object passed in to the wrapped function, ``arg``, with target
unit or physical type, ``target``.
"""
if len(targets) == 0:
return
allowed_units = _get_allowed_units(targets)
# If dimensionless is an allowed unit and the argument is unit-less,
# allow numbers or numpy arrays with numeric dtypes
if (
dimensionless_unscaled in allowed_units
and not strict_dimensionless
and not hasattr(arg, "unit")
):
if isinstance(arg, Number):
return
elif isinstance(arg, np.ndarray) and np.issubdtype(arg.dtype, np.number):
return
for allowed_unit in allowed_units:
try:
if arg.unit.is_equivalent(allowed_unit, equivalencies=equivalencies):
break
except AttributeError: # Either there is no .unit or no .is_equivalent
if hasattr(arg, "unit"):
error_msg = "a 'unit' attribute without an 'is_equivalent' method"
else:
error_msg = "no 'unit' attribute"
raise TypeError(
f"Argument '{param_name}' to function '{func_name}'"
f" has {error_msg}. You should pass in an astropy "
"Quantity instead."
)
else:
error_msg = (
f"Argument '{param_name}' to function '{func_name}' must "
"be in units convertible to"
)
if len(targets) > 1:
targ_names = ", ".join([f"'{targ}'" for targ in targets])
raise UnitsError(f"{error_msg} one of: {targ_names}.")
else:
raise UnitsError(f"{error_msg} '{targets[0]}'.") |
Enable deprecated units so they appear in results of
`~astropy.units.UnitBase.find_equivalent_units` and
`~astropy.units.UnitBase.compose`.
This may be used with the ``with`` statement to enable deprecated
units only temporarily. | def enable():
"""
Enable deprecated units so they appear in results of
`~astropy.units.UnitBase.find_equivalent_units` and
`~astropy.units.UnitBase.compose`.
This may be used with the ``with`` statement to enable deprecated
units only temporarily.
"""
import inspect
# Local import to avoid cyclical import
# Local import to avoid polluting namespace
from .core import add_enabled_units
return add_enabled_units(inspect.getmodule(enable)) |
Allow angles to be equivalent to dimensionless (with 1 rad = 1 m/m = 1).
It is special compared to other equivalency pairs in that it
allows this independent of the power to which the angle is raised,
and independent of whether it is part of a more complicated unit. | def dimensionless_angles():
"""Allow angles to be equivalent to dimensionless (with 1 rad = 1 m/m = 1).
It is special compared to other equivalency pairs in that it
allows this independent of the power to which the angle is raised,
and independent of whether it is part of a more complicated unit.
"""
return Equivalency([(si.radian, None)], "dimensionless_angles") |
Allow logarithmic units to be converted to dimensionless fractions. | def logarithmic():
"""Allow logarithmic units to be converted to dimensionless fractions."""
return Equivalency(
[(dimensionless_unscaled, function_units.dex, np.log10, lambda x: 10.0**x)],
"logarithmic",
) |
Returns a list of equivalence pairs that handle the conversion
between parallax angle and distance. | def parallax():
"""
Returns a list of equivalence pairs that handle the conversion
between parallax angle and distance.
"""
def parallax_converter(x):
x = np.asanyarray(x)
d = 1 / x
if isiterable(d):
d[d < 0] = np.nan
return d
else:
if d < 0:
return np.array(np.nan)
else:
return d
return Equivalency(
[(si.arcsecond, astrophys.parsec, parallax_converter)], "parallax"
) |
Returns a list of equivalence pairs that handle spectral
wavelength, wave number, frequency, and energy equivalencies.
Allows conversions between wavelength units, wave number units,
frequency units, and energy units as they relate to light.
There are two types of wave number:
* spectroscopic - :math:`1 / \lambda` (per meter)
* angular - :math:`2 \pi / \lambda` (radian per meter) | def spectral():
"""
Returns a list of equivalence pairs that handle spectral
wavelength, wave number, frequency, and energy equivalencies.
Allows conversions between wavelength units, wave number units,
frequency units, and energy units as they relate to light.
There are two types of wave number:
* spectroscopic - :math:`1 / \\lambda` (per meter)
* angular - :math:`2 \\pi / \\lambda` (radian per meter)
"""
c = _si.c.value
h = _si.h.value
hc = h * c
two_pi = 2.0 * np.pi
inv_m_spec = si.m**-1
inv_m_ang = si.radian / si.m
return Equivalency(
[
(si.m, si.Hz, lambda x: c / x),
(si.m, si.J, lambda x: hc / x),
(si.Hz, si.J, lambda x: h * x, lambda x: x / h),
(si.m, inv_m_spec, lambda x: 1.0 / x),
(si.Hz, inv_m_spec, lambda x: x / c, lambda x: c * x),
(si.J, inv_m_spec, lambda x: x / hc, lambda x: hc * x),
(inv_m_spec, inv_m_ang, lambda x: x * two_pi, lambda x: x / two_pi),
(si.m, inv_m_ang, lambda x: two_pi / x),
(si.Hz, inv_m_ang, lambda x: two_pi * x / c, lambda x: c * x / two_pi),
(si.J, inv_m_ang, lambda x: x * two_pi / hc, lambda x: hc * x / two_pi),
],
"spectral",
) |
Returns a list of equivalence pairs that handle spectral density
with regard to wavelength and frequency.
Parameters
----------
wav : `~astropy.units.Quantity`
`~astropy.units.Quantity` associated with values being converted
(e.g., wavelength or frequency).
factor : array_like
If ``wav`` is a |Unit| instead of a |Quantity| then ``factor``
is the value ``wav`` will be multiplied with to convert it to
a |Quantity|.
.. deprecated:: 7.0
``factor`` is deprecated. Pass in ``wav`` as a |Quantity|,
not as a |Unit|. | def spectral_density(wav, factor=None):
"""
Returns a list of equivalence pairs that handle spectral density
with regard to wavelength and frequency.
Parameters
----------
wav : `~astropy.units.Quantity`
`~astropy.units.Quantity` associated with values being converted
(e.g., wavelength or frequency).
factor : array_like
If ``wav`` is a |Unit| instead of a |Quantity| then ``factor``
is the value ``wav`` will be multiplied with to convert it to
a |Quantity|.
.. deprecated:: 7.0
``factor`` is deprecated. Pass in ``wav`` as a |Quantity|,
not as a |Unit|.
