text
stringlengths 0
15.3k
|
---|
except KeyError: |
eval_logger.warning(f'{name} metric is not assigned a default aggregation!') |
def is_higher_better(metric_name) -> bool: |
try: |
return HIGHER_IS_BETTER_REGISTRY[metric_name] |
except KeyError: |
eval_logger.warning(f"higher_is_better not specified for metric '{metric_name}'!") |
def register_filter(name): |
def decorate(cls): |
if name in FILTER_REGISTRY: |
eval_logger.info(f'Registering filter `{name}` that is already in Registry {FILTER_REGISTRY}') |
FILTER_REGISTRY[name] = cls |
return cls |
return decorate |
def get_filter(filter_name: str) -> type: |
try: |
return FILTER_REGISTRY[filter_name] |
except KeyError: |
eval_logger.warning(f'filter `{filter_name}` is not registered!') |
# File: lm-evaluation-harness-main/lm_eval/api/samplers.py |
import datasets |
class ContextSampler: |
def __init__(self, docs, task, fewshot_indices=None, rnd=None) -> None: |
self.rnd = rnd |
if not self.rnd: |
raise ValueError('A `random.Random` generator argument must be provided to `rnd` of FewShotSampler!') |
self.task = task |
self.config = task._config |
self.target_delimiter = self.config.target_delimiter |
self.fewshot_delimiter = self.config.fewshot_delimiter |
self.doc_to_text = self.task.doc_to_text |
self.doc_to_target = self.task.doc_to_target |
self.doc_to_choice = self.task.doc_to_choice |
self.docs = docs |
if fewshot_indices: |
if not isinstance(self.docs, datasets.Dataset): |
raise ValueError("Got `fewshot_indices` but fewshot_docs are not a HF dataset. Don't use both `fewshot_indices` and a user-defined few-shot sample list simultaneously") |
self.docs = self.docs.select(fewshot_indices) |
def get_context(self, doc, num_fewshot): |
n_samples = num_fewshot + 1 if self.config.fewshot_split == self.config.test_split else num_fewshot |
fewshotex = self.sample(n_samples) |
selected_docs = [x for x in fewshotex if x != doc][:num_fewshot] |
labeled_examples = '' |
for doc in selected_docs: |
doc_content = self.doc_to_text(doc) |
doc_target = self.doc_to_target(doc) |
labeled_examples += doc_content if self.config.doc_to_choice is None or isinstance(doc_content, str) else self.doc_to_choice(doc)[doc_content] |
labeled_examples += self.target_delimiter |
labeled_examples += str(doc_target[0]) if isinstance(doc_target, list) else str(doc_target) if self.config.doc_to_choice is None or isinstance(doc_target, str) else str(self.doc_to_choice(doc)[doc_target]) |
labeled_examples += self.fewshot_delimiter |
return labeled_examples |
def get_chat_context(self, doc, num_fewshot, fewshot_as_multiturn: bool=False): |
chat_history = [] |
n_samples = num_fewshot + 1 if self.config.fewshot_split == self.config.test_split else num_fewshot |
fewshotex = self.sample(n_samples) |
selected_docs = [x for x in fewshotex if x != doc][:num_fewshot] |
if fewshot_as_multiturn: |
for doc in selected_docs: |
doc_content = self.doc_to_text(doc) |
doc_target = self.doc_to_target(doc) |
chat_history.append({'role': 'user', 'content': doc_content if self.config.doc_to_choice is None or isinstance(doc_content, str) else self.doc_to_choice(doc)[doc_content]}) |
chat_history.append({'role': 'assistant', 'content': str(doc_target[0]) if isinstance(doc_target, list) else doc_target if self.config.doc_to_choice is None or isinstance(doc_target, str) else str(self.doc_to_choice(doc)[doc_target])}) |
else: |
chat_history.append({'role': 'user', 'content': self.get_context(doc, num_fewshot)}) |
return chat_history |
def sample(self, n): |
return self.rnd.sample(self.docs, n) |
class FirstNSampler(ContextSampler): |
def sample(self, n) -> None: |
assert n <= len(self.docs), f'Error: number of fewshot samples requested exceeds the {len(self.docs)} that are available.' |
return self.docs[:n] |
class BalancedSampler(ContextSampler): |
def sample(self, n) -> None: |
pass |
class ManualSampler(ContextSampler): |
def sample(self, n) -> None: |
"""""" |
pass |
SAMPLER_REGISTRY = {'default': ContextSampler, 'first_n': FirstNSampler} |
def get_sampler(name): |
try: |
return SAMPLER_REGISTRY[name] |
except KeyError: |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.