Geonames / README.md
do-me's picture
Update README.md
114b652 verified
metadata
license: cc-by-4.0
size_categories:
  - 10M<n<100M
tags:
  - geospatial

Geonames

A simple parquet conversion of Geonames place database and ZIP codes.

Source

The tab-separated, zipped textfiles allCountries.zip from:

Columns

allCountries.zip

The main 'geoname' table has the following fields :
---------------------------------------------------
geonameid         : integer id of record in geonames database
name              : name of geographical point (utf8) varchar(200)
asciiname         : name of geographical point in plain ascii characters, varchar(200)
alternatenames    : alternatenames, comma separated, ascii names automatically transliterated, convenience attribute from alternatename table, varchar(10000)
latitude          : latitude in decimal degrees (wgs84)
longitude         : longitude in decimal degrees (wgs84)
feature class     : see http://www.geonames.org/export/codes.html, char(1)
feature code      : see http://www.geonames.org/export/codes.html, varchar(10)
country code      : ISO-3166 2-letter country code, 2 characters
cc2               : alternate country codes, comma separated, ISO-3166 2-letter country code, 200 characters
admin1 code       : fipscode (subject to change to iso code), see exceptions below, see file admin1Codes.txt for display names of this code; varchar(20)
admin2 code       : code for the second administrative division, a county in the US, see file admin2Codes.txt; varchar(80) 
admin3 code       : code for third level administrative division, varchar(20)
admin4 code       : code for fourth level administrative division, varchar(20)
population        : bigint (8 byte int) 
elevation         : in meters, integer
dem               : digital elevation model, srtm3 or gtopo30, average elevation of 3''x3'' (ca 90mx90m) or 30''x30'' (ca 900mx900m) area in meters, integer. srtm processed by cgiar/ciat.
timezone          : the iana timezone id (see file timeZone.txt) varchar(40)
modification date : date of last modification in yyyy-MM-dd format

Conversion

import pandas as pd
df = pd.read_csv('allCountries.txt', sep='\t', header=None, low_memory=False)
df.to_parquet('geonames_23_03_2025.parquet')

Quality

Be warned, the quality - especially for other languages than English - might sometimes be low. Sometimes there are duplicates and very confusing entries.

Query with DuckDB

Example query for München

import duckdb
import geopandas
df = duckdb.sql(f"SELECT * FROM 'geonames_23_03_2025.parquet' WHERE \"1\" = 'München'  ").df() # you can add the country code to the query with AND \"8\" = 'GB'
gdf = geopandas.GeoDataFrame(    df,    geometry=geopandas.points_from_xy(x=df["5"], y=df["4"]))
gdf
ID Name Alternate Name Additional Info Latitude Longitude Feature Class Feature Code Country Code Admin Code Admin1 Admin2 Admin3 Admin4 Population Elevation Time Zone Last Update Geometry
2867711 München Muenchen None 51.60698 13.31243 P PPL DE None 11 00 12062 12062500 0 NaN Europe/Berlin 2015-09-04 POINT (13.312 51.607)
2867713 München Munchen None 48.69668 13.46314 P PPL DE None 02 092 09275 09275128 0 NaN Europe/Berlin 2013-02-19 POINT (13.463 48.697)

Note that using the German spelling the query yields nonsense. Instead, query in English:

import duckdb
import geopandas
df = duckdb.sql(f"SELECT * FROM 'geonames_23_03_2025.parquet' WHERE \"1\" = 'Munich' AND \"8\" = 'DE'  ").df() # you can add the country code to the query with AND \"8\" = 'GB'
gdf = geopandas.GeoDataFrame(    df,    geometry=geopandas.points_from_xy(x=df["5"], y=df["4"]))
gdf
ID Name Official Name Alternate Names Latitude Longitude Feature Class Feature Code Country Code Admin Code Admin1 Admin2 Admin3 Admin4 Population Elevation Time Zone Last Update Geometry
2867714 Munich Munich Lungsod ng Muenchen, Lungsod ng München, MUC, Min... 48.13743 11.57549 P PPLA DE None 02 091 09162 09162000 1260391 NaN 524 Europe/Berlin 2023-10-12

This query returns only one entry with a city centroid, just as expected.