"""
from .core import UnitBase
if isinstance(wav, UnitBase):
if factor is None:
raise ValueError("If `wav` is specified as a unit, `factor` should be set")
wav = factor * wav # Convert to Quantity
c_Aps = _si.c.to_value(si.AA / si.s) # Angstrom/s
h_cgs = _si.h.cgs.value # erg * s
hc = c_Aps * h_cgs
# flux density
f_la = cgs.erg / si.angstrom / si.cm**2 / si.s
f_nu = cgs.erg / si.Hz / si.cm**2 / si.s
nu_f_nu = cgs.erg / si.cm**2 / si.s
la_f_la = nu_f_nu
phot_f_la = astrophys.photon / (si.cm**2 * si.s * si.AA)
phot_f_nu = astrophys.photon / (si.cm**2 * si.s * si.Hz)
la_phot_f_la = astrophys.photon / (si.cm**2 * si.s)
# luminosity density
L_nu = cgs.erg / si.s / si.Hz
L_la = cgs.erg / si.s / si.angstrom
nu_L_nu = cgs.erg / si.s
la_L_la = nu_L_nu
phot_L_la = astrophys.photon / (si.s * si.AA)
phot_L_nu = astrophys.photon / (si.s * si.Hz)
# surface brightness (flux equiv)
S_la = cgs.erg / si.angstrom / si.cm**2 / si.s / si.sr
S_nu = cgs.erg / si.Hz / si.cm**2 / si.s / si.sr
nu_S_nu = cgs.erg / si.cm**2 / si.s / si.sr
la_S_la = nu_S_nu
phot_S_la = astrophys.photon / (si.cm**2 * si.s * si.AA * si.sr)
phot_S_nu = astrophys.photon / (si.cm**2 * si.s * si.Hz * si.sr)
# surface brightness (luminosity equiv)
SL_nu = cgs.erg / si.s / si.Hz / si.sr
SL_la = cgs.erg / si.s / si.angstrom / si.sr
nu_SL_nu = cgs.erg / si.s / si.sr
la_SL_la = nu_SL_nu
phot_SL_la = astrophys.photon / (si.s * si.AA * si.sr)
phot_SL_nu = astrophys.photon / (si.s * si.Hz * si.sr)
def f_la_to_f_nu(x):
return x * (wav.to_value(si.AA, spectral()) ** 2 / c_Aps)
def f_la_from_f_nu(x):
return x / (wav.to_value(si.AA, spectral()) ** 2 / c_Aps)
def f_nu_to_nu_f_nu(x):
return x * wav.to_value(si.Hz, spectral())
def f_nu_from_nu_f_nu(x):
return x / wav.to_value(si.Hz, spectral())
def f_la_to_la_f_la(x):
return x * wav.to_value(si.AA, spectral())
def f_la_from_la_f_la(x):
return x / wav.to_value(si.AA, spectral())
def phot_f_la_to_f_la(x):
return hc * x / wav.to_value(si.AA, spectral())
def phot_f_la_from_f_la(x):
return x * wav.to_value(si.AA, spectral()) / hc
def phot_f_la_to_f_nu(x):
return h_cgs * x * wav.to_value(si.AA, spectral())
def phot_f_la_from_f_nu(x):
return x / (wav.to_value(si.AA, spectral()) * h_cgs)
def phot_f_la_to_phot_f_nu(x):
return x * wav.to_value(si.AA, spectral()) ** 2 / c_Aps
def phot_f_la_from_phot_f_nu(x):
return c_Aps * x / wav.to_value(si.AA, spectral()) ** 2
phot_f_nu_to_f_nu = phot_f_la_to_f_la
phot_f_nu_from_f_nu = phot_f_la_from_f_la
def phot_f_nu_to_f_la(x):
return x * hc * c_Aps / wav.to_value(si.AA, spectral()) ** 3
def phot_f_nu_from_f_la(x):
return x * wav.to_value(si.AA, spectral()) ** 3 / (hc * c_Aps)
# for luminosity density
L_nu_to_nu_L_nu = f_nu_to_nu_f_nu
L_nu_from_nu_L_nu = f_nu_from_nu_f_nu
L_la_to_la_L_la = f_la_to_la_f_la
L_la_from_la_L_la = f_la_from_la_f_la
phot_L_la_to_L_la = phot_f_la_to_f_la
phot_L_la_from_L_la = phot_f_la_from_f_la
phot_L_la_to_L_nu = phot_f_la_to_f_nu
phot_L_la_from_L_nu = phot_f_la_from_f_nu
phot_L_la_to_phot_L_nu = phot_f_la_to_phot_f_nu
phot_L_la_from_phot_L_nu = phot_f_la_from_phot_f_nu
phot_L_nu_to_L_nu = phot_f_nu_to_f_nu
phot_L_nu_from_L_nu = phot_f_nu_from_f_nu
phot_L_nu_to_L_la = phot_f_nu_to_f_la
phot_L_nu_from_L_la = phot_f_nu_from_f_la
return Equivalency(
[
# flux
(f_la, f_nu, f_la_to_f_nu, f_la_from_f_nu),
(f_nu, nu_f_nu, f_nu_to_nu_f_nu, f_nu_from_nu_f_nu),
(f_la, la_f_la, f_la_to_la_f_la, f_la_from_la_f_la),
(phot_f_la, f_la, phot_f_la_to_f_la, phot_f_la_from_f_la),
(phot_f_la, f_nu, phot_f_la_to_f_nu, phot_f_la_from_f_nu),
(phot_f_la, phot_f_nu, phot_f_la_to_phot_f_nu, phot_f_la_from_phot_f_nu),
(phot_f_nu, f_nu, phot_f_nu_to_f_nu, phot_f_nu_from_f_nu),
(phot_f_nu, f_la, phot_f_nu_to_f_la, phot_f_nu_from_f_la),
# integrated flux
(la_phot_f_la, la_f_la, phot_f_la_to_f_la, phot_f_la_from_f_la),
# luminosity
(L_la, L_nu, f_la_to_f_nu, f_la_from_f_nu),
(L_nu, nu_L_nu, L_nu_to_nu_L_nu, L_nu_from_nu_L_nu),
(L_la, la_L_la, L_la_to_la_L_la, L_la_from_la_L_la),
(phot_L_la, L_la, phot_L_la_to_L_la, phot_L_la_from_L_la),
(phot_L_la, L_nu, phot_L_la_to_L_nu, phot_L_la_from_L_nu),
(phot_L_la, phot_L_nu, phot_L_la_to_phot_L_nu, phot_L_la_from_phot_L_nu),
(phot_L_nu, L_nu, phot_L_nu_to_L_nu, phot_L_nu_from_L_nu),
(phot_L_nu, L_la, phot_L_nu_to_L_la, phot_L_nu_from_L_la),
# surface brightness (flux equiv)
(S_la, S_nu, f_la_to_f_nu, f_la_from_f_nu),
(S_nu, nu_S_nu, f_nu_to_nu_f_nu, f_nu_from_nu_f_nu),
(S_la, la_S_la, f_la_to_la_f_la, f_la_from_la_f_la),
(phot_S_la, S_la, phot_f_la_to_f_la, phot_f_la_from_f_la),
(phot_S_la, S_nu, phot_f_la_to_f_nu, phot_f_la_from_f_nu),
(phot_S_la, phot_S_nu, phot_f_la_to_phot_f_nu, phot_f_la_from_phot_f_nu),
(phot_S_nu, S_nu, phot_f_nu_to_f_nu, phot_f_nu_from_f_nu),
(phot_S_nu, S_la, phot_f_nu_to_f_la, phot_f_nu_from_f_la),
# surface brightness (luminosity equiv)
(SL_la, SL_nu, f_la_to_f_nu, f_la_from_f_nu),
(SL_nu, nu_SL_nu, L_nu_to_nu_L_nu, L_nu_from_nu_L_nu),
(SL_la, la_SL_la, L_la_to_la_L_la, L_la_from_la_L_la),
(phot_SL_la, SL_la, phot_L_la_to_L_la, phot_L_la_from_L_la),
(phot_SL_la, SL_nu, phot_L_la_to_L_nu, phot_L_la_from_L_nu),
(phot_SL_la, phot_SL_nu, phot_L_la_to_phot_L_nu, phot_L_la_from_phot_L_nu),
(phot_SL_nu, SL_nu, phot_L_nu_to_L_nu, phot_L_nu_from_L_nu),
(phot_SL_nu, SL_la, phot_L_nu_to_L_la, phot_L_nu_from_L_la),
],
"spectral_density",
{"wav": wav, "factor": factor},
) |
Return the equivalency pairs for the radio convention for velocity.
The radio convention for the relation between velocity and frequency is:
:math:`V = c \frac{f_0 - f}{f_0} ; f(V) = f_0 ( 1 - V/c )`
Parameters
----------
rest : `~astropy.units.Quantity`
Any quantity supported by the standard spectral equivalencies
(wavelength, energy, frequency, wave number).
References
----------
`NRAO site defining the conventions <https://www.gb.nrao.edu/~fghigo/gbtdoc/doppler.html>`_
Examples
--------
>>> import astropy.units as u
>>> CO_restfreq = 115.27120*u.GHz # rest frequency of 12 CO 1-0 in GHz
>>> radio_CO_equiv = u.doppler_radio(CO_restfreq)
>>> measured_freq = 115.2832*u.GHz
>>> radio_velocity = measured_freq.to(u.km/u.s, equivalencies=radio_CO_equiv)
>>> radio_velocity # doctest: +FLOAT_CMP
<Quantity -31.209092088877583 km / s> | def doppler_radio(rest):
r"""
Return the equivalency pairs for the radio convention for velocity.
The radio convention for the relation between velocity and frequency is:
:math:`V = c \frac{f_0 - f}{f_0} ; f(V) = f_0 ( 1 - V/c )`
Parameters
----------
rest : `~astropy.units.Quantity`
Any quantity supported by the standard spectral equivalencies
(wavelength, energy, frequency, wave number).
References
----------
`NRAO site defining the conventions <https://www.gb.nrao.edu/~fghigo/gbtdoc/doppler.html>`_
Examples
--------
>>> import astropy.units as u
>>> CO_restfreq = 115.27120*u.GHz # rest frequency of 12 CO 1-0 in GHz
>>> radio_CO_equiv = u.doppler_radio(CO_restfreq)
>>> measured_freq = 115.2832*u.GHz
>>> radio_velocity = measured_freq.to(u.km/u.s, equivalencies=radio_CO_equiv)
>>> radio_velocity # doctest: +FLOAT_CMP
<Quantity -31.209092088877583 km / s>
"""
assert_is_spectral_unit(rest)
ckms = _si.c.to_value("km/s")
def to_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
return (restfreq - x) / (restfreq) * ckms
def from_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
voverc = x / ckms
return restfreq * (1 - voverc)
def to_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
return (x - restwav) / (x) * ckms
def from_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
return restwav * ckms / (ckms - x)
def to_vel_en(x):
resten = rest.to_value(si.eV, equivalencies=spectral())
return (resten - x) / (resten) * ckms
def from_vel_en(x):
resten = rest.to_value(si.eV, equivalencies=spectral())
voverc = x / ckms
return resten * (1 - voverc)
return Equivalency(
[
(si.Hz, si.km / si.s, to_vel_freq, from_vel_freq),
(si.AA, si.km / si.s, to_vel_wav, from_vel_wav),
(si.eV, si.km / si.s, to_vel_en, from_vel_en),
],
"doppler_radio",
{"rest": rest},
) |
Return the equivalency pairs for the optical convention for velocity.
The optical convention for the relation between velocity and frequency is:
:math:`V = c \frac{f_0 - f}{f } ; f(V) = f_0 ( 1 + V/c )^{-1}`
Parameters
----------
rest : `~astropy.units.Quantity`
Any quantity supported by the standard spectral equivalencies
(wavelength, energy, frequency, wave number).
References
----------
`NRAO site defining the conventions <https://www.gb.nrao.edu/~fghigo/gbtdoc/doppler.html>`_
Examples
--------
>>> import astropy.units as u
>>> CO_restfreq = 115.27120*u.GHz # rest frequency of 12 CO 1-0 in GHz
>>> optical_CO_equiv = u.doppler_optical(CO_restfreq)
>>> measured_freq = 115.2832*u.GHz
>>> optical_velocity = measured_freq.to(u.km/u.s, equivalencies=optical_CO_equiv)
>>> optical_velocity # doctest: +FLOAT_CMP
<Quantity -31.20584348799674 km / s> | def doppler_optical(rest):
r"""
Return the equivalency pairs for the optical convention for velocity.
The optical convention for the relation between velocity and frequency is:
:math:`V = c \frac{f_0 - f}{f } ; f(V) = f_0 ( 1 + V/c )^{-1}`
Parameters
----------
rest : `~astropy.units.Quantity`
Any quantity supported by the standard spectral equivalencies
(wavelength, energy, frequency, wave number).
References
----------
`NRAO site defining the conventions <https://www.gb.nrao.edu/~fghigo/gbtdoc/doppler.html>`_
Examples
--------
>>> import astropy.units as u
>>> CO_restfreq = 115.27120*u.GHz # rest frequency of 12 CO 1-0 in GHz
>>> optical_CO_equiv = u.doppler_optical(CO_restfreq)
>>> measured_freq = 115.2832*u.GHz
>>> optical_velocity = measured_freq.to(u.km/u.s, equivalencies=optical_CO_equiv)
>>> optical_velocity # doctest: +FLOAT_CMP
<Quantity -31.20584348799674 km / s>
"""
assert_is_spectral_unit(rest)
ckms = _si.c.to_value("km/s")
def to_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
return ckms * (restfreq - x) / x
def from_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
voverc = x / ckms
return restfreq / (1 + voverc)
def to_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
return ckms * (x / restwav - 1)
def from_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
voverc = x / ckms
return restwav * (1 + voverc)
def to_vel_en(x):
resten = rest.to_value(si.eV, equivalencies=spectral())
return ckms * (resten - x) / x
def from_vel_en(x):
resten = rest.to_value(si.eV, equivalencies=spectral())
voverc = x / ckms
return resten / (1 + voverc)
return Equivalency(
[
(si.Hz, si.km / si.s, to_vel_freq, from_vel_freq),
(si.AA, si.km / si.s, to_vel_wav, from_vel_wav),
(si.eV, si.km / si.s, to_vel_en, from_vel_en),
],
"doppler_optical",
{"rest": rest},
) |
Return the equivalency pairs for the relativistic convention for velocity.
The full relativistic convention for the relation between velocity and frequency is:
:math:`V = c \frac{f_0^2 - f^2}{f_0^2 + f^2} ; f(V) = f_0 \frac{\left(1 - (V/c)^2\right)^{1/2}}{(1+V/c)}`
Parameters
----------
rest : `~astropy.units.Quantity`
Any quantity supported by the standard spectral equivalencies
(wavelength, energy, frequency, wave number).
References
----------
`NRAO site defining the conventions <https://www.gb.nrao.edu/~fghigo/gbtdoc/doppler.html>`_
Examples
--------
>>> import astropy.units as u
>>> CO_restfreq = 115.27120*u.GHz # rest frequency of 12 CO 1-0 in GHz
>>> relativistic_CO_equiv = u.doppler_relativistic(CO_restfreq)
>>> measured_freq = 115.2832*u.GHz
>>> relativistic_velocity = measured_freq.to(u.km/u.s, equivalencies=relativistic_CO_equiv)
>>> relativistic_velocity # doctest: +FLOAT_CMP
<Quantity -31.207467619351537 km / s>
>>> measured_velocity = 1250 * u.km/u.s
>>> relativistic_frequency = measured_velocity.to(u.GHz, equivalencies=relativistic_CO_equiv)
>>> relativistic_frequency # doctest: +FLOAT_CMP
<Quantity 114.79156866993588 GHz>
>>> relativistic_wavelength = measured_velocity.to(u.mm, equivalencies=relativistic_CO_equiv)
>>> relativistic_wavelength # doctest: +FLOAT_CMP
<Quantity 2.6116243681798923 mm> | def doppler_relativistic(rest):
r"""
Return the equivalency pairs for the relativistic convention for velocity.
The full relativistic convention for the relation between velocity and frequency is:
:math:`V = c \frac{f_0^2 - f^2}{f_0^2 + f^2} ; f(V) = f_0 \frac{\left(1 - (V/c)^2\right)^{1/2}}{(1+V/c)}`
Parameters
----------
rest : `~astropy.units.Quantity`
Any quantity supported by the standard spectral equivalencies
(wavelength, energy, frequency, wave number).