Visualize with deck.gl

import pydeck as pdk
import pandas as pd
import numpy as np 

# load some gdf
gdf["coordinates"] = gdf.apply(lambda x: [x.geometry.x, x.geometry.y], axis=1)

# Define a layer to display on a map
layer = pdk.Layer(
    "ScatterplotLayer",
                # coordinates is an array 
    gdf[["1","coordinates"]], # super important! only pass what's needed. If geometry column from geopandas is passed, error!
    pickable=True,
    opacity=0.99,
    stroked=True,
    filled=True,
    radius_scale=6,
    radius_min_pixels=1,
    radius_max_pixels=100,
    line_width_min_pixels=1,
    get_position="coordinates",
    get_radius="1000",
    get_fill_color=[255, 140, 0],
    get_line_color=[255, 140, 0],
)

# Set the viewport location
view_state = pdk.ViewState(latitude=np.mean(gdf.geometry.y), longitude=np.mean(gdf.geometry.x), zoom=12, bearing=0, pitch=0)

# Render
r = pdk.Deck(layers=[layer], initial_view_state=view_state,height=2000, tooltip={"text": "{1}"})
r.to_html("scatterplot_layer.html")

image/png

Sample

ID Name Official Name Alternate Names Latitude Longitude Feature Class Feature Code Country Code Admin Code Admin1 Admin2 Admin3 Admin4 Population Elevation Time Zone Last Update
2994701 Roc Meler Roc Meler Roc Mele, Roc Meler, Roc Mélé 42.58765 1.74180 T PK AD AD,FR 02 NaN NaN NaN 0 2811 Europe/Andorra 2023-10-03
3017832 Pic de les Abelletes Pic de les Abelletes Pic de la Font-Negre, Pic de la Font-Nègre, Pic ... 42.52535 1.73343 T PK AD FR A9 66 663 66146 0 NaN 2411 Europe/Andorra
3017833 Estany de les Abelletes Estany de les Abelletes Estany de les Abelletes, Etang de Font-Negre, Ét... 42.52915 1.73362 H LK AD FR A9 NaN NaN NaN 0 NaN 2260 Europe/Andorra
3023203 Port Vieux de la Coume d’Ose Port Vieux de la Coume d'Ose Port Vieux de Coume d'Ose, Port Vieux de Coume ... 42.62568 1.61823 T PASS AD NaN 00 NaN NaN NaN 0 NaN 2687 Europe/Andorra
3029315 Port de la Cabanette Port de la Cabanette Port de la Cabanette, Porteille de la Cabanette 42.60000 1.73333 T PASS AD AD,FR B3 09 091 09139 0 NaN 2379 Europe/Andorra
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
13216940 GLORIA Seamount GLORIA Seamount NaN 45.03000 -15.53500 U SMU NaN NaN 00 NaN NaN NaN 0 NaN -9999 NaN
13216941 Yubko Hills Yubko Hills NaN 13.01820 -134.41130 U HLSU NaN NaN 00 NaN NaN NaN 0 NaN -9999 NaN
13216942 Maguari Seamount Maguari Seamount NaN 0.68832 -44.31278 U SMU NaN NaN 00 NaN NaN NaN 0 NaN -9999 NaN
13216943 Quintana Seamount Quintana Seamount NaN -32.74950 -38.67696 U SMU NaN NaN 00 NaN NaN NaN 0 NaN -9999 NaN
13216944 Satander Guyot Satander Guyot NaN -1.92806 -37.82161 U DEPU NaN NaN 00 NaN NaN NaN 0 NaN -9999 NaN

13111559 rows × 19 columns