References
----------
`NRAO site defining the conventions <https://www.gb.nrao.edu/~fghigo/gbtdoc/doppler.html>`_
Examples
--------
>>> import astropy.units as u
>>> CO_restfreq = 115.27120*u.GHz # rest frequency of 12 CO 1-0 in GHz
>>> relativistic_CO_equiv = u.doppler_relativistic(CO_restfreq)
>>> measured_freq = 115.2832*u.GHz
>>> relativistic_velocity = measured_freq.to(u.km/u.s, equivalencies=relativistic_CO_equiv)
>>> relativistic_velocity # doctest: +FLOAT_CMP
<Quantity -31.207467619351537 km / s>
>>> measured_velocity = 1250 * u.km/u.s
>>> relativistic_frequency = measured_velocity.to(u.GHz, equivalencies=relativistic_CO_equiv)
>>> relativistic_frequency # doctest: +FLOAT_CMP
<Quantity 114.79156866993588 GHz>
>>> relativistic_wavelength = measured_velocity.to(u.mm, equivalencies=relativistic_CO_equiv)
>>> relativistic_wavelength # doctest: +FLOAT_CMP
<Quantity 2.6116243681798923 mm>
"""
assert_is_spectral_unit(rest)
ckms = _si.c.to_value("km/s")
def to_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
return (restfreq**2 - x**2) / (restfreq**2 + x**2) * ckms
def from_vel_freq(x):
restfreq = rest.to_value(si.Hz, equivalencies=spectral())
voverc = x / ckms
return restfreq * ((1 - voverc) / (1 + (voverc))) ** 0.5
def to_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
return (x**2 - restwav**2) / (restwav**2 + x**2) * ckms
def from_vel_wav(x):
restwav = rest.to_value(si.AA, spectral())
voverc = x / ckms
return restwav * ((1 + voverc) / (1 - voverc)) ** 0.5
def to_vel_en(x):
resten = rest.to_value(si.eV, spectral())
return (resten**2 - x**2) / (resten**2 + x**2) * ckms
def from_vel_en(x):
resten = rest.to_value(si.eV, spectral())
voverc = x / ckms
return resten * ((1 - voverc) / (1 + (voverc))) ** 0.5
return Equivalency(
[
(si.Hz, si.km / si.s, to_vel_freq, from_vel_freq),
(si.AA, si.km / si.s, to_vel_wav, from_vel_wav),
(si.eV, si.km / si.s, to_vel_en, from_vel_en),
],
"doppler_relativistic",
{"rest": rest},
) |
Returns the equivalence between Doppler redshift (unitless) and radial velocity.
.. note::
This equivalency is not compatible with cosmological
redshift in `astropy.cosmology.units`. | def doppler_redshift():
"""
Returns the equivalence between Doppler redshift (unitless) and radial velocity.
.. note::
This equivalency is not compatible with cosmological
redshift in `astropy.cosmology.units`.
"""
rv_unit = si.km / si.s
C_KMS = _si.c.to_value(rv_unit)
def convert_z_to_rv(z):
zponesq = (1 + z) ** 2
return C_KMS * (zponesq - 1) / (zponesq + 1)
def convert_rv_to_z(rv):
beta = rv / C_KMS
return np.sqrt((1 + beta) / (1 - beta)) - 1
return Equivalency(
[(dimensionless_unscaled, rv_unit, convert_z_to_rv, convert_rv_to_z)],
"doppler_redshift",
) |
Returns the equivalence between amu and molar mass. | def molar_mass_amu():
"""
Returns the equivalence between amu and molar mass.
"""
return Equivalency([(si.g / si.mol, misc.u)], "molar_mass_amu") |
Returns a list of equivalence pairs that handle the conversion
between mass and energy. | def mass_energy():
"""
Returns a list of equivalence pairs that handle the conversion
between mass and energy.
"""
c2 = _si.c.value**2
return Equivalency(
[
(si.kg, si.J, lambda x: x * c2, lambda x: x / c2),
(si.kg / si.m**2, si.J / si.m**2, lambda x: x * c2, lambda x: x / c2),
(si.kg / si.m**3, si.J / si.m**3, lambda x: x * c2, lambda x: x / c2),
(si.kg / si.s, si.J / si.s, lambda x: x * c2, lambda x: x / c2),
],
"mass_energy",
) |
Defines the conversion between Jy/sr and "brightness temperature",
:math:`T_B`, in Kelvins. The brightness temperature is a unit very
commonly used in radio astronomy. See, e.g., "Tools of Radio Astronomy"
(Wilson 2009) eqn 8.16 and eqn 8.19 (these pages are available on `google
books
<https://books.google.com/books?id=9KHw6R8rQEMC&pg=PA179&source=gbs_toc_r&cad=4#v=onepage&q&f=false>`__).
:math:`T_B \equiv S_\nu / \left(2 k \nu^2 / c^2 \right)`
If the input is in Jy/beam or Jy (assuming it came from a single beam), the
beam area is essential for this computation: the brightness temperature is
inversely proportional to the beam area.
Parameters
----------
frequency : `~astropy.units.Quantity`
The observed ``spectral`` equivalent `~astropy.units.Unit` (e.g.,
frequency or wavelength). The variable is named 'frequency' because it
is more commonly used in radio astronomy.
BACKWARD COMPATIBILITY NOTE: previous versions of the brightness
temperature equivalency used the keyword ``disp``, which is no longer
supported.
beam_area : `~astropy.units.Quantity` ['solid angle']
Beam area in angular units, i.e. steradian equivalent
Examples
--------
Arecibo C-band beam::
>>> import numpy as np
>>> from astropy import units as u
>>> beam_sigma = 50*u.arcsec
>>> beam_area = 2*np.pi*(beam_sigma)**2
>>> freq = 5*u.GHz
>>> equiv = u.brightness_temperature(freq)
>>> (1*u.Jy/beam_area).to(u.K, equivalencies=equiv) # doctest: +FLOAT_CMP
<Quantity 3.526295144567176 K>
VLA synthetic beam::
>>> bmaj = 15*u.arcsec
>>> bmin = 15*u.arcsec
>>> fwhm_to_sigma = 1./(8*np.log(2))**0.5
>>> beam_area = 2.*np.pi*(bmaj*bmin*fwhm_to_sigma**2)
>>> freq = 5*u.GHz
>>> equiv = u.brightness_temperature(freq)
>>> (u.Jy/beam_area).to(u.K, equivalencies=equiv) # doctest: +FLOAT_CMP
<Quantity 217.2658703625732 K>
Any generic surface brightness:
>>> surf_brightness = 1e6*u.MJy/u.sr
>>> surf_brightness.to(u.K, equivalencies=u.brightness_temperature(500*u.GHz)) # doctest: +FLOAT_CMP
<Quantity 130.1931904778803 K> | def brightness_temperature(frequency, beam_area=None):
r"""
Defines the conversion between Jy/sr and "brightness temperature",
:math:`T_B`, in Kelvins. The brightness temperature is a unit very
commonly used in radio astronomy. See, e.g., "Tools of Radio Astronomy"
(Wilson 2009) eqn 8.16 and eqn 8.19 (these pages are available on `google
books
<https://books.google.com/books?id=9KHw6R8rQEMC&pg=PA179&source=gbs_toc_r&cad=4#v=onepage&q&f=false>`__).
:math:`T_B \equiv S_\nu / \left(2 k \nu^2 / c^2 \right)`
If the input is in Jy/beam or Jy (assuming it came from a single beam), the
beam area is essential for this computation: the brightness temperature is
inversely proportional to the beam area.
Parameters
----------
frequency : `~astropy.units.Quantity`
The observed ``spectral`` equivalent `~astropy.units.Unit` (e.g.,
frequency or wavelength). The variable is named 'frequency' because it
is more commonly used in radio astronomy.
BACKWARD COMPATIBILITY NOTE: previous versions of the brightness
temperature equivalency used the keyword ``disp``, which is no longer
supported.
beam_area : `~astropy.units.Quantity` ['solid angle']
Beam area in angular units, i.e. steradian equivalent
Examples
--------
Arecibo C-band beam::
>>> import numpy as np
>>> from astropy import units as u
>>> beam_sigma = 50*u.arcsec
>>> beam_area = 2*np.pi*(beam_sigma)**2
>>> freq = 5*u.GHz
>>> equiv = u.brightness_temperature(freq)
>>> (1*u.Jy/beam_area).to(u.K, equivalencies=equiv) # doctest: +FLOAT_CMP
<Quantity 3.526295144567176 K>
VLA synthetic beam::
>>> bmaj = 15*u.arcsec
>>> bmin = 15*u.arcsec
>>> fwhm_to_sigma = 1./(8*np.log(2))**0.5
>>> beam_area = 2.*np.pi*(bmaj*bmin*fwhm_to_sigma**2)
>>> freq = 5*u.GHz
>>> equiv = u.brightness_temperature(freq)
>>> (u.Jy/beam_area).to(u.K, equivalencies=equiv) # doctest: +FLOAT_CMP
<Quantity 217.2658703625732 K>
Any generic surface brightness:
>>> surf_brightness = 1e6*u.MJy/u.sr
>>> surf_brightness.to(u.K, equivalencies=u.brightness_temperature(500*u.GHz)) # doctest: +FLOAT_CMP
<Quantity 130.1931904778803 K>
"""
nu = frequency.to(si.GHz, spectral())
factor_Jy = (2 * _si.k_B * si.K * nu**2 / _si.c**2).to(astrophys.Jy).value
factor_K = (astrophys.Jy / (2 * _si.k_B * nu**2 / _si.c**2)).to(si.K).value
if beam_area is not None:
beam = beam_area.to_value(si.sr)
def convert_Jy_to_K(x_jybm):
return x_jybm / beam / factor_Jy
def convert_K_to_Jy(x_K):
return x_K * beam / factor_K
return Equivalency(
[
(astrophys.Jy, si.K, convert_Jy_to_K, convert_K_to_Jy),
(astrophys.Jy / astrophys.beam, si.K, convert_Jy_to_K, convert_K_to_Jy),
],
"brightness_temperature",
{"frequency": frequency, "beam_area": beam_area},
)
else:
def convert_JySr_to_K(x_jysr):
return x_jysr / factor_Jy
def convert_K_to_JySr(x_K):
return x_K / factor_K # multiplied by 1x for 1 steradian
return Equivalency(
[(astrophys.Jy / si.sr, si.K, convert_JySr_to_K, convert_K_to_JySr)],
"brightness_temperature",
{"frequency": frequency, "beam_area": beam_area},
) |
Convert between the ``beam`` unit, which is commonly used to express the area
of a radio telescope resolution element, and an area on the sky.
This equivalency also supports direct conversion between ``Jy/beam`` and
``Jy/steradian`` units, since that is a common operation.
Parameters
----------
beam_area : unit-like
The area of the beam in angular area units (e.g., steradians)
Must have angular area equivalent units. | def beam_angular_area(beam_area):
"""
Convert between the ``beam`` unit, which is commonly used to express the area
of a radio telescope resolution element, and an area on the sky.
This equivalency also supports direct conversion between ``Jy/beam`` and
``Jy/steradian`` units, since that is a common operation.
Parameters
----------
beam_area : unit-like
The area of the beam in angular area units (e.g., steradians)
Must have angular area equivalent units.
"""
return Equivalency(
[
(astrophys.beam, Unit(beam_area)),
(astrophys.beam**-1, Unit(beam_area) ** -1),
(astrophys.Jy / astrophys.beam, astrophys.Jy / Unit(beam_area)),
],
"beam_angular_area",
{"beam_area": beam_area},
) |
Defines the conversion between Jy/sr and "thermodynamic temperature",
:math:`T_{CMB}`, in Kelvins. The thermodynamic temperature is a unit very
commonly used in cosmology. See eqn 8 in [1].
:math:`K_{CMB} \equiv I_\nu / \left(2 k \nu^2 / c^2 f(\nu) \right)`
with :math:`f(\nu) = \frac{ x^2 e^x}{(e^x - 1 )^2}`
where :math:`x = h \nu / k T`
Parameters
----------
frequency : `~astropy.units.Quantity`
The observed `spectral` equivalent `~astropy.units.Unit` (e.g.,
frequency or wavelength). Must have spectral units.
T_cmb : `~astropy.units.Quantity` ['temperature'] or None
The CMB temperature at z=0. If `None`, the default cosmology will be
used to get this temperature. Must have units of temperature.
Notes
-----
For broad band receivers, this conversion do not hold
as it highly depends on the frequency
References
----------
.. [1] Planck 2013 results. IX. HFI spectral response
https://arxiv.org/abs/1303.5070
Examples
--------
Planck HFI 143 GHz::
>>> from astropy import units as u
>>> from astropy.cosmology import Planck15
>>> freq = 143 * u.GHz
>>> equiv = u.thermodynamic_temperature(freq, Planck15.Tcmb0)
>>> (1. * u.mK).to(u.MJy / u.sr, equivalencies=equiv) # doctest: +FLOAT_CMP
<Quantity 0.37993172 MJy / sr> | def thermodynamic_temperature(frequency, T_cmb=None):
r"""Defines the conversion between Jy/sr and "thermodynamic temperature",
:math:`T_{CMB}`, in Kelvins. The thermodynamic temperature is a unit very
commonly used in cosmology. See eqn 8 in [1].
:math:`K_{CMB} \equiv I_\nu / \left(2 k \nu^2 / c^2 f(\nu) \right)`
with :math:`f(\nu) = \frac{ x^2 e^x}{(e^x - 1 )^2}`
where :math:`x = h \nu / k T`
Parameters
----------
frequency : `~astropy.units.Quantity`
The observed `spectral` equivalent `~astropy.units.Unit` (e.g.,
frequency or wavelength). Must have spectral units.
T_cmb : `~astropy.units.Quantity` ['temperature'] or None
The CMB temperature at z=0. If `None`, the default cosmology will be
used to get this temperature. Must have units of temperature.
Notes
-----
For broad band receivers, this conversion do not hold
as it highly depends on the frequency
References
----------
.. [1] Planck 2013 results. IX. HFI spectral response
https://arxiv.org/abs/1303.5070
Examples
--------
Planck HFI 143 GHz::
>>> from astropy import units as u
>>> from astropy.cosmology import Planck15
>>> freq = 143 * u.GHz
>>> equiv = u.thermodynamic_temperature(freq, Planck15.Tcmb0)
>>> (1. * u.mK).to(u.MJy / u.sr, equivalencies=equiv) # doctest: +FLOAT_CMP
<Quantity 0.37993172 MJy / sr>
"""
nu = frequency.to(si.GHz, spectral())
if T_cmb is None:
from astropy.cosmology import default_cosmology
T_cmb = default_cosmology.get().Tcmb0
def f(nu, T_cmb=T_cmb):
x = _si.h * nu / _si.k_B / T_cmb
return x**2 * np.exp(x) / np.expm1(x) ** 2
def convert_Jy_to_K(x_jybm):
factor = (f(nu) * 2 * _si.k_B * si.K * nu**2 / _si.c**2).to_value(astrophys.Jy)
return x_jybm / factor
def convert_K_to_Jy(x_K):
factor = (astrophys.Jy / (f(nu) * 2 * _si.k_B * nu**2 / _si.c**2)).to_value(
si.K
)
return x_K / factor
return Equivalency(
[(astrophys.Jy / si.sr, si.K, convert_Jy_to_K, convert_K_to_Jy)],
"thermodynamic_temperature",
{"frequency": frequency, "T_cmb": T_cmb},
) |
Convert between Kelvin, Celsius, Rankine and Fahrenheit here because
Unit and CompositeUnit cannot do addition or subtraction properly. | def temperature():
"""Convert between Kelvin, Celsius, Rankine and Fahrenheit here because
Unit and CompositeUnit cannot do addition or subtraction properly.
"""
from .imperial import deg_F as F
from .imperial import deg_R as R
K = si.K
C = si.deg_C
return Equivalency(
[
(K, C, lambda x: x - 273.15, lambda x: x + 273.15),
(C, F, lambda x: x * 1.8 + 32.0, lambda x: (x - 32.0) / 1.8),
(K, F, lambda x: x * 1.8 - 459.67, lambda x: (x + 459.67) / 1.8),
(R, F, lambda x: x - 459.67, lambda x: x + 459.67),
(R, C, lambda x: (x - 491.67) * (5 / 9), lambda x: x * 1.8 + 491.67),
(R, K, lambda x: x * (5 / 9), lambda x: x * 1.8),
],
"temperature",
) |
Convert between Kelvin and keV(eV) to an equivalent amount. | def temperature_energy():
"""Convert between Kelvin and keV(eV) to an equivalent amount."""
e = _si.e.value
k_B = _si.k_B.value
return Equivalency(
[(si.K, si.eV, lambda x: x / (e / k_B), lambda x: x * (e / k_B))],
"temperature_energy",
) |
Convert between pixel distances (in units of ``pix``) and other units,
given a particular ``pixscale``.
Parameters
----------
pixscale : `~astropy.units.Quantity`
The pixel scale either in units of <unit>/pixel or pixel/<unit>. | def pixel_scale(pixscale):
"""
Convert between pixel distances (in units of ``pix``) and other units,
given a particular ``pixscale``.
Parameters
----------
pixscale : `~astropy.units.Quantity`
The pixel scale either in units of <unit>/pixel or pixel/<unit>.
"""
decomposed = pixscale.unit.decompose()
dimensions = dict(zip(decomposed.bases, decomposed.powers))
pix_power = dimensions.get(misc.pix, 0)
if pix_power == -1:
physical_unit = Unit(pixscale * misc.pix)
elif pix_power == 1:
physical_unit = Unit(misc.pix / pixscale)
else:
raise UnitsError(
"The pixel scale unit must have pixel dimensionality of 1 or -1."
)
return Equivalency(
[(misc.pix, physical_unit)], "pixel_scale", {"pixscale": pixscale}
) |
Convert between lengths (to be interpreted as lengths in the focal plane)
and angular units with a specified ``platescale``.
Parameters
----------
platescale : `~astropy.units.Quantity`
The pixel scale either in units of distance/pixel or distance/angle. | def plate_scale(platescale):
"""
Convert between lengths (to be interpreted as lengths in the focal plane)
and angular units with a specified ``platescale``.
Parameters
----------
platescale : `~astropy.units.Quantity`
The pixel scale either in units of distance/pixel or distance/angle.
"""
if platescale.unit.is_equivalent(si.arcsec / si.m):
platescale_val = platescale.to_value(si.radian / si.m)
elif platescale.unit.is_equivalent(si.m / si.arcsec):
platescale_val = (1 / platescale).to_value(si.radian / si.m)
else:
raise UnitsError("The pixel scale must be in angle/distance or distance/angle")
return Equivalency(
[(si.m, si.radian, lambda d: d * platescale_val, lambda a: a / platescale_val)],
"plate_scale",
{"platescale": platescale},
) |
Enable Imperial units so they appear in results of
`~astropy.units.UnitBase.find_equivalent_units` and
`~astropy.units.UnitBase.compose`.
This may be used with the ``with`` statement to enable Imperial
units only temporarily. | def enable():
"""
Enable Imperial units so they appear in results of
`~astropy.units.UnitBase.find_equivalent_units` and
`~astropy.units.UnitBase.compose`.
This may be used with the ``with`` statement to enable Imperial
units only temporarily.
"""
# Local import to avoid cyclical import
# Local import to avoid polluting namespace
import inspect
from .core import add_enabled_units
return add_enabled_units(inspect.getmodule(enable)) |
An equivalency for converting linear flux units ("maggys") defined relative
to a standard source into a standardized system.
Parameters
----------
flux0 : `~astropy.units.Quantity`
The flux of a magnitude-0 object in the "maggy" system. | def zero_point_flux(flux0):
"""
An equivalency for converting linear flux units ("maggys") defined relative
to a standard source into a standardized system.
Parameters
----------
flux0 : `~astropy.units.Quantity`
The flux of a magnitude-0 object in the "maggy" system.
"""
flux_unit0 = Unit(flux0)
return [(maggy, flux_unit0)] |
Return the `PhysicalType` instance associated with the name of a
physical type. | def _physical_type_from_str(name):
"""
Return the `PhysicalType` instance associated with the name of a
physical type.
"""
if name == "unknown":
raise ValueError("cannot uniquely identify an 'unknown' physical type.")
elif name in _attrname_physical_mapping:
return _attrname_physical_mapping[name] # convert attribute-accessible
elif name in _name_physical_mapping:
return _name_physical_mapping[name]
else:
raise ValueError(f"{name!r} is not a known physical type.") |
If a unit contains a temperature unit besides kelvin, then replace
that unit with kelvin.
Temperatures cannot be converted directly between K, °F, °C, and
°Ra, in particular since there would be different conversions for
T and ΔT. However, each of these temperatures each represents the
physical type. Replacing the different temperature units with
kelvin allows the physical type to be treated consistently. | def _replace_temperatures_with_kelvin(unit):
"""
If a unit contains a temperature unit besides kelvin, then replace
that unit with kelvin.
Temperatures cannot be converted directly between K, °F, °C, and
°Ra, in particular since there would be different conversions for
T and ΔT. However, each of these temperatures each represents the
physical type. Replacing the different temperature units with
kelvin allows the physical type to be treated consistently.
"""
physical_type_id = unit._get_physical_type_id()
physical_type_id_components = []
substitution_was_made = False
for base, power in physical_type_id:
if base in ["deg_F", "deg_C", "deg_R"]:
base = "K"
substitution_was_made = True
physical_type_id_components.append((base, power))
if substitution_was_made:
return core.Unit._from_physical_type_id(tuple(physical_type_id_components))
else:
return unit |
Convert a string or `set` of strings into a `set` containing
string representations of physical types.
The strings provided in ``physical_type_input`` can each contain
multiple physical types that are separated by a regular slash.
Underscores are treated as spaces so that variable names could
be identical to physical type names. | def _standardize_physical_type_names(physical_type_input):
"""
Convert a string or `set` of strings into a `set` containing
string representations of physical types.
The strings provided in ``physical_type_input`` can each contain
multiple physical types that are separated by a regular slash.
Underscores are treated as spaces so that variable names could
be identical to physical type names.
"""
if isinstance(physical_type_input, str):
physical_type_input = {physical_type_input}
standardized_physical_types = set()
for ptype_input in physical_type_input:
if not isinstance(ptype_input, str):
raise ValueError(f"expecting a string, but got {ptype_input}")
input_set = set(ptype_input.split("/"))
processed_set = {s.strip().replace("_", " ") for s in input_set}
standardized_physical_types |= processed_set
return standardized_physical_types |
Add a mapping between a unit and the corresponding physical type(s).
If a physical type already exists for a unit, add new physical type
names so long as those names are not already in use for other
physical types.
Parameters
----------
unit : `~astropy.units.Unit`
The unit to be represented by the physical type.
name : `str` or `set` of `str`
A `str` representing the name of the physical type of the unit,
or a `set` containing strings that represent one or more names
of physical types.
Raises
------
ValueError
If a physical type name is already in use for another unit, or
if attempting to name a unit as ``"unknown"``.
Notes
-----
For a list of physical types, see `astropy.units.physical`. | def def_physical_type(unit, name):
"""
Add a mapping between a unit and the corresponding physical type(s).
If a physical type already exists for a unit, add new physical type
names so long as those names are not already in use for other
physical types.
Parameters
----------
unit : `~astropy.units.Unit`
The unit to be represented by the physical type.
name : `str` or `set` of `str`
A `str` representing the name of the physical type of the unit,
or a `set` containing strings that represent one or more names
of physical types.
Raises
------
ValueError
If a physical type name is already in use for another unit, or
if attempting to name a unit as ``"unknown"``.
Notes
-----
For a list of physical types, see `astropy.units.physical`.
"""
physical_type_id = unit._get_physical_type_id()
physical_type_names = _standardize_physical_type_names(name)
if "unknown" in physical_type_names:
raise ValueError("cannot uniquely define an unknown physical type")
names_for_other_units = set(_unit_physical_mapping.keys()).difference(
_physical_unit_mapping.get(physical_type_id, {})
)
names_already_in_use = physical_type_names & names_for_other_units
if names_already_in_use:
raise ValueError(
"the following physical type names are already in use: "
f"{names_already_in_use}."
)
unit_already_in_use = physical_type_id in _physical_unit_mapping
if unit_already_in_use:
physical_type = _physical_unit_mapping[physical_type_id]
physical_type_names |= set(physical_type)
physical_type.__init__(unit, physical_type_names)
else:
physical_type = PhysicalType(unit, physical_type_names)
_physical_unit_mapping[physical_type_id] = physical_type
for ptype in physical_type:
_unit_physical_mapping[ptype] = physical_type_id
for ptype_name in physical_type_names:
_name_physical_mapping[ptype_name] = physical_type
# attribute-accessible name
attr_name = ptype_name.replace(" ", "_").replace("(", "").replace(")", "")
_attrname_physical_mapping[attr_name] = physical_type |
Return the physical type that corresponds to a unit (or another
physical type representation).
Parameters
----------
obj : quantity-like or `~astropy.units.PhysicalType`-like
An object that (implicitly or explicitly) has a corresponding
physical type. This object may be a unit, a
`~astropy.units.Quantity`, an object that can be converted to a
`~astropy.units.Quantity` (such as a number or array), a string
that contains a name of a physical type, or a
`~astropy.units.PhysicalType` instance.
Returns
-------
`~astropy.units.PhysicalType`
A representation of the physical type(s) of the unit.
Notes
-----
For a list of physical types, see `astropy.units.physical`.
Examples
--------
The physical type may be retrieved from a unit or a
`~astropy.units.Quantity`.
>>> import astropy.units as u
>>> u.get_physical_type(u.meter ** -2)
PhysicalType('column density')
>>> u.get_physical_type(0.62 * u.barn * u.Mpc)
PhysicalType('volume')
The physical type may also be retrieved by providing a `str` that
contains the name of a physical type.
>>> u.get_physical_type("energy")
PhysicalType({'energy', 'torque', 'work'})
Numbers and arrays of numbers correspond to a dimensionless physical
type.
>>> u.get_physical_type(1)
PhysicalType('dimensionless') | def get_physical_type(obj):
"""
Return the physical type that corresponds to a unit (or another
physical type representation).
Parameters
----------
obj : quantity-like or `~astropy.units.PhysicalType`-like
An object that (implicitly or explicitly) has a corresponding
physical type. This object may be a unit, a
`~astropy.units.Quantity`, an object that can be converted to a
`~astropy.units.Quantity` (such as a number or array), a string
that contains a name of a physical type, or a
`~astropy.units.PhysicalType` instance.
Returns
-------
`~astropy.units.PhysicalType`
A representation of the physical type(s) of the unit.
Notes
-----
For a list of physical types, see `astropy.units.physical`.
Examples
--------
The physical type may be retrieved from a unit or a
`~astropy.units.Quantity`.
>>> import astropy.units as u
>>> u.get_physical_type(u.meter ** -2)
PhysicalType('column density')
>>> u.get_physical_type(0.62 * u.barn * u.Mpc)
PhysicalType('volume')
The physical type may also be retrieved by providing a `str` that
contains the name of a physical type.
>>> u.get_physical_type("energy")
PhysicalType({'energy', 'torque', 'work'})
Numbers and arrays of numbers correspond to a dimensionless physical
type.
>>> u.get_physical_type(1)
PhysicalType('dimensionless')
"""
if isinstance(obj, PhysicalType):
return obj
if isinstance(obj, str):
return _physical_type_from_str(obj)
if isinstance(obj, core.UnitBase):
unit = obj
else:
try:
unit = quantity.Quantity(obj, copy=COPY_IF_NEEDED).unit
except TypeError as exc:
raise TypeError(f"{obj} does not correspond to a physical type.") from exc
unit = _replace_temperatures_with_kelvin(unit)
physical_type_id = unit._get_physical_type_id()
unit_has_known_physical_type = physical_type_id in _physical_unit_mapping
if unit_has_known_physical_type:
return _physical_unit_mapping[physical_type_id]
else:
return PhysicalType(unit, "unknown") |
Checks for physical types using lazy import.
This also allows user-defined physical types to be accessible from the
:mod:`astropy.units.physical` module.
See `PEP 562 <https://www.python.org/dev/peps/pep-0562/>`_
Parameters
----------
name : str
The name of the attribute in this module. If it is already defined,
then this function is not called.
Returns
-------
ptype : `~astropy.units.physical.PhysicalType`
Raises
------
AttributeError
If the ``name`` does not correspond to a physical type | def __getattr__(name):
"""Checks for physical types using lazy import.
This also allows user-defined physical types to be accessible from the
:mod:`astropy.units.physical` module.
See `PEP 562 <https://www.python.org/dev/peps/pep-0562/>`_
Parameters
----------
name : str
The name of the attribute in this module. If it is already defined,
then this function is not called.
Returns
-------
ptype : `~astropy.units.physical.PhysicalType`
Raises
------
AttributeError
If the ``name`` does not correspond to a physical type
"""
if name in _attrname_physical_mapping:
return _attrname_physical_mapping[name]
raise AttributeError(f"module {__name__!r} has no attribute {name!r}") |
Return contents directory (__all__ + all physical type names). | def __dir__():
"""Return contents directory (__all__ + all physical type names)."""
return list(set(__all__) | set(_attrname_physical_mapping.keys())) |
Return a boolean array where two arrays are element-wise equal
within a tolerance.
Parameters
----------
a, b : array-like or `~astropy.units.Quantity`
Input values or arrays to compare
rtol : array-like or `~astropy.units.Quantity`
The relative tolerance for the comparison, which defaults to
``1e-5``. If ``rtol`` is a :class:`~astropy.units.Quantity`,
then it must be dimensionless.
atol : number or `~astropy.units.Quantity`
The absolute tolerance for the comparison. The units (or lack
thereof) of ``a``, ``b``, and ``atol`` must be consistent with
each other. If `None`, ``atol`` defaults to zero in the
appropriate units.
equal_nan : `bool`
Whether to compare NaN’s as equal. If `True`, NaNs in ``a`` will
be considered equal to NaN’s in ``b``.
Notes
-----
This is a :class:`~astropy.units.Quantity`-aware version of
:func:`numpy.isclose`. However, this differs from the `numpy` function in
that the default for the absolute tolerance here is zero instead of
``atol=1e-8`` in `numpy`, as there is no natural way to set a default
*absolute* tolerance given two inputs that may have differently scaled
units.
Raises
------
`~astropy.units.UnitsError`
If the dimensions of ``a``, ``b``, or ``atol`` are incompatible,
or if ``rtol`` is not dimensionless.
See Also
--------
allclose | def isclose(a, b, rtol=1.0e-5, atol=None, equal_nan=False):
"""
Return a boolean array where two arrays are element-wise equal
within a tolerance.
Parameters
----------
a, b : array-like or `~astropy.units.Quantity`
Input values or arrays to compare
rtol : array-like or `~astropy.units.Quantity`
The relative tolerance for the comparison, which defaults to
``1e-5``. If ``rtol`` is a :class:`~astropy.units.Quantity`,
then it must be dimensionless.
atol : number or `~astropy.units.Quantity`
The absolute tolerance for the comparison. The units (or lack
thereof) of ``a``, ``b``, and ``atol`` must be consistent with
each other. If `None`, ``atol`` defaults to zero in the
appropriate units.
equal_nan : `bool`
Whether to compare NaN’s as equal. If `True`, NaNs in ``a`` will
be considered equal to NaN’s in ``b``.
Notes
-----
This is a :class:`~astropy.units.Quantity`-aware version of
:func:`numpy.isclose`. However, this differs from the `numpy` function in
that the default for the absolute tolerance here is zero instead of
``atol=1e-8`` in `numpy`, as there is no natural way to set a default
*absolute* tolerance given two inputs that may have differently scaled
units.
Raises
------
`~astropy.units.UnitsError`
If the dimensions of ``a``, ``b``, or ``atol`` are incompatible,
or if ``rtol`` is not dimensionless.
See Also
--------
allclose
"""
return np.isclose(*_unquantify_allclose_arguments(a, b, rtol, atol), equal_nan) |
Whether two arrays are element-wise equal within a tolerance.
Parameters
----------
a, b : array-like or `~astropy.units.Quantity`
Input values or arrays to compare
rtol : array-like or `~astropy.units.Quantity`
The relative tolerance for the comparison, which defaults to
``1e-5``. If ``rtol`` is a :class:`~astropy.units.Quantity`,
then it must be dimensionless.
atol : number or `~astropy.units.Quantity`
The absolute tolerance for the comparison. The units (or lack
thereof) of ``a``, ``b``, and ``atol`` must be consistent with
each other. If `None`, ``atol`` defaults to zero in the
appropriate units.
equal_nan : `bool`
Whether to compare NaN’s as equal. If `True`, NaNs in ``a`` will
be considered equal to NaN’s in ``b``.
Notes
-----
This is a :class:`~astropy.units.Quantity`-aware version of
:func:`numpy.allclose`. However, this differs from the `numpy` function in
that the default for the absolute tolerance here is zero instead of
``atol=1e-8`` in `numpy`, as there is no natural way to set a default
*absolute* tolerance given two inputs that may have differently scaled
units.
Raises
------
`~astropy.units.UnitsError`
If the dimensions of ``a``, ``b``, or ``atol`` are incompatible,
or if ``rtol`` is not dimensionless.
See Also
--------
isclose | def allclose(a, b, rtol=1.0e-5, atol=None, equal_nan=False) -> bool:
"""
Whether two arrays are element-wise equal within a tolerance.
Parameters
----------
a, b : array-like or `~astropy.units.Quantity`
Input values or arrays to compare
rtol : array-like or `~astropy.units.Quantity`
The relative tolerance for the comparison, which defaults to
``1e-5``. If ``rtol`` is a :class:`~astropy.units.Quantity`,
then it must be dimensionless.
atol : number or `~astropy.units.Quantity`
The absolute tolerance for the comparison. The units (or lack
thereof) of ``a``, ``b``, and ``atol`` must be consistent with
each other. If `None`, ``atol`` defaults to zero in the
appropriate units.
equal_nan : `bool`
Whether to compare NaN’s as equal. If `True`, NaNs in ``a`` will
be considered equal to NaN’s in ``b``.
Notes
-----
This is a :class:`~astropy.units.Quantity`-aware version of
:func:`numpy.allclose`. However, this differs from the `numpy` function in
that the default for the absolute tolerance here is zero instead of
``atol=1e-8`` in `numpy`, as there is no natural way to set a default
*absolute* tolerance given two inputs that may have differently scaled
units.
Raises
------
`~astropy.units.UnitsError`
If the dimensions of ``a``, ``b``, or ``atol`` are incompatible,
or if ``rtol`` is not dimensionless.
See Also
--------
isclose
"""
return np.allclose(*_unquantify_allclose_arguments(a, b, rtol, atol), equal_nan) |
Enable the VOUnit-required extra units so they appear in results of
`~astropy.units.UnitBase.find_equivalent_units` and
`~astropy.units.UnitBase.compose`, and are recognized in the ``Unit('...')``
idiom. | def _enable():
"""
Enable the VOUnit-required extra units so they appear in results of
`~astropy.units.UnitBase.find_equivalent_units` and
`~astropy.units.UnitBase.compose`, and are recognized in the ``Unit('...')``
idiom.
"""
# Local import to avoid cyclical import
# Local import to avoid polluting namespace
import inspect
from .core import add_enabled_units
return add_enabled_units(inspect.getmodule(_enable)) |
Recursively extract field names from a dtype. | def _names_from_dtype(dtype):
"""Recursively extract field names from a dtype."""
names = []
for name in dtype.names:
subdtype = dtype.fields[name][0].base
if subdtype.names:
names.append([name, _names_from_dtype(subdtype)])
else:
names.append(name)
return tuple(names) |
Recursively normalize, inferring upper level names for unadorned tuples.
Generally, we want the field names to be organized like dtypes, as in
``(['pv', ('p', 'v')], 't')``. But we automatically infer upper
field names if the list is absent from items like ``(('p', 'v'), 't')``,
by concatenating the names inside the tuple. | def _normalize_names(names):
"""Recursively normalize, inferring upper level names for unadorned tuples.
Generally, we want the field names to be organized like dtypes, as in
``(['pv', ('p', 'v')], 't')``. But we automatically infer upper
field names if the list is absent from items like ``(('p', 'v'), 't')``,
by concatenating the names inside the tuple.
"""
result = []
for name in names:
if isinstance(name, str) and len(name) > 0:
result.append(name)
elif (
isinstance(name, list)
and len(name) == 2
and isinstance(name[0], str)
and len(name[0]) > 0
and isinstance(name[1], tuple)
and len(name[1]) > 0
):
result.append([name[0], _normalize_names(name[1])])
elif isinstance(name, tuple) and len(name) > 0:
new_tuple = _normalize_names(name)
name = "".join([(i[0] if isinstance(i, list) else i) for i in new_tuple])
result.append([name, new_tuple])
else:
raise ValueError(
f"invalid entry {name!r}. Should be a name, "
"tuple of names, or 2-element list of the "
"form [name, tuple of names]."
)
return tuple(result) |
Make a `StructuredUnit` of one unit, with the structure of a `numpy.dtype`.
Parameters
----------
unit : UnitBase
The unit that will be filled into the structure.
dtype : `numpy.dtype`
The structure for the StructuredUnit.
Returns
-------
StructuredUnit | def _structured_unit_like_dtype(
unit: UnitBase | StructuredUnit, dtype: np.dtype
) -> StructuredUnit:
"""Make a `StructuredUnit` of one unit, with the structure of a `numpy.dtype`.
Parameters
----------
unit : UnitBase
The unit that will be filled into the structure.
dtype : `numpy.dtype`
The structure for the StructuredUnit.
Returns
-------
StructuredUnit
"""
if isinstance(unit, StructuredUnit):
# If unit is structured, it should match the dtype. This function is
# only used in Quantity, which performs this check, so it's fine to
# return as is.
return unit
# Make a structured unit
units = []
for name in dtype.names:
subdtype = dtype.fields[name][0]
if subdtype.names is not None:
units.append(_structured_unit_like_dtype(unit, subdtype))
else:
units.append(unit)
return StructuredUnit(tuple(units), names=dtype.names) |
Get the first sentence from a string and remove any carriage
returns. | def _get_first_sentence(s: str) -> str:
"""
Get the first sentence from a string and remove any carriage
returns.
"""
x = re.match(r".*?\S\.\s", s)
if x is not None:
s = x.group(0)
return s.replace("\n", " ") |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.